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It has previously been shown that the optimum choice of harmonic Hamiltonian with which to approxi-
mate a crystal Hamiltonian is one in which the force constants are equal to the ground-state expectation
value of the second derivative of the crystal potential, the expectation value being computed self-consistently
with the ground-state eigenfunction of the harmonic Hamiltonian. It is shown here that the appearance of
ground-state averages of various derivatives of the potential is due to an explicit or implicit expansion of
the potential in a Hermite polynomial series, and that such an expansion is superior to the conventional
Taylor-series expansion for anharmonic systems. In addition, it is shown that one can systematically treat
very anharmonic systems by expanding the Hamiltonian in a set of polynomials orthogonalized with respect
to weight function chosen to cut off the potential at short range, and that explicit incorporation of an easily
optimized Gaussian factor in this weight function provides a computationally convenient way of introducing
certain desirable features into the general expansion.

I. INTRODUCTION

~ERTAIN steps in the development of a new~ approach to lattice dynamics at O'K have been
briefly described in two previous letter publications. ' '
The goal of this method is the development of a unified
and computationally feasible theoretical framework for
the treatment of harmonic, slightly anharmonic, and
very anharmonic lattices.

The essential idea of the method —which will be
called the orthogonal polynomial method —is that of
expanding the crystal potential in terms of a complete
set of polynomials orthogonalized with respect to an
appropriate weight function. The computational feasi-
bility is, in a large part, the result of the use of certain
techniques' for the exact evaluation in coordinate space
of matrix elements of a crystal potential between three-
dimensional harmonic oscillator wave functions.

In this paper, the theory of the orthogonal polynomial
method will be described in detail. The emphasis will be
on application to lattice dynamics, although other
quantum-mechanical systems can be treated by this
approach. In Sec. III the method will be illustrated by a
comprehensive treatment of the problem of a single
particle interacting with a one-dimensional potential.
A reading of this section alone together with the parts
of Sec. II which are necessary for an understanding of
the notation will serve to give a casually interested
reader a reasonable understanding of the method with-
out subjecting him to the complication of crystal-lattice
notation.

The additional details necessary for the treatment
of three-dimensional crystal lattices will be given in
Sec. IV, both for the case of harmonic or slightly an-
harmonic systems such as solid Ar or solid Ne and for
the case of very anharmonic systems solid 3He or solid
'He.

Although a few numerical results for the latter two
cases have already been given in Refs. 1 and 2, a

' T. R. Koehler, Phys. Rev. Letters 17 89 (1966).
s T. R. Koehler, Phys. Rev. Letters 1, 516 (1967).
s T. R. Koehler, Phys. Rev. 144, 789 (1966); this paper will be

referred to as I.
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complete presentation of these and other unpublished
results will be reserved for subsequent publications.
More explicit details concerning computational methods
will be given then also.

II. PRELIMINARY DISCUSSION
AND NOTATION

The general problem we wish to consider is that of
finding the eigenfunctions and eigenvalues of the
Hamiltonian of a crystal in the Born-Oppenheimer
adiabatic approximation. The Hamiltonian can be
written symbolically as

where E=——,'A'V', and it will be assumed that V is a
known function of the coordinates. If the atoms in the
crystal interact with a two-body central-force potential
U(r), then V= s' P' U(r,~), where r, is the coordinate
of the ith particle and r@= ~r; r, ~. M—ost of the general
expressions which will be derived do not depend upon
the use of a two-body central-force potential; however,
explicit numerical evaluation of the expressions is most
convenient for this case.

In order to save superscripts and subscripts as often
as possible, a supervector and supermatrix notation will

be used in which vector products will be written as
rs= rr= P, r,"r,=P; P r, r; with an obvious general-
ization to matrices. Superscripts will be used to denote
Cartesian components of a vector. For notational con-
venience, simple Bravais lattices will be treated
exclusively although the generalization to more compli-
cated lattices is quite straightforward, as was shown in I.

In this notation, V(r)=V(r;, ,r~), where there
are E atoms in the crystal. Born—von Karman boundary
conditions will be assumed and the translational sym-
rnetry of the lattice requires V(r+R) = V(r), where

R; is the equilibrium position of the ith atom.
According to the prescription of the traditional

harmonic approximation, one expands the potential
in a Taylor series in terms of the displacements I= r—8
of the atoms from their equilibrium positions. The
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Hp = —-2X'v2+ Vor+-,'M rg, (3)

which can be diagonalized by standard techniques. 4

BrieQy, one notes that, because of the lattice sym-
metry, C ~ can be brought into semidiagonal form by the
transformation

I
Tc' T j=ex'K ea 4.a~, (4)

where Tq; ——eg,e '"' '. The matrix Dq is called the
dynamical matrix and its roots are the squares of the
phonon frequencies. The matrix e~, whose rows are
polarization vectors, is then chosen to diagonalize
D~ so that

eg Dg eg'=(~p)',

where ~~ is a diagonal matrix.
The nth term in the expansion of the Hamiltonian

given in Eq. (3) is

where

1
V r= —4 (iq, n~, . , i»)n»)N 'N» (6)

nf

C„~(ig,ng, , r,n )= V . (7)

resulting Hamiltonian

H= &+vo'+ V2r+ va'+ (2)

in which the term linear in the displacements vanishes
because the expansion is about an equilibrium point,
is then truncated at the second term giving a harmonic
Hamiltonian

As was discussed in I,

I 0)=A exp( —-2@1'N), (g)

where A is a normalization constan. t, I'=G/X', and
O'=C. It is notationally convenient to use both G and
I', and gq=rs~/X' will also be used. In constructing
IT,O), for example, one simply substitutes I'r for I'
in Eq. (8). In this paper I 0) or some subscripted form
of

I 0) will always designate the normalized exponential
of some quadratic form —that is, a correlated-Gaussian
wave function.

Numerical results are obtainable from this theory
primarily because of the techniques described in I for
the exact analytic integration of a correlated-Gaussian
wave function over all coordinates but a few. Thus, one
can, for example, evaluate the expression

«I Vlo&=P'Z'«IU(ro') Io& (9)

exactly by performing only three-dimensional numerical
integration in coordinate space. For the purposes of
this paper we wish only to note that the expressions to
be derived can be evaluated numerically.

A few formulas which will be used extensively
throughout this paper are as follows:

(0 I fHg I 0)=—&' TrG(O
I fg I o)+ (0 I fVg I 0)

1 1——g&(0
I fg v&f+ v2g- —fg-

2
(vf) «——g) Io)

Vector and matrix products will be written either
as in Eq. (6), or in the more conventional and less
cumbersome notation described earlier and used in
Eq. (3). Open products will be written, for example,
as NN or u,u;. In particular VVV defines a matrix whose
components are V; V;~V.

Since a variety of harmonic Hamiltonians and eigen-
functions of harmonic Hamiltonians play an important
role in this theory, it is useful to establish a notation
which is consistent enough for one to derive general
expressions but sufficiently Qexible for one to differ-
entiate between different harmonic systems. An
arbitrary harmonic Hamiltonian will be denoted by Hz,
the quadratic term in EI~ will be 2QCN, and the kinetic-
energy term in all Hamiltonians will be —~~A'V'. A

specific harmonic Hamiltonian and its quadratic term
will be denoted by, for example, H&~ and NC~N as was
done in Eq. (3). The normalized ground-state eigen-
function of Hq will be written lo) and of HP will be
written

I T,o), or simply as lo) when the reference is
clear. In general, anything written within the ket
symbol will denote a normalized wave function.

(olu; vlo)=-'G ';, &(0l v;svlo),

(OIN;.N, &vlo&=-', s,,-s(ol vlo)
+~~G '",»»'G ',yet'(OIV; 'V', s'Vlo&. (12)

Equation (10) results immediately from the identity

«I f(v' )'gl o&

'[(Ol fL(v, )2g]lo) 2(ol (vlf)(v» g) I0)
+ (o I L(v,-)2fjgl o&]. (13)

Equation (11) is a result of integration by parts and

Eq. (12) is derived by applying Eq. (10) twice.

III. ONE-DIMENSIONAL MODEL

A. Conventional Harmonic Approximation

Although the theory is directed towards three-
dimensional crystals, we have found that its essential
features can be illustrated with a minimum of notational
complications in terms of a simple model of a single

particle interacting with a one-dimensional potential.
In this case, the Hamiltonian is

4 See, e.g., A. A. Maradudin, E. W. Montroll, and G. H. Weiss,
in SOM State Physics, edited by F. Seitz and D. Turnbull (Aca-
deInic Press Inc. , New York, 1963), Suppl. 3, or any of the sev-
eral references given in I.

d2

H= —-', X' +V(x).
dx

(14)
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where, in analogy with the previous notation,

daU
T—

n
dk+

and 1=x—xo. This Hamiltonian is then truncated to
give

d2

Pp, ,
~= —-', X' + V~0+-,' C~44'

dl

The normalized eigenfunctions of H~~ are well
known to be

where
I
T,~)= (2"~') "'& L(v')'"~71T 0) (17)

I T,o)= (4r/7 )'I' exp( —-'yrN') (18)

y~=gr/X' and (gr)2=C~. The unperturbed eigenvalues
of H& will be denoted by E ', while the diagonal matrix
elements of H in the representation

I r4) will be denoted
by E„.

In the conventional harmonic approximation, the
leading correction to the ground-state energy in
perturbation theory would be

If one were to treat this model in the conventional
harmonic approximation, one would 6rst expand the
potential in a Taylor series about some point xo to
obtain

d2 I
B=—2'X' +Vo+Q —C rN",

du2 nI

obvious to use an arbitrary Gaussian as a variational
wave function and to minimize Eo with respect to g.
The minimization is readily carried out and one 6nds
that dEO/dg =0 if g=g', where g' is determined by the
self-consistent condition

d'U
(g')'= x'(c,o

I I c,o),
dx

(21)

V(x)=Q V„~

= 2 (2"~') 'C'-"&.L(v'»N7

(22a)

(22b)

where Eq. (12) has been used to cast Eq. (21) into the
form given. The superscript c will be used to designate
wave functions, etc., which are determined from some
self-consistent condition.

One could now consider H~' to be the optimum
harmonic Hamiltonian with which to approximate H
and then could use the eigenfunctions of this Hamil-
tonian as a basis for perturbation theory using V—-', C 'I'
as the perturbation. If this is done, terms involving
the ground-state expectation value of various deriva-
tives of the potential appear. An understanding of the
significance of these terms furnishes an insight into the
self-consistent harmonic approximation and also sug-
gests a possible way in which the theory can be extended.

Suppose instead of expanding the potential in a
Taylor series, one were to expand it in terms of an
arbitrary set of Hermite polynomials —we will call this
Hermite polynomial method. This expansion of the
potential will be written

e,r(T,OI ~4I—T,o)
41

The eth coefIicient in the expansion

c ~=(OIVH Ip) (23)
(C )'(T,o I H,44'H0

I T,p)' (19)
3g' (3')' can be written in a different form if one uses the identity

and it is clear that the structure of perturbation theory
is complicated by the fact that the final order of a
perturbation correction depends both upon the order of
the term in the Taylor series and the order in which it is
being treated in perturbation theory.

B. Hermite Polynomial Expansion and Self-
Consistent Harmonic Ayyroximation

An alternative approach is obviously sensible. One
could treat V—~~g~N2 as a perturbation to Hq. Then
the ground-state energy to first order is simply Eo
= (T,o I

H
I T,p). It is readily shown that

&o'= lg'+(T, p
I
V

I T,O). (20)

dV
(ol va„l (v'»N7lo)=-(ol a„,lo

dQ
(24)

which can be obtained by using the recursion relations

among the Hermite polynomials and integrating once

by parts. Applying Eq. (24) I times to the numerator
of Eq. (23) one obtains

d"V
@ a +

—n/2(pl Ip)
dQ

(25)

The Hermite polynomial expansion actually includes

the Taylor-series expansion as a limiting case since

In this form an entire series of what were higher-order
terms of the form (1/44!)C„r(T,OI44" IT,O) appear in
6rst-order perturbation theory. The expression for the
ground-state energy given in Eq. (20) resembles that
obtained from a variational calculation so it now seems

and

dnVdnU
lim(pl I0)=

dlfL dlfb

lim y
—"I'O'„L(g»447 =44".

(26)

(27)
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The Hamiltonian to second order is now

d2 dUa.~= —-,'x' +(0[v[0)+(0[ [0&N
du' dg Element Value

TA'BIE I. Matrix elements of a one-dimensional Hamiltonian
between an arbitrary set of harmonic wave functions, and those
between a self-consistently determined (sc) set,

d2U 1
+-,'(Oi i0) Nm ——. (28)

dg 2v

The origin of coordinates should be chosen to eliminate
the term linear in e. If this is done, it is clear that, in the
special case when the self-consistent condition is met,

~
c,0) is the ground-state eigenfunction of the harmonic

Hamiltonian B~'. In other cases, the ground-state
eigenfunction of Hq~ is not equal to ~0).

Since an expansion of the potential still occurs in
the Hermite polynomial method there may be more than
one term of the expansion contributing to a particular
matrix element (m~ V~I). However, the number of
terms is considerably less than for the Taylor-series
expansion. The most obvious example is (0~ V

~
I) to

which only the term U„~contributes while in the Taylor
series all of the terms included in

i=+ V ps;

(OIH I1)

&olal3&

(1IPI1)

(1IPI2)

(1IHI3)

(sc)

(sc)

(sc)

(sc)

(sc)

(sc)

(sc)

(sc)

Qp

0
—2 '"g+&ol VI2&

0

&ol vl3&

Zp+~pg+v2(ol VI2)
gp+g

vZ(ol vl1)+93(ol VI3)
VS(ol VI3)

—0 (-;)&&pg+v3&0
I

V
I 2)+2&O I

V
I 4&

0

~p+g+2v2&0 I
v I2&+v'6(0 I v I4&

80+28
v3'&ol VI»+3m&ol VI3&+gto&ol vis&

3%(ol VI3)
Ep+ —g+3~(0 I vl2&y346&0 I vl4&

+/6(ol VI6)
Ep+3u

contribute. In the general matrix element of a Hermite
polynomial expansion, nonzero contribution are given
by terms of order

~

m rt [, ~
m ——e

~
+2, , m+n

A few additional features of the method become
apparent if one approaches the problem from the point
of view of the matrix formulation of quantum me-
chanics and computes the lowest-order matrix elements
of the Hamiltonian using the eigenfunctions of an
arbitrary harmonic Hamiltonian. While this approach
is exactly equivalent to the previously described
method, it has the conceptual advantage that the
formal expansion of the potential per se is never
introduced.

The matrix elements can be written down in an
almost mechanical way. The matrix elements of the
kinetic energy are well known to be

d2

dx

—«gLm(ppp —1)5"8„~2 ~gI n(n 1)5'"6„—+2,„. (29)

A simple recursion relationship,

1 dV
(ml v fn)= (m —1J In)

(2ym)'~' dx

t n '~'

+I — (~—1I Vl~ —1&, (30)
Em

can be used to express the matrix elements (ml Vln&
in terms of the Grst row elements

(0( V(N)= (2"n!) '~'C„~.

The matrix elements (m~H~n), m&e&3 are listed.
in Table I.

The results obtain if one assumes that the self-
consistent condition (0~ V~2)=2 '~'g is fulalled, that
the origin of coordinates has been chosen to make
(0 V 1)=0, and that terms of higher order than
(0 V 3), shown in the rows of Table I, labeled. (sc)
are small. It is clear that the introduction of the
self-consistent condition simplifies the structure of
perturbation theory. Since the Hamiltonian has zero
matrix elements between the first and second excited
states, the leading perturbation theory corrections to
the ground state and first excited state are particularly
simple.

It can be readily shown that the self-consistent
condition is suKcient to cause all o6-diagonal contri-
butions involving g and (0~ V~2) to vanish and all
diagonal contributions to be of the forms Ep+eg.

C. Genexal Polynomial Method

Although the lowest order of the self-consistent
harmonic approximation probably yields a good value
for the energies of the ground state and the lowest
excited state in a fairly harmonic system and the next
order of perturbation theory should be adequate for a
mildly anharmonic system, it is clear that the calcu-
lation would have to be carried quite a bit further for
an adequate treatment of a very anharmonic system.
Since the one-dimensional problem is being studied in
order to furnish some insight into useful techniques
for problems in three dimension, an alternative tech-
nique for very anharmonic systems is desirable.
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tn—1

B„(x)=x--P P .B.(x), (32)

where
p-= &fl x"f3.

I f)/&fl f3-'I f&.

In this paper, explicit expressions for only

pro= &fl x
I y&

(33)

(34)

(35)

are needed. Equation (11) can be used to express P~o

and p~o in terms of Gaussian averages of derivatives of

P. This latter form is useful if one wishes to think of
expanding both f' and V in terms of an arbitrary set of
Hermite polynomials and then retaining terms to a
certain order in each expansion.

By using Eq. (10) one can readily derive an expres-
sion for the ground-state energy Eo &fl B I f&as-—

&o=~g+Vl v «'l f& (36)

(37)
where

V,«'= V—~~X'V' lnf'.

The second term on the right-hand side of Eq. (37)
is the price paid in kinetic energy for the gain in
potential energy resulting from the modification in the
wave function introduced by f, which will generally be
used to cut o8 the potential at short range in hard-core
problems. We will occasionally want to work with ex-

pressions in which integrals over Gaussian weight factors
are explicitly written and. will then use V,«= f'V,«'.

One can readily derive an implicit optimization
condition for g by differentiating Eq. (36) with respect
to g to obtain

4&'= &fl x'V.«'If& &fl V.«'I f&&fix'If& —(38)

A well-defined procedure, which is a logical extension
of the Hermite polynomial method, is for one to either
expand the potential or compute the matrix elements
of the Hamiltonian in a representation of polynomials
orthogonalized with respect to an arbitrary function
which will be written as fl0). The Gaussian part js
retained because it is anticipated that it represents the
gross behavior of the ground-state wave function in
some region of space and that this part of the wave
function can be readily optimized. Of course, f is
chosen to make flp) a computationally convenient,
reasonable guess for the ground-state wave function
of the true Hamiltonian. We will use If) to signify
fl0)/&Ol f'IO)'~'.

The polynomials will be designated by 8 (x) and
will satisfy

VIB-B-lz&-~- (31)

These are various methods for the construction of a
set of polynomials orthogonalized with respect to a
given weight function. In the work that has been done
to date we have found that the most convenient
technique is to use the recursion relationship

Subsequent application of Eq. (12) provides a more
explicit expression for the self-consistent g,

&0IO'Ve«/dx'I 0& &O—
I
d'f'/dx'I0)&f

I V,«'I f&
(gc)2 —

&,
2

&0I f'I 0&

In this form it is clear that the optimization condition is
not simply a substitution of V,« for V in Eq. (20).

In addition to this, two other independent optimi-
zations are possible. These are the choice of xo in
N=x —xo and a transformation f(x) ~ f(x xo')—The.

conditions dEO/dxo= 0 and dEO/dxo' Ogive——

df2
lp&

—
&fl v «'lf&& 0l

dS
and

dV, gg dV
Io&—&plf'

dS cfs

(40)

d 2

—
&fl v.« lf&&pl Io&=o (4»

dS

Element

&f1&If&

&fl& I t&

&f1&I2&

&tlalt&

(sc)

(sc)

(sc)

Value

gfp

(f I
BPI f&

' 'I (flNUsff'I f&—&f I
I I.f&&fl U.«'If&j

0

(fl~~'if& "'L(( ~N'1' 'If&
—&flN'I f&&~i t r

' —&'/4& —Pu(fl&lt&3
0

&f ~ ~
I f&&fl I~

I
t&

Ep 2
(f I

g3iR
I f&1/2

&f I
I'Ueff'I f& &f I

U.«'
I f&(f I

~'
l f&+~—'/4

+
&f IO'I f&—(f I

Q
I
f&'

jVp+
&fl &'I f&

—
&f I

~ If&'

respectively. Equations (40) and (41) can be combined
to give &fldV/dxl f&=0. Of these expressions, only
Eq. (40) will be used.

The first excited state of II is approximated by
8&

I f& and the second excited state by 82 I f). Equations
(10) and (32)—(35) may be used to obtain the matrix
elements shown in Table II which is constructed in a
manner similar to Table I. Equation (40) is used for
the (sc) results.

Thus, the explicit retention of the Gaussian weight
factor enables one to derive a simple optimization
condition, the fulfillment of which is sufFicient to
provide two of the intuitively appealing features of the

TABLE II. Matrix elements of a one-dimensional Hamiltonian
in the general polynomial method. In the self-consistent {sc)
values the optimum choice of origin of coordinates is also assumed.
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self-consistent harmonic approximation; i.en) the Hamil-
tonian has zero matrix elements between the ground
state and the first and second excited states.

Equations (11) and (12) can be used to rewrite
the expression for the energy of the 6rst excited state as

0 cP ' dx' 0
&1=&2+ -+

-g 2g' (oIf'Io)

(0 I
/Ef2/dr

I 0)') --'
(42)

«If'Io&' &-

In this form it is clear that Eq. (42) reduces to the
Hermite polynomial value given in Table I in the
limit f +1. —

IV. THREE-DIMENSIONAL MODEL

A. Hermite Polynomial Method and Self-
Consistent Harmonic Ayyroximation

The generalization of the results of Sec. III to three
dimensions is quite straightforward. However, since
the approach divers from the conventional harmonic
approximation, it is worth presenting the calculations
in some detail. In most equations, the change from one
to three dimensions can be e6ected by replacing g with
TrG in kinetic-energy terms and replacing g

' by G '
in other terms.

The form of the model harmonic Hamiltonian and
of its ground-state eigenfunctions have been given
previously in Eqs. (3) and (8), respectively. One can
readily evaluate the expectation value of the true
crystal Hamiltonian, to obtain

so=-' TrG+(OI VIO&, (43)

and can then differentiate this expression to show that
BED/BG;, =0 if the self-consistent condition

where the number of phonons with wave vector k; is
specified by the constant

n;, n2&n, n=gn;

and

V'A, =Tg; ~V,~. (46)

In Eq. (45) and in several of the remaining equations
in this section, the superscripts which indicate Cartesian
components or phonon branches are omitted for
notational convenience.

The construction of the polynomials is simplified if
one notes the commutation rule

[vt. ,Q2 "j=&a, 2'"'
and a differential expression

(47)

(OIQ2fI0)= (1/2y2)(oI vt f Io&. (49)

These polynomials are almost, but not quite, con-
structed from products of Hermite polynomials in the
normal modes. The difference obtains from the use of
running wave modes and is reflected in the commutator
Eq. (47). However, the complete polynomial is made

up of products of EZ„(k, —k" ). Two useful recursion
relations for these simpler polynomials are

(km kn —
m) —2 (+ )1/2Q„Q (km

—1 kn —
m)

2(n 2n)+ (km —1 kn —m—1) (50)
and

V n~ (km kn—
m)

= 2(y/, )'/ (n —n2)Hn 1(km —k" '") (51)

Vt, exp( —NI'u) = —(2&2Q2) exp( uI'—u), (48)

where Q2 =T2, Su;S is a normal mode of the model
harmonic Hamiltonian. An equivalent of Eq. (11)
is now

(G) =),2(.,oI vvvI. ,0) (44) Some of the lowest-order polynomials are as follows:

is met, where Eq. (12) has been used. One can also
obtain this result by transforming to normal coordi-
nates and considering the frequencies and the polari-
zation vectors as variational parameters, but the result
is most directly obtained in coordinate space by the
method outlined above.

As in the one-dimensional case, the appearance here
of ground-state expectation values of various deriva-
tives of the potential can be linked to an expansion
either of the potential or of the crystal Hamiltonian
in a set of polynomials. Here they are three-dimensional
polynomials orthogonalized with respect to the weight
function exp( —ul'u).

The polynomials can be obtained from the generating
function

EIn(k1"' k,"',k„"m)= exp(ul"u) (—V2,/p2, )"&.

&& (—V/, Jy2 ) "m ezp( —ui"u), (45)

Ifp= 1 )

&1(k)= 2(V2)'"Q~,

II2(k1,k2) = 4(y1,V2,)'"Q2,Q2,—2&2, , 2„

(52a)

(52b)

(52c)

&2(k1,k2, k2) =8 (Va,Va,V2,)'"Q2,Q/, Q2,

+ (V2,)'"Q1Jln, , 2,]. (52d)

A few of the matrix elements of the crystal Hamil-
tonian are given in Table III. Terms of higher order
than the third derivative are omitted and it is assumed
that the equilibrium condition (0IuVI0)=0 holds.
Conservation of crystal momentum holds for all
elements. This is indicated either by the choice of k
values used or by the symbol d, (k) which has the value of
unity for 4= 0 or a reciprocal lattice vector and is zero
otherwise. The numerical factors in the matrix elements
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Tmr E III. Matrix elements of a three-dimensional crystal Hamiltonian between an arbitrary and a
self-consistent (sc) set of harmonic oscillator @rave functions.

Element

&olalo&

(OIPlk» -k~)

(OIHlh, kg, kz)

(klBIk)

&kil&I4, kz&

&kx l&lh, kz, kz&

(kk IHlkk)

(kg, kz'IZ Ikg, kg, kz&

&4,kzjz, I &14,kz, kz&

(sc)

(sc)

(sc)

(sc)

Value

&0

0
—-',cogslz+PP/2(ruz cod')"'g(olvzv zvl0)

0
~'(S»i~»~»)-'"(OI V»V»V» IO»(k~+kz+ kz)

X2

(~0+5~A)&++ (Olvzv zVIO)
2( d')"

(z,+~&)s-~

xz(s~»~»~»)-»2(0
I v»v»v» v I 0&n (—kl+kz+k3)

L—zm~»+&'(4»»)-'"&Olv»v»VIO&]s», z

0
1 )P 1 X»

LO+Q~kl+ 2~»+ —&0 I V»-v-»v l0&+-—&o I v»v-»v I 0&
2 COk1 2 Gllz2

~O+~a1+~12
X'(S~» ~»~z)3 '"&OIV-» V»V»VIo)n(km+k~ —kz)

1 1
~z+k~»+ 2~»+ z~»+k) ' —&0 I v-»v»v I H—&o I v»v»v lo&

(sc)

1
+—&olv-»v»vl &

CiOgge

~O+ay+]2+k3

If&=f(»," »N) IO&/&Olf'IO&'", (54)

are different from those given when one or more k
values are identical in either of the two states. These
factors are such that one can divide by the factorial
of the number of phonons and sum over all k values in
an intermediate state sum using the values given in the
table without worrying about counting states twice.
The label (sc) indicates that the self-consistent condi-
tion is fu16lled for that value.

The table shows that the same simplifying features
are present in the three-dimensional self-consistent case
as in the one-dimensional case. The structure of the
matrix elements in the Hermite polynomial method
is simpler than is found for a Taylor-series expansion.
For example, in the cubic &OIHlk, ,kz, kz) term there
is no contribution from a term obtained by contraction
on two indices. This, of course, is a result of expanding
the potential in the same set of wave functions that is
used to compute matrix elements. In this approach, the
cubic term only gives rise to processes involving three
phonons.

B. General Polynomial Method in Three Dimensions

In the three-dimensional version of the general
polynomial method, one obviously expands the potential
or the Hamiltonian in terms of a set of polynomials
which obey the orthogonality condition

&fl B( g, k. , )kB(kz', ,k ')I f)
~ S„„S(kz, ,k; kz', ,k„'), (53)

where

and 8(kz, k„;kz', ,k„') is used to denote a quantity
which is unity if the indices to the left of the semi-
colon are identical with some permutation of the
indices to the right and is zero otherwise.

The numerical methods necessary to work with this
approach will be discussed in a subsequent paper.
Here it will only be pointed out that calculations will
become very difFicult if one wishes to include terms of
higher order than (OI VVf'IO) and &Ol VVVIO). Hence,
one should hope that a judicious choice of f will make

I f) close enough to the true ground-state wave function
so that results obtained from the few formulas to be
given in this section will give good values for Eo and for
the excitation spectrum of the crystal.

We have found that it is convenient to break up
the construction of an eth-order polynomial into two
steps. First, a set of eth-order polynomials

e
P~(zz) ~z~) uz~ u;~ Q (» ''' z.-z)

j=1

P.,„,(i iz. ; kz, k. z)B„;(kz, k„,), (55)

which satisfy

f&&l„(z ,z,i )B (k;, ,k )If)=0 zN&zz (56)

are constructed. Fulfillment of this equation requires

&flu, , "u;„B..(kz, ",k. .)lf)
(57)

&flB=.'lf&
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Then, the

B.(k„,k„)=g(,, ...„.„)s„(k„",k„;i„".,i„)
)(P (ig, ,i ) &58)

arc 1Tladc. Thc orthogonality condition ls satis6cd lf

S (kg, ,k;ig, ,i„)(flP (ig, ,i„)P (jg, ,j„)lf&

=y„(kg, . ,k„)5(kg, ,k„;kg', . ,k„'). (59)

TABLE IV. Matrix elements of a three-dimensional crystal
Hamiltonian in the orthogonal polynomial method with the
assumption that the self-consistent equation is satis6ed and that
the lattice parameter has been optimized.

Element

(fl& lf)
(f(H k)
(f~a k; —kt)
(k [Hik'&)

It is convenient to uniquely specify the 5 matrices by
1equlI'lng by the roots of the 6 matrix as they would be if one

IQRde thc ITlost obvious combination of thc work of
Nosanow and Kerthamer~ with the self-consistent
harmonic approximation; that is, if one simply substi-
tuted V, gq for V in Sec. IV A. However, it is readily
shown that

S (kg, ,k;ig, ,i„)S (ig, ,i; kg ~ k )
=B(kg, ,k; kg, ~ -,k ). (60)

The ground-state energy is given by

Eo= :T'G+-&fl V.«" If&,
rim LS,G-'SPj»= OI

—
I

Cli
so Ikj

lirn LsgG '(ol Vvf'10&G 'S~t j~I,=O(1),
k~o

V,gf'= V—~X2V' lnf'. (62)
and

As in Sec. III C we will also use V.f~'= f'V.«' The.
optimum 6 is given here implicitly by

Optimization of the lattice parameter leads to the
condition

(o I
v;V.«l o) &fIv;V.«'—

I
f&&'o

I v~f I o)=o. (65)

A fcw of the lowest-order polynomials and related
equations are given below:

Bg (k) =Sg(k, i)I;,
(66a)

(66b)

P2(i, j)=N,N;—g pm/(~j; k)B](k)—(fll I;If), (66c)

where

S (k,i)S (k', j)&flN'I I f&=V~(k)k»" (66d)

Since the matrix elements in the three-dimensional
orthogonal polynomial method are quite similar to
those given in Table II, only the elements for the case
in which Eqs. (63) and (65) hold are given in Table IV.

If the excitation energy (k I
H

I k)—Eo of a one-phonon
state is called v~, one can write in analogy with Eq. (42)

&0I «f'Io&
S

I
G '+-'X'G ' G ' S (67)

&o If'I o&

It is interesting that the phonon energies are not given

') &' =-(flN'I V.«' If) (fl V.—«'If)&fll*« If) (63)

and morc explicitly by

& olv, v, v lo)—(olv, v~f lo)&flv 'If&
(Gc) .,2 —)jm

&olf'Io)
(64)

$ 0

llI11 Pg=Mg.
kM

Eg(i) =I;,
Ps(fg, lg) = I;~N;q —2I

(67')

(67ll)

(@lit)

Pa (zypmp3) —Ig,ug,e;,—~ (I';„;Ig,+I';,g,ct;,
+I' '.I ) (6'/'"')

~ L. H. Nosanow and N. R. %erthamer, Phys. Rev. Letters 15,
618 (1965).

~ An approach could be used based on the ideas discussed by
P. 0. Lowdin, J. Math. Phys. 3, 969 (1962).

7 Computer implementation of a conventional calculation
involving a conversion to normal modes and an intermediate
state sum has been described by A. A. Maradudin, P. A. I"linn, and
R. A. Coldwell-Horsfall, Ann. Phys. (N. Y.) 15, 337 (1961).

One can show that Eqs. (63) and (65) are sufhcient
to provide (fl HPg(s, g) Io)=0 so that &flBlk, —k)=0
and, one does not have to construct the state

I k, —k)
explicitly and thus can avoid a complicated matrix
dlagonallzatlon. This ls onc of the I'cRsons foI' constllct-
ing the polynomials in two steps.

Another reason is that the P; form a complete
nonorthogonal set of wave functions, and their use in-
perturbation theory' may provide a simpler alternative
to conventional~ techniques for the computation of the
IV~I' correction to Eo. This is because the I'; enable
one to avoid a double sum over k vectors and to work in
coordinate space where the matrix elements of higher
derivatives will quite rapidly become small for all but
nearest neighbors. Thus, the P; polynomials may prove
to be useful in the Hermite polynomial method.

A few of the I'; for the f= 1 are listed below:
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V. DISCUSSION

An approach to vibrational problems in quantum
systems has been presented which can be used as an
alternative to a host of other methods in simple prob-
lems, but which should provide a good computational
method for dealing with anharmonicity in more compli-
cated systems. Although the emphasis here has been
on lattice problems, there should be possible appli-
cations in molecular vibrational analysis.

A notable feature of the method is the appearance of
derivatives of the potential averaged over the ground-
state wave function of a harmonic system. A formu-
lation involving terms of this type has also been
obtained by Horner' who used a Green's-function
formalism and summed an infinite class of diagrams of
the conventional Taylor-series expansion. The self-
consistent expression (49) is not new; it 6rst appeared
in literature in the work of Hooten and Born' some
time ago and has subsequently been rederived in
other papers. "

However, to the author's knowledge, the connection
between the above mentioned results and an implicit
or explicit Hermite polynomial expansion of the po-
tential was 6rst made in Ref. 2. The diagram summa-
tion in Horner's work is thus an alternative way of
obtaining the unitary transformation which regroups
terms in a Taylor-series expansion to form a Hermite
polynomial expansion.

Recognition of this expansion serves two useful

purposes. First of all, it is satisfying for one to know
which results of a complicated derivation can be
obtained by more elementary means. Second, this
approach leads naturally into the general polynomial
method which provides a well-dered prescription for
combining some of the features of the self-consistent
harmonic approximation with the approach to the
calculation of the ground-state energy of very an-
harmonic crystals used by Nosanow. In addition, a
well-defined procedure is provided for extending the
latter calculation to the computation of phonon spectar
and possibly to a perturbation theory correction to the
lower-order results. The use ot a Jastrow function as a

' H. Horner, Z. Physik 205, 72 (1967).' D. J. Hooton, Phil. Mag. 46, 422, 433 (1955);Z. Physik 142,
42 (1955).' M. Born, in Festschrift sar Feier des Zmeihunderjtahrigen
Bestenhens der Akademie der Wissenschaften in Gottingen. I.
Mathematisch-Physi kabsche IQasse (Springer-Verlag, Berlin,
1951),p. 1."See the references given in Ref. 12, this paper.

weight factor in defining a set of polynomials is at
least a rigorous way of treating such a function in
higher order even though the function may have been
originally introduced only in order to cut off the
potential at short range in a ground-state energy
calculation.

Extension of the self-consistent harmonic approxi-
mation to finite temperature is reported in an accom-

panying paper. " This extension cannot be performed
as elegantly in the Hermite polynomial framework as in
a Green's-function approach. However, one can derive
a finite temperature perturbation formalism by a
method similar to that used in Ref. 7. We believe that
an avenue for future development is the rigorous
formulation of the finite temperature version of and an
elegant formulation of the zero-degree version of the
general polynomial method.

The structure of terms entering into perturbation
theory has been shown to be simpler in the self-con-
sistent harmonic approximation than in conventional
lattice dynamics. However, as was pointed out in this

paper, the elimination of terms involving contraction
of the indices from multiphonon matrix elements is
loot due to the self-consistent harmonic approximation,
but rather follows if one works in the same set of wave
function in which one made the expansion of the
potential. Using an arbitrary Hermite polynomial
expansion one could follow the general procedure of the
conventional harmonic approximation by expanding the
potential, retaining terms to second order and diagonal-
izing the resulting harmonic Hamiltonian. If one were
to use the harmonic wave functions so obtained as a
basis for perturbation calculations, the structure of the
theory would be the same as that exhibited in the
conventional harmonic approximation except in the
particular case when the self-consistent equation is
satisfied. This procedure gives rise to a variety of
harmonic approximations which include the Taylor-
series expansion on one hand and the self-consistent
harmonic approximation on the other.
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