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Influence of Force-Constant Changes and Localized Modes on
the V:Fe" Mossbauer System*
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An experimental and theoretical study is made of the Mossbauer e8ect of Fe" in a vanadium matrix. We
have measured the recoil-free fraction and second-order Doppler shift over the temperature range 100 to
700'K. The experimental results are interpreted using recently derived expressions for the mean-square
velocity and displacement of the defect which allow for changes in the force constants as well as the mass at
the impurity site. A good 6t to the data is obtained for an increase in force constant of approximately 2.5.
The data are also analyzed in the high-temperature limit to con6rm this increase, Evidence for the presence
of localized modes is found from the velocity shift, and the positions of the modes are determined.

1. INTRODUCTION

'HE probability for the Mossbauer effect, its
temperature dependence, and the temperature

dependence of the second-order Doppler shift of the
Mossbauer line are directly related to the dynamics of
the Mossbauer-active nucleus. ' When this nucleus is an
impurity placed in a crystal, the lattice dynamics of the
composite system influences the determination of the
recoil-free fraction and the second-order Doppler shift.
However, since an impurity has been introduced into
the crystal, the dynamics is no longer that of the pure
crystal. In particular there is a change in mass at the
defect site and changes in force constants in the vicinity
of this site. This perturbation can a6ect the mean-
square displacement (x') and the mean-square velocity
(s ) of the impurity atom.

The evaluation of these quantities has been achieved.
for the case of an isotopic impurity. ' Ignoring the
change in force, the temperature dependence of the
recoil-free fraction of Sn"' in V has been satisfactorily
fitted. ' For such calculations the essential input data is
the density of states of the pure crystal, which is usually
known experimentally. The inQuence of force-constant
changes has not been taken into account quantitatively,
except in the somewhat unphysical model of a simple
cubic lattice with nearest-neighbor interactions only. '
Recently' closed expressions for (x') and (s') have been
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derived for the central force body- and face-centered
cubic crystal models in which there are changes in the
nearest-neighbor forces around the defect site. Again
the only required input data is the pure-crystal phonon
spectrum.

Using these expressions it is then possible to fit the
experimental data treating the force-constant ratio X'/X

as a free parameter to be determined. As well as detailed
fitting of the data at all temperatures, it is possible to
obtain information from macroscopic 6tting at the high-
temperature limit. This is valuable since it serves as an
indication to the force changes, and is also model-
independent.

We have studied the system of Fe" in V both experi-
mentally and theoretically. In Sec. 2 we describe the
theoretical situation at the microscopic and macroscopic
levels. In Sec. 3 we describe the experimental determina-
tion of the recoil-free fraction and second-order Doppler
shift and analyze the results in Sec. 4, where we And
definite evidence for a big force-constant increase, and
for the presence of localized modes. In Sec. 5 we discuss
the sensitivity of the calculation to the various input
parameters.

2. THEORETICAL ANALYSIS

The probability (f) of recoil-free y-ray emission is
given by

f=
I (~ I exp(~~ r) I ~) I',

where
I i) represents the initial and hence final state of

the lattice. Here r is the position of the emitting nucleus
and z is the wave vector of the p ray. I.ipkin' has shown
that under certain conditions, which we discuss later,
we may write

f=exp( —~'(x')) .

(x') is the mean-square displacement of the nucleus

~ H. J. Lipkin, Ann. Phys. (N. Y.) 26, 115 (1964).
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of the pure lattice, through the relation4

~max = g~zs /~
Then, as is shown in Ref. 4, localized (or resonance)

modes are obtained if
f
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The derived expressions for (x') and (v') are

h )My'
x') =

23f' kM'2

Temperature ('K ) +max coth (-,'Apres) v (co)do&

I'xG. i. The recoil-free fraction f as a function of temperature.
The open circles represent the experimental points. The drawn
lines are theoretical predictions for various force-constant changes.

vibrating in the lattice, and hence its determination is
sufhcient to calculate f.

The Mossbauer peak is also velocity-shifted due to
the relativistic decrease in the mass of the nucleus as it
emits the p ray. We thus study the velocity shift, or
second-order Doppler (SOD) shift

hS= 1/(2c)(w')

where (v') is the mean-square velocity of the nucleus.
This is not in fact the measured shift, since we have to
add to this the isomeric or chemical shift.

The system in which we are interested is an impurity
in the bcc vanadium lattice. We consider changes in
forces between the defect and its 8 nearest-neighbor
host atoms in the harmonic approximation. Using
group-theoretical techniques, which exploit the high
(Oz) symmetry at the defect site, expressions for (x')
and (v') have been obtained elsewhere for central forces
only. 4 These expressions are in fact more general and
also apply to a fcc lattice. We present here only the
results.

For convenience we define

and

~M2p N2
S(o))= -- d(o"

CO'2 —O)2

v(~")
T((o) =co4 d~~2

0) M

Here v(aP) is the density of pure-crystal states in oP.
M and M' are the masses of a pure-crystal atom and
the impurity atom, respectively. A, "is the pure-crystal
force constant, and A', "is the modified force constant
at the impurity site. The unknown A„"is replaced by
co, , the experimentally known maximum frequency

{L1+p( )S( )]'+- ' ' '( )p'( )}
m 2coth -,'I ~~

2N iV'i

(9)

h (3E)'
2M (3P)

romaz (o coth(-,'hp(o) v(&o)do)

{L1+p(~)S(~)j'+4~'~'v'(~) p'(~) }

M
X p'(~z)&(~z)+ —L1+p(~i)j'

3f'
(10)

where P = 1/E T, and the second term in each expression
only contributes if there is a localized mode with
frequency col.. Though only the force constant at the
defect site appears in the anal expressions, force
constants connecting the defect to the neighbors have
in fact been included, since in a central force model they
are related to A„",and can hence be eliminated. The
equations thus contain one extra parameter, the force-
constant ratio, which we shall write as X/X'. When we
set X/X'= 1, we regain the standard expressions for an
isotopic impurity. As is seen from (8), (9), and (10),
for calculative purposes we need only know v(ru). These
expressions are temperature-dependent through the
population factor. However, at high temperatures we
are near the classical limit and hence we can obtain
simpler forms for comparison with the experimental
data.

In the classical limit momentum and position
commute. This means that (z') is only affected by the
changes in the potential energy, and is independent of

P. D. Mannheim, M.Sc. thesis, Weizmann Institute of Science,
Rehovoth, 1966 (unpublished).
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and it will have the frequency'

(u„u2= A'„"/M' (13)

as if it moves in an harmonic cell potential provided by
the static lattice, with co„~~&)co, . Then from the
equipartition of energy we have

(x')=KT/A', g'0 KT/——M'co, en2.
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any change in mass, which would only appear in the
kinetic energy. This behavior is exhibited in the formula
of Maradudin, ~

ET ET 1
(x') = p,+ (A,P—A',P)+

3f iV2 p22

KT KTa&„, '(
~-2+ 11——I+' "

M M 2pP( X)

using Eq. (7). Here pm and p 2 are moments of the
frequency distribution

(o"v(co)ko. (12)
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FIG. 2. The second-order Doppler shift ~S as a function of
temperature. The drawn lines show the e6ect of the force-constant
change and of the localized modes.

As is seen from (14), the recoil-free fraction is close to
unity at ordinary temperatures in the case of a strongly
localized mode. Therefore we expect that it will display
a slow variation in temperature at lower temperatures.

From the commutation argument we can also study
the high-temperature behavior of (u'). In the pure
classical limit (e) is independent of the force change
and only depends on the defect mass. The 6rst quantum
correction introduces V/X, so that, as shown by
Maradudin, ' the velocity shift hS is given by

(s') 3KT 1 ( h )'A', Pas= = 1+—
i i

+"
2c 2M'c 12 kKT~ M'

3KT 1(h )'M
1+—

I I
l"-*'—~

2M'c 12 EKT) M' X
(15)

This formula is obtained from an expansion in powers
of 5 and is valid for any V/X. The erst term is the pure
classical limit. We see that at high temperatures we can
estimate X'/X from the experimental SOD shift. This is
not very accurate though, since the SOD shift differs
only slightly from the pure classical limit. However at
lower temperatures quantum corrections become im-

portant, so that here we can hope to distinguish between
force-constant ratios.

These considerations will become evident in Sec. 4
where expressions (9) and (10) are used in the calcula-
tion. [See, e.g., Figs. (1) and (2).7

The above formula was derived using an expansion in
powers of 1—X'/X and is only valid if V/X 1. Thus, if
(x')o& differs only by a small amount from the 6rst
term of (11) P(x')o~ being determined from the experi-
mental f7, we can estimate X'/X. It is evident from (11)
that at high temperatures the recoil-free fraction is
strongly sensitive to changes in force, and provides at
least a clear indication of the sign of the change.
Further, we can expect that at low temperatures, where
quantum corrections become important, f will become
less sensitive to V/X as terms dependent on the change
in mass are also introduced.

It is also possible to treat quantitatively the other
extreme case, namely X'/X»1, at high temperatures.
Here the motion of the defect will be strongly localized

7 A. A. Maradudin and P. A. Flinn, Phys. Rev. 126, 2059
(1962).

3. EXPEMMENTAL

Experiments were done with the 14.4-keV line of
Fe'~ embedded in vanadium. Sources of Co'~, the parent
nucleus of Fe', diGused in vanadium, were prepared
for this reason. The concentration of the Co" (Fe")
impurities in these samples is estimated to be 1:10'
in atoms. A linear velocity Mossbauer system' was used
where the source was moving with respect to a station-
ary Na4Fe(CN) 6. 10H&O (0.25 mg/cm' in Fe' ) absorber.
Mossbauer spectra were taken in the temperature
range 90 to 700'K. A small oven attached to the driving
rod was used for the variation of the temperature. A
liquid-nitrogen cryostat, similar to that described by

8 A. A. Maradudin, P. A. Flinn, and S. L. Ruby, Phys. Rev.
126, 9 (&962).

e H. Brofman, M. Greenshpan, and R. H. Herber, Nucl. Instr.
Methods 42, 245 (1966).
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Pasternak et at.' was used for lower than room tempera-
tures. The absorber was kept at room temperature in
all measurements.

4. RESULTS

The recoil-free fraction was calculated from the area
under the absorption peak. By comparing the absorp-
tion area A of the vanadium spectrum to that displayed
by a standard Cu source, we can find the recoil-free
fraction of the former by the relation

fv= fc (&v)/&c . (16)

The recoil-free fraction of Fe'" in Cu has been measured
by several investigators"" and the Cu (Fe") system is
often used as a standard source. The results calculated
from (16) were corrected for background. The total
error in the so determined absolute values of the
recoil-free fraction was 5% or less.

The total shift e of the Mossbauer line is given by

(17)

where 5 is the chemical shift of Fe' in vanadium with
respect to the sodium ferrocyanide absorber, and AS,
and AS, are the SOD shifts of the source and absorber
respectively. In order to determine the shift of the
source, it is necessary to separate the part (5—DS )
from the total shift e. This can be done in the high-
temperature range where Eq. (15) holds and the
chemical shift is temperature-independent. n Combining
(15) and (17) we have

Least-square fitting of the parameters of Eq. (18)
to the experimental results for the temperature range
300 to 700'K gives

5—AS,= —0.153&0.007 mm/sec.

In Fig. 1 we have plotted the recoil-free fraction and
in Fig. 2 the velocity shift, both as functions of tempera-
ture. For the recoil-free fraction we have also plotted the
calculated f using formula (9) for three values of X'/X.
For the calculation we have used the experimental
density of states of Eisenhauer et al. ,"taking the cuto6
at co, =6.3)&10"secs '. When X'/X= 1.0, the case of
change in mass only, the measured f is consistently
underestimated at all temperatures. A weakening of
the forces X'/X=0. 67 is seen to reduce f even more.
The best fit to the data is obtained with V/X=1.67.
Good 6ts will also be obtained for slightly stronger or

M. Pasternak, A. Simopoulos, and Y. Hazoni, Phys. Rev.
140, 1892 (1965).

"W.A. Steyart and R. D. Taylor, Phys. Rev. 134, A716 (1964).
~ R. M. Housley, J. G. Dash, and R. H. Nussbaum, Phys. Rev.

136, 464 (1964)."C.M. Eisenhauer, I. Pelah, D. J. Hughes, and H. Palevsky,
Phys. Rev. 109, 1046 (1958).

weaker forces in the range 1.5—2.25, with f increasing
with V/X. The case of li'/X=2. 25 is interesting. With
this force-ratio condition (8) yields a localized mode
just outside the band. Ke have 6tted the data using
V/X= 2.25, reckoning only the band modes. The
localized-mode contribution to the Debye-%aller factor
is certainly small, i.e., about 2% because of the factor
1/~ in (9).Also the population factor is small. However,
at nonzero temperatures the system is not in a pure
state prior to p emission, so a density matrix has to be
introduced. As is shown in Refs. (1) and (5) this correc-
tion reduces to a Bessel-function factor which only
takes appreciable contributions from localized modes.
Thus for X'/X(2. 25 we had no need to consider it at all
in calculating f. Maradudin' suggests that the effect of
this Bessel function is to counteract the contribution of
the localized mode to (z'). Lipkin, ' however, points out
that this term will not be relevant if the lattice relaxes in
a shorter time than the nuclear level lieftime. Estimates
of the lifetime of localized modes due to anharmonicity
suggest that this is in fact the case. Thus, in the
case that the localized mode is short-lived, the experi-
mental fit is only in the range 1.5(X'/X& 2.0. We can
also examine the macroscopic 6t to the recoil-free
fraction. From the density of states we find p 2= 4.45/
cv, 2. At 600' the leading term in (11),which neglects
the force change, then gives f=0.55. Experimentally

f= 0.6, which indicates a 'definite increase in force. This
increase is too large to allow a fitting of the correction
term in (11).

In Fig. (2) the experimental values of the velocity
shift and its values calculated from formula (10) for
X'/X= 1 and X'/X= 2.5 are plotted. Again it is seen that
in the absence of an increase in force. the SOD shift is
underestimated. The best fit is with X'/X=2. 5. Here
there is a localized mode about 2% outside the band as
calculated from Eq. (8) and its contribution to (v') is
appreciable. This is to be expected since the contribution
goes as co. To emphasize this we have plotted the cal-
culated values both with and without including the
localized mode. We 6nd that we can fit the data for
X /X in the range 2.5 to 10, and that it is impossible to
6t hS for any force-constant ratio without a localized-
mode contribution. A broad fit to (u') is expected. since,
as argued in Sec. 2, at higher temperatures the force-
constant eBect is small. In the range 1.5 to 2.25 we
cannot in fact 6t the da, ta because localized modes,
which are necessary to raise the value up, are not quite
produced. However, this is strongly dependent on the
cutoff position. Taking co, =6.0&10" sec ', we then
have localized modes in this range with which a 6t can
be achieved.

The low-temperature 6tting is a little unsatisfactory.
However, this may be an indication that the chemical
shift is in fact temperature-dependent in this region.
We determined the velocity shift assuming the constant
chemical shift determined at high temperatures. The
experiments of Steyart and Taylor, " as well as the
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present work, indicate that the chemical shift is
constant at high temperatures. However there is no
evidence for constancy at low temperatures also.

One may make an estimate of the force change from
the high-temperature limit. At 600' the leading term
of (15) is 0.447 to be compared with an experimental
0.462. This again indicates an increase in force, in the
range 1.5(V/X(4, allowing for the errors in the
measured values.

The detailed calculations of (z') and (v') were done
numerically on the Golem computer at the Weizmann
Institute of Science.

S. DISCUSSION

It is interesting to study the variation of our results
with changes in to, and o(co). For comparison we also
calculated f and the SOD shift using the density of
states of Glaser et u/. '4 Taking first the cutoff at 6.3&10"
secs ' we fit f for values of V/X in the range 3—10,
with a best fit at V/) =5. Fitting to the SOD shift is
achieved in the same range with a best fit again at
X'/X= 5. Localized modes begin to appear in this case
at ) '/X = 1.8, so for ) '/X = 5 there is a localized mode at
1.1', . This mode makes the main contribution to the
SOD shift as may be seen from (10).

With the same density of states and the higher cutoff,
7.6&(10"sec ', indicated by Glaser et 0/. , it is impossible
to fit the data at all, even with infinite X'/X. This
comparison is valuable since it helps understanding
whether the high-energy tail observed by Glaser et at.
and Chernoplekov et u/. "is due to one-phonon or many-
phonon effects. On general grounds Van Hove" has
shown that the high-energy behavior of the density of
states should show a sharp drop after the longitudinal
mode maximum with a sharp cutoff. Since we are doing
a model calculation for the crystal anyway, it seemed
reasonable to choose the Kisenhauer et cl. density of
states which satisfies best the Van Hove requirements.
If we arti6cially cut oG the tail in the spectrum of
Glaser et al. , then again there is good agreement with

' ". W. Glaser, F. Carvalho, and G. Ehret, in Symposium on
Imetastic Scattortrtg of Ãoatrorts, Bombay, 1964 (International
Atomic Energy Agency, Vienna, 1965), Vol. I, p. 99."N. A. Chernoplekov, M. G. Zemlyanov, and A. G. Chicherin,
Zh. Kksperim. i Teor. Fiz. 48, 2080 (1962) )English transl. :
Soviet Phys. —JETP 16, 1472 (1963)g."L.Van Hove, Phys. Rev. 89, j.189 (1953).

experiment, though with a high force ratio. No cutoff
higher in the tail will do, which suggests that the
observed tail is not due to one-phonon effects.

There is very little now between choosing the data of
Eisenhauer et cl., or of Glaser et at. without the tail.
However the data of Glaser et ul. require a very big
increase in force, which seems unreasonable. Also, in
the macroscopic fit, which is model-independent, the
lower force ratio is favored.

There is also a strong sensitivity to or, . This occurs
when there are changes in force because of the second
term in p(co) in Kq. (4), so that to also appears in
the integrand. When there is no change in force, the
only dependence on or, would be in the range of
integration.

One of the most interesting features of the results is
the evidence from the SOD shifts for the presence of
localized modes. It is usually thought that since (e ) is
an average over the whole spectrum, studies of localized
modes by zero-phonon Mossbauer experiments are not
possible and that measurements which scan the whole
spectrum are necessary to observe localized modes
directly. However, we can infer the presence of localized
modes from the results and make a good estimate of the
position of the modes.

The results confirm conclusively the importance of
the change in force constants, contrary to a suggestion
of Bryukhanov et al,. that "the local substructure of the
lattice seems to give a weakening of the effect of a
change in the force constants. '"

There are some limitations to the calculation. We
neglect anharmonicity and defect interactions and
assume substitutional occupancy of a lattice site. In
the present experiments the concentration was 1 part
in 10', so there should be no need to consider concentra-
tion effects. The main assumption of the work, however,
is that there are only central forces. The impossibility
of fitting the results with a definite value of X'/X

perhaps suggests a strong noncentral component. The
observed density of states of vanadium does not
indicate this noncentral component, though there is in
fact some discussion on the point. "
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