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Electrical Resistivity of Dilute PdNi Alloys; Local Exchange
Enhancement Effects
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The contribution to the electrical resistivity of transition-metal alloys from scattering of s electrons from
spin-density Buctuations in the d band is discussed. The resistivity is expressed in terms of the dynamic
magnetic susceptibility of the alloy. A time-dependent molecular-6eld approximation is employed to obtain
an approximate expression for the dynamic susceptibility, valid in the dilute limit, for host materials in
which exchange-enhancement effects are important. If the isolated impurity center is almost magnetic, a
large concentration-dependent contribution to the resistivity proportional to T' is found. The theory is shown
to account for the recent measurements by Schindler and Rice of the temperature dependence of the electri-
cal resistivity of dilute PdNi alloys.

I. INTRODUCTION

HE magnetic properties of palladium metal are
most interesting. If measured values of the static

spin susceptibility are compared with the Pauli para-
magnetic susceptibility computed from the band-struc-
ture density of states, it is found that the measured
values of the susceptibility are roughly one order of
magnitude larger than the simple Pauli susceptibility
deduced from the free-electron model of metals. ' It is
believed that short-range, intra-atomic Coulomb inter-
actions between the d electrons strongly enhance the
susceptibility of Pd over the value expected from the
one-electron theory. Specifically, if we denote the
density of states at the Fermi level in the d band by
N(0), and the intra-atomic Coulomb interaction be-
tween two electrons in the same unit cell by Uo, then a
simple Hartree-Fock (HF) theory' indicates that the
susceptibility of the metal is larger than the Pauli free-
electron susceptibility by the factor L1—UON(0)] '. If
UON(0)) 1, the HF theory predicts the system is un-

stable with respect to the ferromagnetic state. For Pd,
evidently UON(0)=0. 9, if N(0) is deduced from speci6c-
heat data when taking mass-renormalization effects
into account. '

Because the parameter UON(0) for Pd is very close to
unity, the repulsive intra-atomic Coulomb interactions
are so strong that the d band is near the threshold of
instability with respect to the ferromagnetic state. In
this situation, one expects to 6nd the long-wavelength,
low-frequency Quctuations in the spin density of the
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d electrons have a large amplitude. Indeed, recent work'
has indicated that such Quctuations make a large con-
tribution to the effective mass of the d electrons, and to
the specific heat. Berk and Schrieffer4 have shown that
when the static magnetic susceptibility is strongly
exchange-enhanced, a large repulsive contribution to
the kernel of the BCS equation results. These authors
suggest this interaction may be sufliciently strong to
completely suppress the superconducting transition
ln Pd.

The principal contribution to the electrical conduc-
tivity of pure Pd comes from the s electrons, since their
effective mass is much smaller than the d electrons. The
contribution to the transport relaxation rate from
scattering of the s electrons from the spin-density
fluctuations in the d band of the pure metal has been
discussed by us. ' One Gnds a contribution to the re-
sistivity proportional to T' from this process. Thus at
sufliciently low temperatures, where the phonon scatter-
ing is frozen out, one may expect to observe the con-
tribution to the resistivity from the s-d spin-Qip scatter-
ing. In a material like Pd, where exchange-enhancement
effects are strong, it seems probable that spin-Qip
scattering from large amplitude Quctuations in d-elec-
tron spin density will dominate the non-spin-flip
scattering discussed many years ago by Baber. ' As we
shall see in more detail below, Schindler and Rice' find
that the resistivity of Pd does indeed exhibit a T' term
that exceeds the T' scattering from the phonons
below 9'K.

The magnetic properties of a number of alloys of Pd
with small amounts of Bd impurity ions have been
studied. For example, the local moment associated with
Fe and Co dissolved in Pd is anomalously large, the
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order of 10 or 12 Bohr magnetons. Neutron-diffraction
studies' have shown that the spin density surrounding
a given impurity cell is spread over a region of large
spatial extent, with a radius of the order of 10 A.

The purpose of this paper is to discuss some properties
of dilute PdNi alloys. If the Ni concentration is less
than roughly 2%, this alloy is nonmagnetic. ' "How-
ever, if the Ni concentration exceeds 2%, the Ni sites
acquire a moment and the spins order. Thus, while it is
evidently energetically unfavorable for an isolated Ni
ion in a Pd matrix to acquire a local moment, the energy
decrease associated with the ordering process is ap-
parently sufficiently large that the ordered magnetic
state has lower energy than the nonmagnetic state, when
the impurity concentration exceeds 2% or so." Since
the gain in energy/impurity realized from the ordering
process is clearly not large in such a dilute alloy, this
implies that the intra-atomic Coulomb interaction Ug

associated with a Ni cell is very close to the critical
value required for moment formation. If Ul& Uo, then
one expects the region of space in the vicinity of the Ni
cell to be much closer to the magnetic instability than
the host Pd matrix.

If the remarks in the preceding paragraph are correct,
then one should expect to find the amplitude of the low-

frequency Quctuations in spin density in the d band
enhanced in the vicinity of the impurity cell, compared
to their amplitude in the host material far from the
impurity. If one examines the electrical resistivity of
the alloy, the s electrons may scatter from the local
Quctuations. Since the amplitude of the Quctuations
varies with the temperature, this leads to a single-
impurity contribution to the resistivity that is tempera-
ture-dependent. In this paper, a simple model is
employed to calculate the contribution to the electrical
resistivity from an almost magnetic center. It is found
that the impurity contribution is proportional to T'.
This law is obtained because the scattering mechanism
is an electron-electron collision process; the s electrons
scatter inelastically against the local d-electron spin
Quctuations, the amplitude of which is temperature-
dependent. Thus, when this scattering is important, one
expects the coefficient of the T' term in the resistivity of
the alloy to contain a contribution proportional to the
impurity concentration.

Striking evidence of the importance of local exchange
enhancement effects in the spin-density Quctu-
ations associated with the d electrons comes from the
recent experiments of Schindler and Rice on the PdNi
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system. ~ As mentioned above, Schindler and Rice find
a contribution to the resistivity of pure Pd proportional
to T2 dominates the phonon contribution for T&10'K.
They Gnd the coefficient of the T' term in a PdNi alloy
containing 1%Ni larger by a factor of 10 than the same
quantity for the pure metal. The change in the coeffi-
cient varies linearly with impurity concentration c for
c(1%.In this work, we analyze Schindler and Rice's
data using the result of a simple model calculation. The
model is able to account for a number of features of the
data in a consistent, semiquantitative manner.

If the impurity is close to the magnetic stability, then
the contribution of the impurity to the static spin sus-

ceptibility, the Knight shift, and longitudinal nuclear
spin relaxation rate at the impurity site will be increased
by the local exchange enhancement. We have discussed
these sects in a separate paper. " While the forms
exhibited in Ref. 12 do not apply to alloys in which
exchange-enhancement sects in the host are important,
it is straightforward to employ the dynamical sus-

ceptibility described below to derive expressions for the
above-mentioned quantities applicable to alloys where
exchange enhancement in the host is important.

In their paper, Schindler and Rice have presented a
theoretical interpretation of the data. In essence, they
have considered the contribution to the electrical re-
sistivity and thermal conductivity from the scattering
of s electrons from spin Quctuations in the d band using
a formalism quite similar to that described in our earlier
work. ' To apply the theory to the alloy, they introduce
an average intra-atomic Coulomb interaction U that
increases with increasing impurity concentration. In this
manner, they account for the concentration dependence
of the coefficient of the T2 term in the electrical re-
sistivity. However, a plot of the observed values of
coefficient A of the T term in the electrical resistivity
versus the static magnetic susceptibility X of the alloy
shows that A varies linearly with X. The theory of
Schindler and Rice predicts that A is proportional to
X, in disagreement with the experimental observations.

It is not clear to us that the introduction of an average
intra-atomic Coulomb interaction U provides an ade-
quate description of a dilute alloy, especially when an
important contribution to the electrical resistivity comes
from scattering of conduction electrons off spin-density
Quctuations with wavelength short compared to the
mean impurity-impurity separation. As mentioned
above, we believe that the spatial inhomogeneity of the
effective exchange 6eld produces local spin-density
Quctuations in the vicinity of the impurity cell with
amplitude large compared to the amplitude in the host
matrix. Such sects are not described by introducing an
average Coulomb interaction U.

From the present theory, we find the coefficient A

introduced above varies linearly with the susceptibility
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X for low impurity concentrations, in accord with the
measurements.

II. GENERAL DISCUSSION

First, consider the spin-dependent coupling between
the s electrons and the d electrons in the pure metal. If
one describes the motion of the s electron by employing
the HF equations in a form suitable for a magnetically
ordered material, then the exchange terms give an s-d
interaction of the form

H. d V.J ——s(r) S(r)d'r,

provided that the nonlocal exchange potential is ap-
proximated by a local operator. " The notation in
Eq. (1) is the same as employed in Ref. 5. The volume
of the unit cell is V„s(r) is the spin-density operator
for the s electrons, and J is the s-d interaction param-
eter. The integral in Eq. (1) is taken over the whole
volume of the crystal.

In this work, we shall only be interested in studying
the properties of very dilute alloys, where impurity-
impurity correlations may be neglected. In this limit, it
will be sufhcient to consider the contribution to the
resistivity from a single, isolated impurity ion, and
multiply the final result by the number of impurities
present. Thus we consider a metal containing a single
impurity, placed for convenience at the origin of the
coordinate system. Equation (1) then becomes

This result is the same as the expression employed in
Ref. 5. If n is the number of unit cells/unit volume, and
e, is the number of s electrons per unit volume, then
$= n, /n. The function f, (k) is the Fermi-Dirac distribu-
tion function for the s electrons, Q(k,k') = (k' —k")/2m„
and n(x) = {expPx+1} '. It has been assumed that the
s-electron energy band is parabolic, with effective mass
m, . The Bloch functions of the d band have been ap-
proximated by functions of the tight-binding form, and
F (q) is the form factor of the d orbital, "normalized so
that F (0)= 1. The function A Lk,)),Q(k, k')] is (within a
multiplicative constant) the square of the amplitude of
a spin-density fluctuation of frequency Q(k, k') and
wave vector k,q. We shall relate this function to the
appropriate wave vector and frequency-dependent sus-
ceptibility of the alloy. For simplicity, we have assumed
A (q,Q) and F(q) are functions only of ~q~. While this
certainly will be a bad approximation if the theory is to
be applied to real metals in a quantitative way, none-
theless, for the simple model employed in this work, we
believe that the qualitative conclusions of this paper will
not be seriously affected by this simplification.

Suppose the system is placed in a time varying,
circularly polarized magnetic field of magnitude

t(i)H(x, t) =k(x+iy) exp(iq x) exp( —iQt) .

Let (S( )(q', t)) be the amplitude of the transverse
component of spin density induced in the d band by the
time-varying f)eld. The time dependence of (S(+)(q', t))
will be the same as that of H;

H, g=V. Q J s(r) S(r)d'r, (S(-)(q', t))= &S(-)(q')) exp( —iQt) .
ell s

where J,=J for i&0, and Jo——J~. In this paper, we
shall want to apply the theory to the Pd-Ni system.
Since Ni and Pd are isoelectronic, one does not expect
J and JI to differ greatly. To simplify the remaining
discussion, we shall assume Jz=J. We consider the
most important effect of the Ni impurity is to locally
increase the exchange field seen by the d electrons, so
the d band is driven closer to the magnetic-instability
limit. The qualitative features of the present theory
would not be affected greatly if J& and J were diGerent.
Thus the s-d coupling will be assumed to have the form
given in Eq. (1).

The method employed previously by us may be used
to compute the contribution to the relaxation rate from
s-d spin-Rip scattering. One finds the relaxation time r
is given by

If the external field h is weak, the amplitude of the
qth Fourier component of spin density induced in the
d electrons of the alloy may be related to the amplitude
of the external field by means of a generalized suscepti-
bility function

(S(-)(q')) =F(q)F (q')x. (qq' Q)k (4)

The form of the function x„(q',q,Q) has been studied
previously' "for the case where exchange enhancement
in the host is unimportant.

In the alloy, the presence of the impurity destroys the
translational invariance of the system. Hence x„(q'q, Q)
has nonzero components for general values of q'/q.

The spectral function A(q, Q) that appears in the
result for the relaxation time can be shown by standard
methods" to be related to the generalized susceptibility
x(qq, Q);

1 3g J'
r 32 m,kgT

dkdk'f, (k)L1—f, (k') j{1+nLQ(k,k') j} A (q,Q) = iLx, (qq, Q+ie) —x, (qq, Q—ie)]. (5)

In Eq. (5), e is a small, positive infinitesimal number.

X q'~ F(k.q) l'ALk, ~,Q(k,k') jdn. (3)

"E.D. Thompson, Ann. Phys. (N. Y.) 22, 309 (1963).

"SeeT. Izuyama, D. J.Kim and R. Kubo, J. Phys. Soc. Japan
18, 1025 (1963)."D. L. Mills and P. Lederer, Phys. Rev. 160, 590 (1967).
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To proceed with the discussion of the electrical re-
sistivity of the alloy, we require an expression for the
susceptibility function X(qq', 0).

III. APPROXIMATE EXPRESSION FOR THE
GENERALIZED SUSCEPTIBILITY

Up to this point, the discussion has been quite general.
To compute the generalized susceptibility function
introduced above, we need to employ a specific model
of the d electrons. We shall use a simple form of the
model introduced by Wolff in his discussion of the
formation of local moments in transition metal alloys. "
We consider the properties of a single, narrow band of
electrons. The Bloch functions are assumed to be well

approximated by functions of the tight-binding form.
Two electrons are assumed to interact via the intra-
atomic Coulomb interaction only when they occupy
Wannier functions in the same cell. Consequently, the
single-band assumption allows only interactions be-
tween electrons with antiparallel spins.

The Hamiltonian of the pure metal thus has the form

Hp T+ Up Q——n;gn;g,

equation of motion of the particle-hole propagator it is
often possible to obtain explicit expressions for X(q,q',0).
This has been done for the pure metal by Izuyama
et ul. ,'4 and extended to apply to simple alloys. "' In
our earlier work on alloys, we have ignored exchange-
enhancement effects in the host matrix.

In this paper, we shall employ a simple dynamic
molecular-field approximation to obtain an expression
for X(qq,Q). This method gives some insight into the
physical nature of the approximations, and yields
results equivalent to the generalized random-phase
approximation (RPA) employed in Refs. 14 and 15.

We wish to find the response of the system to a time
and spatially varying magnetic Geld

H=H(x+iy) exp(iq x) expiQt.

Since we have already implicitly chosen a preferred axis
in space by introducing the up and down spin operators
in the Hamiltonian, it will be easier to apply the mole-
cular-field approximation to the calculation of the re-
sponse of the system to a field applied parallel to the
s axis. Define the longitudinal response function
Xt(qq', 0) by the equation

where n,, is the number operator c;,tc;„where c;,t(c;,)
creates (annihilates) an electron in the Wannier orbital
associated with the ith unit cell. The kinetic energy of
the electrons is

T=+ p(h)cp, tcp. .

Now suppose a single impurity is placed in the cell
i =0. The impurity perturbs the motion of the electrons,
since the crystal potential will be changed in the vicinity
of the impurity host. Since the impurity potential will
be efIiciently screened by the electrons in the unfilled
narrow band, for most purposes it will suflice to assume
the change in crystal potential is localized to within the
impurity cell. This approximation is particularly valid
for the Ni-Pd system, since the one-electron scattering
potential is very small for alloys constructed from
constituents in the same row of the periodic tabLe. Also,
the intra-atomic Coulomb integral associated with the
impurity cell will differ from the value Uo appropriate
to the host. Thus in the presence of a single impurity,
the model Hamiltonian becomes

H= T+ Up P n;tn;q+ V g no + bUnotnpq, (6)

where bU= Vz —Uo. If the model is applied to obtain a
description of Ni in Pd, the discussion in Sec. I leads one
to suppose that 6U&0.

To compute the dynamic susceptibility of the alloy,
one may relate this function to the particle-hole
propagator. By making a suitable approximation in the

' P. A. %ol8, Phys. Rev. 124, 1030 (1961),

(S.(q')) =-,'F(q')F(q)X~(qq', 0)h„

where h.=IJt~II,. In the absence of an external Geld and
in the absence of magnetic order, one has Xq(qq', 0)
=X,(qq', 0) for an isotropic system. We shall compute
the longitudinal response functions X&(qq', 0) and use
this function to obtain the spectral density A. (q,Q).

In the presence of a field parallel to the s axis, one
adds to the Hamiltonian the term

H, o
——-', hF(q)(expiQt)g(n;& —n;&) expiq x;

to describe the interaction of the electrons with the
externally applied magnetic Geld.

The diQiculty in computing the susceptibility in a
rigorous way stems from the terms from the intra-
atomic Coulomb interaction, since in the presence of
these terms, one is faced with a many-body problem.
We shall replace these terms by time-dependent one-
particle potentials by replacing the combination of
operators n;pn, & by (n;t)n;p+ (n;&)n;t, where (n;,) is the
number of particles in the cell i with spin g in the
presence of the external time-varying field. It is then
necessary to compute (n;,) in a self-consistent manner.
In the presence of the external magnetic Geld,
we write

(n;t) =n; pA, expiQ—t,

(n;p) =n;+ ,'6; expiQt,-

where the numbers 6; are to be determined self-
consistently.
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where

and
h &=hF(q) expiq x;+Uotb. ;+8Uhob', 0,

VHp= V+bUno

Some constant terms have been dropped from the
Hamiltonian of Eq. (7). Equation (7) is a one-electron
Hamiltonian that describes a band of particles moving
in the presence of the HF potential Vap and driven by
spatially nonuniform magnetic field h;&'~. An electron
moving through the crystal sees an internal magnetic
with spatial variation described in the last two terms
of Eq. (8). Far from the impurity the t&; will vary as

exp' x;. As the impurity is approached by an incoming
particle, a localized disturbance is encountered.

Since Pd and Ni are isoelectronic, the HF impurity
potential VHp should be quite small. We shall assume
that this is so, and ignore the effect of this term in the
subsequent discussion. This approximation seems
reasonable, since Schindler and Rice' And the residual
resistivity associated with Ni in Pd is very small. The
addition of 1% Ni to Pd increases the resistivity only
0.2 pQ cm above the pure Pd resistivity at O'K.

When the second term of Eq. (7) is dropped, the
effective Hamiltonian describes a band of noninteracting
electrons moving in the time-varying, spatially non-
uniform magnetic 6eld h;&' expiQt. We next Fourier
transform the quantities 6; and h;&'&.

6;=P A(k) expik x;
k

h;&'&=+ h&'&(k) expik. x;.

One finds

h(e&(k)=hF(q)5 q+Uot& (k)+(bU/ftT)t&, 0 (9).
The response of the band of noninteracting electrons

to the space- and time-varying field is described by a
generalized susceptibility function we denote by 1'(k,Q),
following a notation similar to Ref. 14.

(S.(l))=-;P(k)r(k, Q)h& &(k), (10)
where

n(I '+k) —n(l ')
1(k,Q) =—P

X '.(l )—.(k'+k)+Q+i.

Since (S,(k))=
~2F (k)h(k), use of Eqs. (9) and (10)

yield an equation for h(k).

a (k)=hP (q)1'(q,Q)b, , &,+Upl'(k, Q)4 (k)
+ (bU/7&t)r(k, Q)a, . (11)

Equation (11) may be solved at once for A(k):

h(k)=hF(q)xg(q, Q)b, ,&,+(bU/$)xa(k, Q)60. (12)

Inserting the above expressions into the Hamiltonian
of Eq. (6) yields the eifective Hamiltonian

H ff —T+VHp Q np, +2 Q h;&'&Ln;t —n;t) expiQt, (7)

We have introduced the function

x, (q,Q) = r(q, Q)/L1 —U,r(q, Q)g.

This function may be recognized as the exchange-
enhanced, reduced susceptibility for the pure metal,
obtained previously by Izuyama et al.' Indeed, if the
term proportional to bU is dropped from Eq. (12), we
recover the results of Ref 14 identically. By noting that
60= (1/X)P& 6 (k), one may eliminate 60 from Eq. (12)
and obtain an explicit expression for i&, (k). The result is

bU x,(l,Q)x, (q,Q)-
a(k)=hP(q) x, (q,Q)b, ,,y, (13)

1—b Ux(Q)

where x(Q)= (1/Ã)g&, Xp(k,Q). By relating this result
to (S,(k)), and recalling the de6nition of the reduced-
susceptibility function Xt(k'k, Q), one has

bU x, (k,Q)xo(k'Q)
x, (k k,Q) =x,(k,Q)b», + . (14)

X 1—8Ux(Q)

Equation (14) is the result that we shall use to compute
the spectral function A (k,Q) required for the resistivity
calculation. However, before proceeding with a study
of the impurity contribution to the resistivity, it will be
useful to relate the result in Eq. (14) to the work of
other authors.

First of all, we remarked above that Eq. (14) reduces
to the result of Izuyama, Kim, and Kubo for the pure
metal when SU=0. If 8U is increased by increasing Uz,
then the static (Q=O) susceptibility acquires a pole
when 8Ux(0)=1. Thus when 8U)bU, =x(0) ', the
theory predicts a local moment will form in the impurity
cell. This same criterion for local moment formation in
exchange-enhanced host materials has been obtained
previously in Ref. 11 by examining the stability of the
nonmagnetic HF ground state in the presence of a local
increase in the intra-atomic Coulomb integral. In Ref.
11, the scattering effects represented by VHp were also
ignored. . In our previous work, ' an expression for the
reduced susceptibility of the alloy was obtained includ-

ing the scattering sects described by VHp. The express-
ion obtained from Eq. (14) with Uo ——0 is the same as our
earlier susceptibility when Vap= 0.When both Up= VHp
=0, but Uz/0, the criterion for local moment formation
is precisely the same as the one obtained by applying the
HF criterion to this very special case of the Wo16' model.

Thus the result in Eq. (14) is consistent with previous
work, provided that one takes care to note the physical
content of the approximations in the present and earlier
work. Equation (14) provides a description of the
magnetic properties of alloys in which exchange-
enhancement eBects in the host matrix are important.
However, all single-particle scattering effects contained
in the one-electron potential VHp have been ignored.
Including a 6nite VHp complicates the problem in a
nontrivia& way when Ug is 6njtc, singe it does not appear
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X0(q, Q—i~) =X~(q,Q) —iXz(q, Q),

X(Q—i.)=X (Q)—iXz(Q).IV. CALCULATION TO THE IMPURITY
CONTMBUTION TO THE ELECTRICAL

RESISTIVITY
A (q,Q) =AD(q, Q}+(1/E)Az(q, Q),

to be possible to solve in a general way the self-con- Now write
sistent equations that result.

We need the function A (q,Q) defined in Kq. (5).Since

X„(qq~ Q—ze) =Xt (qq, Q+&6)~

A (q,Q) =2i Im(X„(qq, Q+ie)}

where A 0(q,Q) =2Xz(q, Q) describes the spin-density
Quctuations in the host metal, and the contribution
from the impurity center is

SX,(Q)LX,2(q,Q)—X,2(q,Q)]+ 2X, (q,Q)Xz(q, Q)$1—FAUX~(Q)]
Az(q, Q) = 8U

P—SUx, (Q)]'+SU2x,2(Q)

If Ref. 14, it is shown that at low temperatures the
contribution to the relaxation rate from the part
Ao(q, Q) that describes the spin-density fluctuations in

the pure metal is given by

8—=HOT', 16

where e„vg, e„and eg are the Fermi velocities of the d
and s electrons, and Fermi energies measured from the
bottom of the band. Both the s and d bands have been
assumed parabolic to obtain the result in this form.

The quantity 5 is a temperature-independent, dimen-
sionless number given by

'"~&de' em(y —6
exp(y —y') —1

b—y')
X 17a

Le~a+1]L1+exp( —y')]

& )Z(k.&) (

dg, (17b)
$1—Uol'g (k,g,0)]'

where I'zz(k, g,0) is the real part of the free-electron
susceptibility introduced in Eq. (10). The quantity P
is larger the closer the metal is to the instability
criterion I'~ (0,0)= 1/Uo.

The expression for Az(q, Q) may be simplified con-
siderably. First, at low temperatures, only very small
values of the frequency 0 will enter, since the Bose-
Kinstein factor will cut off the integral over energy
transfer at Q(k,k') =k~T. Also, Xz(Q) and Xz(q,Q}
vanish when Q=o. The denominator in the expression
for Az(q, Q) may then be replaced by L1—&UXz(0)] '
=0,'. Also, in the numerator of Kq. (15),one may neglect
Xz2(q,Q) compared to X~'(q,Q), since Xz2(q, Q) is propor-
tional to Q' for very small Q', and Xg', and X~'(q,0) is
6nite. Then

In the second term of Eq. (18), zz will be large com-
pared to unity when the impurity is almost magnetic.
Because of the large exchange enhancement in the host
Pd matrix, X~(q,0) will be strongly peaked. for small
values of q. This will result in an integral Lsimilar to
Eq. (17a)] over wave-vector transfer in the impurity
contribution to the relaxation rate strongly peaked at
small q. The first term, in which the exchange-enhance-
ment factor for the host appears squared for small q,
will then give the dominant contribution to the integral.

Thus we assume Az(q, Q) well approximated by

Az(q, Q)= (8Un)'Xz(Q)xzP(q, 0).
In the Appendix it is suggested that Xz(Q) may be

approximated by (for Q«ez);

Xz(Q) = (zzeno'/4e, vaqa)Q,

where ao ——L1—UOE(0)] ' is the HF exchange-enhance-
ment factor for the host, m~ is the number of d holes per
atom, and qg=2m/a, where a is the lattice constant.

The expression for Az(q, Q) may now be inserted into
Eq. (3) to obtain the impurity contribution to the
electrical resistivity. We shall assume that the one
impurity contribution may be multiplied by the number
of impurities Xg to obtain the contribution to the re-
sistivity from a finite concentration c=(Ez/Ã) of
impurities. After a bit of manipulation one finds the
total relaxation time may be written in the form

1/r = 1/ra+ 1/7z= A (c)T',

A (c)=Ao{1+L(BU/Uo)n]'yc),

2 Ge pg
SJAO
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L1—Uoi'~(k. g,0)]'

We may compare Pz with P if the function I's in the
A z(q, Q)—5Uu'L8UXz(Q)Xzz'(q, 0) integrand is approximated by the form employed in the

+(2/n)Xzz(q&0)Xz(q, Q)]. (18) Appendix, and the form factor in the integrand is
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1dx (bU q- IU"(0)
Xdc .=p EUp I

(19)

From the data of Shaltiel et al. , one finds

(1/x) dx/dc —115.

In the above analysis, we have assumed [1—UpZ(0)] '
=10, so that UpX(0)=9. The susceptibility data then
lead us to estimate that

(8U/Up)n —13.

Considering the many crude approximations made in
the computation of the electrical resistivity, we believe
that the agreement between the value of the parameter
8Un/Up deduced from the resistivity data and the value
deduced from the susceptibility data to be quite good.

The change in the coefFicient A is predicted to depend
linearly on the change in the susceptibility:

A (c) =1—
A (0)

/8U p 8U X(c)
n+ n

U.x(O) kU, U,x(O) U. x(O)

If one assumes y= 7.5, UpX(0) =0.9, and (bU/Up)a= 10,
then we find

A ~p(c) = —190+ 32X(c),
'~ F. Gautier, thesis, Universite de Paris (Orsay), 1964

(unpublished),

ignored. Employing ri~= 2kz/k„one expects with these
approximations that pr=ss(kg/k, )p F.or the cylindrical
hole surfaces in the d band of Pd, 4k&—q&."Finally,
the parameter y is estimated to be

V=(p~a)~o'.

For the Pd matrix, one has nq 0—3h.oles/atom, and
ep—10. Then y—7.5.

It is now possible to compare the results obtained
above to the experimental measurements of Schindler
and Rice. For c&1%, the coefficient of the T' term
varies in roughly a linear fashion with concentration.
From the data,

(1/A)dA/dc=750 for c&1%%uc.

Evidently, one may then fit the data with the choice

(8U/Uo) n =10.

This seems to be a reasonable value of this parameter,
since one must have a))1 if our conjecture about the
almost magnetic character of the impurity center is
correct.

An independent estimate of the parameter 8Un/Up
may be obtained from susceptibility data on the dilute
PdNi system. The present theory may be used to
obtain an expression for the slope of the concentration-
dependent susceptibility at c=0:

where X is measured in emu/gram and A in units of
10 ' pQ cm/'K'. Schindler and Rice find the experi-
mental result A,„p~(c)=—130+22X(c), in fair agree-
ment with the value deduced from the theory. [In ob-
taining the numerical expression for A, pt, (c), we have
used the data only for the points c=o, 0.5, and 1.0%%uo.

Consequently, we obtain a line with a slope steeper than
the line in the plot of Ref. 7, where the best line was
drawn through the four points c=0, 0.5, 1, and 1.66%.
The resistivity data indicate clearly that impurity-
impurity interactions are important at c=1.66%%uc, so
we compare our low-c theory only with the data for
c&1%.]

We conclude by estimating the fractional change
8U/Up in. the intra-atomic Coulomb integral required to
fit the data. In Ref. 11, the value of the ratio Xs (0)/X(0)
was determined to be roughly 5 for the Pd matrix. Then
if (bU/Up)n=10, we may determine 8U/Up,

b U 8U (x-s(0)
1—

~
(UpX(0))

Up(x(0)Up 1—8Uxs(0) Up

With x~/x(0)=~s, and UpX(0)=9, one finds

8U/Up= ~p.

This estimate indicates that a reasonable value of
8U allows the susceptibility and resistivity data to be
fitted in a plausible manner.

In conclusion, we consider that the present theory is
able to give a good semiquantitative account of
Schindler and Rice's resistivity measurements and the
susceptibility of PdNi alloys for low concentrations.

V. CONCLUSION

We have used a simple model to describe isoelectronic
alloys such as PdNi alloys. We have taken into account
only a change in the strength of the intra-atomic
Coulomb repulsion of the impurity cell. This is quite
reasonable since pure Ni is ferromagnetic while pure
Pd is nonmagnetic, and the 3d Ni orbitals have a
smaller spatial extension than the 4d orbitals of Pd.

This local increase of intra-atomic Coulomb potential
enhances the susceptibility of the alloy around the
impurity cell. The Quctuations of the magnetization
have locally a larger amplitude, at lower frequencies,
than in pure Pd. This e6ect is capable of explaining the
large increase in the T' form of the resistivity of PdNi
upon alloying. The T' law is just an electron-electron
scattering law and reQects the fact that the magnetic
Quctuations have a temperature-dependent amplitude,
and that the scattering processes are inelastic. The
change in intra-atomic Coulomb integral is of course also
capable of explaining the large increase of the uniform
static susceptibility of Pd upon alloying with gi,
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It should be pointed out that in view of the discus-
sions' on the nature of the interactions responsible for
magnetism in transition metals, the success of our
simple model seems to lend support to the idea of the
importance of intra-atomic Coulomb interactions at
least for Pd and Ni metals. No interatomic interaction
other than the transfer terms that give rise to the single-
particle bandwidth have been assumed.

Finally, it appears" that I'dNi alloys exhibit a large
variation of specific heat with concentration. The varia-
tion is linear in concentration, as we expect it to be
below c= 1%. This is an important indication that the
theory of specific heat has to take magnetic fluctuations
into account in a way similar to the Berk-Schrieffers
treatment of pure metals. Calculations on this subject
will be reported in a short time.

Also, we wouM like to point out that similar effects
are expected to occur in alloys such as EINi, I'hCo,
ENFe, etc. , which are isoelectronic alloys where Ni,
Co, and Fe impurities are nonmagnetic at low con-
centrations. In Co and Fe alloys, the importance of
Hund's rule coupling might bring about diferent be-
havior from that in Ni alloys.

that I'&(0,0)= llr(0), the density of states at the Fermi
level. We shall have to be satisfied with a very crude
approximation to the integrand, since the Fermi surface
of Pd is very complicated. It is believed'" ""there are
12 roughly cylindrical pockets of holes located on the
square faces of the fcc Brillouin zone. We denote the
radius of one of the cylinders by kd. For a degenerate
gas of free electrons with a Fermi surface of radius kg,
the function I'z(q, Q) for small 0 varies slowly with q for
q&2kp and falls oG rapidly to zero when q&2k&.
Similarly, the response of the d electrons in Pd pre-
sumably will fall oft rapidly when q)2k&, although
I'~(q, Q) will presumably depend on the direction of q.
We shall ignore the anisotropy, and further suppose
that for Q((e&, the Fermi energy of the d electrons,

I'~(q, Q) =X(0), q(2k'
=0, q&2kd.

For Fz(q, D), we use the free-electron approximation

I'z(q, Q)=, 2k@& q&Q/&~
SEg vgq
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APPENDIX

The purpose of the Appendix is to provide an approxi-
mate expression for the quantity Xz(Q) required for the and W is the volume of the Brillouin zone. In the
resistivity computation. One has cylindrical model, the number of d holes jatom is

I'z(q, Q)1
xz(fl) =—p (A1)

1V ~ L1—U,r, (q 0))'+Uo'I'z'(q 0)

' C. Herring, in Magnetism, edited by G. Rado and H. Suhl
(Academic Press Inc. , New York, 1966), Vol. IV."A. I. Schindler (private communication).

where the sum is over the 6rst Brillouin zone. Recall

12xkg'qgg 2x
S(g q&= ~

lV a

The approximate expression for xz(Q) then may be
written in the form given by Eq. (18).

' S. Doniach, Proc. Roy. Soc. (London) 91, 89 (1967)."S.Doniach, Phys. Rev. Letters 18, 554 (1967).


