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a set of diagrams including all the fourth-order ones
gave oscillations which went only slightly negative and
it was a marked improvement on a summation including
all the third-order diagrams but not all the fourth-order

diagrams. This suggests that the violations of (43) may
just be a consequence of a limited summation. A similar
situation occurs in evaluating the density of states by
summing the diagrams for 6, where a limited sum can
give negative answers. L'For instance, this can happen
in (39) if

~
r

~
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Computations were also carried out for the "zone"

oscillations using the diagrams of Sec. 5. It was found
that the oscillations were of the same order as the
average conductivity for II=3II&, but negative con-
ductivities were not obtained in this case. The mag-
nitude was strongly modulated by the triangle oscil-
lation. The magnitude fell for H going away from 3H&.
Not too much weight should be attached to these
results because of the neglect of other diagrams with
the same area. [Thus in the high-field limit the dia-

grams chosen give a contribution of order p' (or Il—'),
but the diagram in Fig. 8(d), which has not been in-

cluded, is of order p3.j However, it seems that the
oscillations should be experimentally observable. They
are unique in that they are not susceptible to "thermal
washout" and are not severely reduced by the integra-
tion over k, since the area is determined by the lattice
parameters only, and is independent of k, and the
energy. Thus provided a very good sample can be made
so that phase coherence can be maintained, the oscil-
lations should be extraordinarily strong.
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Linear Magnetoresistance in the Quantum Limit in Graphite

J. W. MCCLURE* AND W. J. SPRYt

Union Carbide Corporation, Carbon Products Division, Cleveland, Ohio

(Received 21 August 1967)

Measurements of the galvanomagnetic properties of single-crystal graphite were made at 4.2'K in pulsed
magnetic fields up to 160 kG. With the magnetic Geld parallel to the c axis, the transverse magnetoresistance
is approximately proportional to the magnetic field strength, and the Hall coefBcient is constant above about
80 kG. The results imply that both the diagonal and oG-diagonal elements of the magnetoconductivity
tensor are inversely proportional to the magnetic field strength. The results are explained theoretically using
the following facts: (1) both electrons and holes occupy their lowest Landau levels for fields stronger than
about 60 kG, (2) degenerate statistics apply throughout the field range, and (3) the scattering is by ionized
impurities whose range depends upon the magnetic field strength. The effect provides a simple way to deter-
mine the concentration of scattering centers in graphite. lt is also definitely established that the concentra-
tion of excess carriers must be determined from the oB-diagonal magnetoconductivity; use of the high-Geld
Hall coeKcient alone leads to large errors.

r. rNTRODUCTION

"PREVIOUS investigations' 4 of the galvanomagnetic
properties of graphite single crystals have been for

magnetic fields not exceeding 25 kG, though investiga-
tions of the de Haas —van Alphen oscillations in the
magnetic susceptibility' ' have extended up to 85 kG.
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These investigations have provided a great deal of in-

formation about the properties of the current carriers
and the energy band structure. The present work ex-
tends the measurements of galvanomagnetic properties
up to 6eld strengths of 160 kG. The measurements of
the transverse magnetoresistance and Hall coefficient of
a graphite single crystal with the magnetic 6eld parallel
to the c axis were carried out at 4.2 K.

Above 60 kG, graphite is in the quantum limit regime,
the term being coined by Adams and Holstein' to in-
dicate that all carriers in each group occupy the lowest
Landau level for the group. In this region, we have
found that the magnetoresistance varies linearly with

7 E. N. Adams and T. D. Holstein, J. Phys. Chem. Solids 10,
254 (1959).
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Fio. 1. Schematic diagram of experimental apparatus. The
magnetic held is perpendicular to the plane of the sample. For
measurement of the magnetoresistance point A was connected to
point C, and for measurement of the Hall eBect point 8 was con-
nected to point C.

II. EXPERIMENTAL METHOD AND RESULTS

The magnetic fields required in this experiment were
produced by the pulsed magnet described earlier. ' The
system consisted of an LC circuit with energy stored
initially in the electric fields associated with a con-
denser bank, then transferred to an inductance, the
electromagnet, to produce a damped, oscillating mag-

8 J. M. Ziman, Phil. Mag. 3, 1117 (1958).
9 P. Kapitza, Proc. Roy. Soc. (London) 123A, 292 (1929).

M. Y. Azbel', Zh. Eksperim. i Teor. Fiz. 44, 983 (1963)
LEnglish transl. : Soviet Phys. —JETP 17, 667 (1963)j."C. Herring, J. Appl. Phys. 31, 1939 (1960).

"A general review of the quantum theory of galvanomagnetic
effects plus important new results can be found in R. Kubo, S. J.
Miyake, and M. Hashitsume, in SoM State Physics, edited by F.
Seitz and D. Turnbull (Academic Press Inc., New York, 1965),
Vol. 17, p. 269.

i' P. N. Argyres and E. N. Adams, Phys. Rev. 104, 900 (1956).

magnetic-field strength and that the Hall coeKcient is
constant. Instances of linear magnetoresistance are
rare: Ziman's explanation of Kapitza's observations' of
linear magnetoresistance does not apply, as it requires
the presence of open orbits, nor does Azbel's dc skin
effect, ' as it requires a very small Hall angle, nor does
Herring's theory of macroscopic inhomogeneities" as
it requires a larger impurity concentration. The ex-
planation offered here makes use of the existing quan-
tum theory of galvanomagnetic effects, "plus the fact
that the screening of impurity scattering centers de-

pends upon the magnetic 6eld strength. "The results
yield a method for measuring the number of scattering
centers in a sample, as well as adding to our under-
standing of transport effects in the quantum limit.

In addition, the high-6eld Shubnikov —de Haas oscil-
lations are correlated with the energy band structure.
It is also demonstrated that accurate determinations of
the difference between densities of electrons and holes
must use the off-diagonal magnetoconductivity in-

stead of the Hall coefIicient, even when the high-field
Hall coeKcient is independent of 6eld strength.
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Fzo. 2. The Hall coeKcient as a function of the magnetic field
strength parallel to the c axis.

netic field of large amplitude. The sample was mounted
within the electromagnet, and measurements were made
with the assistance of an oscilloscope and other elec-
tronic instrumentation. The switch used to initiate
current Qow was built by mounting two tungsten rods
in an insulated holder. These were brought together
mechanically until an arc was formed to discharge the
condenser bank. Recording equipment for this experi-
ment was triggered by the initial induced voltage, and
data were recorded during the second quarter cycle of
the current pulse.

Crystals were obtained by individual selection from a
chunk of Essex County Graphite. Selected single
crystals were purified to an assay of 99.995% carbon.
Defects appeared in some crystals during the purihca-
tion process, and these crystals were eliminated from
further consideration. The technique of sample prepara-
tion was conventional. A miniature sand blast was used
to cut a single crystal to the shape outlined on the left
in Fig. 1. The small "tabs" at conventional locations
were used for the attachment of wire leads. The delicate
surfaces of the crystal were protected by a steel collimat-
ing mask and a thin plastic cover. The 6nal criteria of
successful sample preparation had to be based on the
values obtained for various electrical measurements at
4.2 K. These were the magnetoresistance of the crystal
and the magnitude of pronounced de Haas —van Alphen
oscillations. '

The sample was immersed in liquid helium, and
measurements were made by using a modified dc method
shown in the block diagram of Fig. 1. Leads were
attached to the crystal tabs by a silver-bearing cement.
The primary change from dc technique consisted of
adjustable balance coils in series with each lead to com-
pensate for induced voltages caused by pulsed magnetic
fields. The voltages in these coils canceled induced
voltages in the signal circuits. Magnetoresistance and
the variation of the Hall coefficient with magnetic 6eld
were measured separately. Data were recorded by
photographing the beam image on the calibrated oscillo-

scope face.



L I N EA R M A 6 N E TO RES I S TA N C E

TABLE I. Estimation of the zero-6eld resistivity pp by com-
parison of the magnetoresistance ratio ap/ps with other
measurements.

12

Sample
1~ ~plop
at 20kG

I'p(~I'lap)'"
pp(10 8 Qcm) (10 0 cm) 10

EP-5.
EP 7a
EP-14a
Present

9.3
28.0
58.0
16.0

3.7
2.4
1.0s

(3.0)b

113
127
82

(120)'

O

6
&I

I0
a Reference 3.
b Obtained by dividing entry in column three by entry in column one.' Obtained by taking average of same quantity for EP-5 and EP-7.

Figures 2 and 3 are plots of Hall coeScient and the
magnetoresistance, respectively, versus the magnetic
field. Oscillations were observed in both measurements.
In the case of sample resistance versus magnetic field,
these oscillations appear directly as shown in Fig. 3.
At fields below thirty kG, rapid oscillations were ob-
served. with high gain on the oscilloscope. However,
these oscillations have been studied. in detail by Soule'
so they will not not be considered further here. The
electronic gain of the oscilloscope was reduced to obtain
the complete behavior on single photographs. The
circles on the graphs represent magnetic fields which
were measured in several photographs to check the
repeatability of the operation. The linear dependence
of resistance on magnetic 6eld is clearly evident. In
obtaining the Hall coeS.cient as a function of magnetic
field the behavior only at 6elds greater than 50 kG was
plotted, since the low-6eld work has been done pre-
viously by Soule. ~ Saturation of the Hall coefFicient
occurred at about 90 kG. The circles represent magnetic
fields at which repetitive measurements were made
from di6erent magnetic pulses.

The reliability of these measurements must be con-
sidered with regard to the interpretation being placed
on the experiment. The reliability of the behavior of
the measured quantities versus magnetic field can be
estimated by the repeatability of the experiment. In
the present case, major portions of each of the curves
were repeated in at least three independent attempts.
Both the trend of the data versus magnetic field and the
magnitude of the signal voltages at given magnetic 6elds
were repeatable to within 5%. The absolute accuracy
of the Hall coefficient or magnetoresistance values are
not known. The absolute value of the magnetic field
shown in the data is based on the calibration of the
pulsed magnet against a dc magnet of known char-
acteristics. A Qip coil was used for this comparison, and
the best estimate of absolute accuracy is plus or minus

By an oversight, the zero-Geld resistivity was not
measured. However, this is not a serious problem, as the
interpretation of the results does not depend critically
upon the exact value. A reasonable estimate can be
made by comparing the measured magnetoresistance
ratio with those of two similar samples whose resis-

tivities were measured by Soule. ' All these samples are
quite pure, so that the total carrier densities (electrons
plus holes) are essentially the same in all samples. Thus,
the resistivity is inversely proportional to the average
mobility. Simple two-carrier theory' yields the result
that the magnetoresistance ratio is proportional to the
square of the average mobility. Thus, the product of
the resistivity and the square root of the magnetoresis-
tance ratio should be constant. As Table I shoes, this
relation is reasonably valid for the two samples most
nearly resembling the present one, so that the estimate
of po= 3.0X 10 ' 0 cm is fairly reliable.

III. PRELIMINARY INTERPRETATION

The results are much easier to interpret in terms of
the elements of the magnetoconductivity tensor, which
are given for the orientation of the experiment by the
simple formulas'

o.,=o/[1+(RoH)'j, (3.1)

o,„=o(RoH)/[1+(RoH)s]. (3.2)

In the above, o is the measured (magnetic-6eld-
dependent) value of the conductivity, the current is in
the x direction, and the magnetic 6eld is in the s direc-
tion. The experimental value of EaH, which is the
tangent of the Hall angle, is practically constant and
equal to —0.75 for 6elds greater than about 40 kG.
Thus, the Hall angle itself is only about 37', and there
are no troublesome geometrical eBects even at the
highest magnetic 6elds. Both elements of the magneto
conductivity tensor are of the same order of magnitude
and are inversely proportional to the magnetic Geld
strength above about 80 kG. In Gaussian units, 0.

can be approximated by the formula 2.03&(10"/H and
o,„by —1.53X10'/H. The deviations from these ex-
pressions are less than 6% from 80 to 140 kG. Any

r4J. M. Ziman, Etectrons ond Phooons (Orford %university
Press, Nepy York, 1960), pp. 487—494.
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FIG. 3. The transverse magnetoresistivity ratio as a function of
the magnetic-6eld strength parallel to the c axis,
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equal to 1/(p —n)cc is in error. For this simple rule to
be correct, the quantity Ro-H must be large enough so
that Eq. (3.2) becomes 0,„=1/RH. The carrier excess
estimated from the Hall coefFicient alone would be a
factor 3 too high for the present sample, and that
estimated by Soule' for crystal EP-14 is a factor 10
too high.

The behavior of the diagonal magnetoconductivity
0-„ is unusual. The classical theory predicts that 0.„
should fall off as the inverse second power of the mag-
netic field strength if there are no "open orbits, " and
all the results on the energy band structure of graphite
indicate that the orbits should be closed for the orienta-
tion considered. The highest fields are in the "quantum
limit" region, i.e., all the carriers are in the lowest
Landau levels, so we shall apply the theory of Adams
and Holstein. ' For this application it is necessary to
discuss the energy levels in the magnetic field.

IV. ENERGY BAND STRUCTURE AND
LANDAU LEVELS

Fn. 4. The Landau levels in graphite for a magnetic Geld of
70 kG parallel to the c axis. The abscissa is the wave number
parallel to the c axis and the ordinate is the energy. The labehng
of the levels follows Inoue (Ref. 17). Levels with superscript +
are in the conduction band; those with superscript —are in the
valence band. The level &0+(2) is independent of magnetic Geld
and marks the lower edge of the conduction band and the upper
edge of the valence band in the absence of the magnetic Geld.
The Fermi level for pure graphite is denoted by a dashed line.
The values of the graphite band parameters (Ref. 18) used are:
yo ——3.21 eV, y1 ——0.40 eV, y2=0.0185 eV, F3=0.0 eV, y4 ———0.25
eV, y5=0.0185 eV, and 6=—0.009 eV.

error in the value of po will merely cause multiplicative
errors in O„and o-,„without changing the 6eld depend-
ence above 80 kG.

The behavior of o-,„is in agreement with both classical
and quantum theory' "which predict that 0-,„is equal
to (p n)ec/H, w—here p and n are the density of holes
and electrons respectively, e is the magnitude of the
electronic charge, and c is the velocity of light. Thus,
the experiment yields the result that the excess of
electrons over holes (n P) is equa—l to 1.06&(10'7 cm '.
This is about 2.7 times that found by the same method"
for crystal KP-14 and about 1.8 times that found for
EP-7. If the differences in resistivity were caused by
different amounts of the same ionized impurity, the
results of Table I would predict that the excess carrier
density in the present sample is 2.8 times that in
KP-14 and 1.25 times that in KP-7. These results are
reasonably consistent. The fact that 0- „is proportional
to II—' over such a large field range indicates that

p I is indepe—ndent of the magnetic field. This is
evidence against there being any bound states whose
degree of ionization depends upon the magnetic field

strength; i.e., there are no "freeze-out" effects.
It is important to note that the carrier excess deduced

from setting the saturation value of the Hall coefficient

"J.W. McClure, Phys. Rev. 112, 715 (1958).

The Brillouin zone of graphite is a hexagonal pill box,
and the electron and hole Fermi surfaces are placed
along the six vertical zone edges. "The holes are in a
highly elongated surface centered on the edge, and the
electrons are in two elongated surfaces near the corners
of the zone. Because of strong interband interactions,
the Landau levels deviate from the semiclassical
Onsager-Lifshitz result and must be found by solving
a fourth-order secular equation. ' ' A plot of the levels
for a particular set of band parameters" and for a
magnetic field of 70 kG is given in Fig. 4. Note that the
lowest conduction band level has no zero-point energy,
and the highest valence band level has an anomalously
small zero-point energy.

The number of states per unit volume per increment
of k, for each quantum level is proportional to the
magnetic Geld strength, and the proportionality con-
stant is the same as that for free electrons. For pure
graphite, the hole density is equal to the electron
density. In the quantum limit, this condition is met
when the length of k, for the lowest occupied conduction
band level is equal to that for the highest unoccupied
valence band level. Thus, the Fermi energy is a very
slowly varying function of the magnetic Geld strength
in the quantum limit. This is quite diferent from the
case of one type of carrier only, in which the Fermi
energy strongly depends upon the magnetic field
strength in the quantum limit. Furthermore, due to the
small zero-point energy, there is a finite band overlap
for magnetic fields less than about 750 kG. Above this

"For a recent review, see J. W. McClure, IBM J.Res. Develop.
8, 255 (1964).

Y. Uemura and M. Inoue, J. Phys. Soc. Japan 13, 382 (1958);
J. W. McClure, Phys. Rev. 119, 606 (1960); M. Inoue, J. Phys.
Soc. Japan 17, 808 (1962); M. S. Dresselhaus and J. G. Mavroides,
IBM J. Res. Develop. 8, 262 (1964)."M. S. Dresselhaus and J. G. Mavroides, Carbon 3, 465 (1966).
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field, graphite would become a semiconductor. For the
fields and temperatures of the present experiment, the
overlap is large enough that degenerate Fermi-Dirac
statistics apply. The sample under consideration is not
perfectly pure, but has about 10'~ cm 3 more electrons
than holes. However, the electron density in pure
graphite at 4.2'K and with no magnetic field is about
3&(10" cm ', so that this concentration of impurities
has only a very slight effect on the Fermi level. Detailed
calculations of the variation of the Fermi level for fields

up to 60 kG have been published by Sugihara and
Ono. "The electron density (and hole density) increases
linearly with magnetic field strength in the quantum
limit and is equal to about 7)&10' cm ' at 100 kG.

The last dip in the resistivity as a function of mag-
netic field strength theoretically corresponds to the top
of the n= 1 level for the holes being equal to the Fermi
energy. If the simple periodicity of the Shubnikov —de
Haas effect held at high fields, the dip would come at
H '=(2)Ei„where Pi, is the period of oscillation as-
sociated with the holes. As P~ is about' 4 1.5)(10 ' G ',
the dip would come at H =45 kG. However, the simple
periodicity breaks down for two reasons. (1) The
Onsager-Lifshitz rule does not apply for small quantum
numbers. Solution of the secular equation" 20 shows
that the dip associated with the n= 1 level would occur
at a field about 8% higher due to this effect. (2) The
Fermi level changes with magnetic field. " For low
fields, the Fermi level is about 0.022 eV, but in the
quantum limit it is about 0.017 eV. The field at which
a particular dip occurs is proportional to the difference
between the Fermi level and the top of the valence
band (which is at 0.037 eV). These two factors together
predict" that the dip associated with the n= 1 hole level
will come around 55 to 65 kG, vrhich is about where a
dip occurs in the experiment. Magnetic fields stronger
than this are in the quantum Limit region. Both the
n=1 level for electrons and the n=2 level for holes
should give dips at a magnetic field of about 30 kG,
where one is actually observed. The apparent dip at
about 155 kG is assumed to be due to experimental
error.

V. THEORY OF MAGNETOCONDUCTIVITY

There are now a number of theoretical treatments'2
of electron transport in a strong magnetic field which
agree with the early work of Titeica. ' We shall use the
formulation of Adams and Holstein, ' hereafter referred
to as AH. The AH theory was used in a simplified
manner4 to explain the Shubnikov —de Haas results in
graphite for fields less than 25 kG, and recently has
been used in a more realistic calculation" for the same
purpose. In the quantum limit and for scattering by

"K.Sugihara and S. Ono, J. Phys. Soc. Japan 21, 631 (1966)."S. J. Williamson, Ph.D. dissertation, MIT, 1965 (unpub-
lished)."S. Titeica, Ann. Phys. 22, 129 (1935).

fixed, randomly placed point imperfections, the AH
result for r, may be written

be'n, df
0 = — dE — p~(E)j'(v'), (5.1)

48$yG0 dE
where

(v)= dq, zq„q„(Iv(k„k„,o)I

y I V(kgpkvy —2kg) I )e ~ ~2. (5.2)

In the above, n, is the number of scattering centers per
volume, m~ is the effective mass perpendicular to the c
axis, ro is the cyclotron frequency (&o= eH/mic), E is the
energy, f the Fermi-Dirac distribution function, 1V(E)
is the total density of states (per volume and energy),
and bS(E) is the density of states into which a particle
may be scattered without a change in its spin state. The
q's are dimensionless variables (q'=q, '+q„') and are
related to the wave-vector components by

q =k, (h/m](d) '~'= k, (hc/eH) '~'.

The quantity k, in Eq. (5.2) is dependent upon the
energy through E=-,'ko+ h' k.'/2m, iwhere ml is the
effective mass parallel to the c axis. Finally, the poten-
tial of a single scattering center at position R is given by

v(r) =(2') ' d'kv(k„k„, k,) expLik (r—R)j. (5.3)

It is seen that the integral in Eq. (5.1) is dimensionless,
and that the quantity in front of the integral has the
dimensions of a conductivity.

The derivation of AH was for a simple free-electron
gas, but as written the result also applies if the effective
mass in the direction of the magnetic field (mq) is dif-
ferent from that perpendicular to the Geld (mi). We
shaB assume that it also applies to the graphite band
structure. In the quantum limit, the length of the
"hole Fermi surface" is about one half of the zone
height, and the two pieces of "electron Fermi surface"
can be put together to make one "electron Fermi sur-
face" about as long as the "hole Fermi surface. " For
simplicity, we will assume that the energy versus k,
is parabolic for each carrier and that the magnitude of
ygs is the same for each carrier. One can see from Fig. 4
that these are not serious approximations. Ono and
Sugihara" have shown that the scattering between the
electron surface and hole surface is negligible, arguing
from the selection rules of matrix elements and the
range of the scattering potential. Thus, our model con-
sists of two similar sets of carriers acting independently,
but whose Fermi levels are suKciently independent of
magnetic field to the extent that degenerate statistics
can be applied. We also must remember that there are
two nonequivalent edges of the Brillouin zone, so that



J. W. McCLURE AND W. J. SPRY

so that

e(r) = [AZe'/er] exp( —r/a)—, (5 4)

V(k) = —PAZe' 4/ ]/e(k'+a 2) (5 5)

For degenerate statistics, the range is given by

a= I e/4xe'sV(f) 5'" (5.6)

where hZ=Z —4 is the valence of the impurity minus
the valence of carbon, e is the dielectric constant (equal
to about 4.1 at optical frequencies" and about 9.0 in the
infrared'4), andi is the energy of the Fermi level. In the
absence of the magnetic field, the density of states for
graphite is about 5X 10 eV atom or 3.6X103

erg ' cm ' so that a is in the range 6A to 9 A. (In the
quantum limit, the density of states is proportional to

~2 N. H. March, Advan. Phys 6, 1 (1957).
~g J. T. McCartney and S. Krgun, in Proceedings of the Third

Conference on Carbon (Pergamon Press, Inc., New York, 1959),
p. 223.

2' E. A. Taft and H. R. Philipp, Phys. Rev. 197, A138 (1965).

there are two complete electron and two complete hole
Fermi surfaces, not counting spin degeneracy. We will
neglect scattering between the nonequivalent edges,
as it is shown below that the matrix element of the
scattering potential is very small for such large changes
in k vector. Thus, we have that the factor b is equal to ~~,

the product of —,
' because of spin, —', because of the two

nonequivalent zone edges, and —,
' because of two types

of carriers (electrons and holes).
Remembering that co is proportional to II, we see

from Eq. (5.1) that to obtain o„inversely proportional
to II, the integral must be independent of magnetic
field. This is not the behavior of the one-carrier cases
investigated by AH. In such cases, the e8ective Fermi
level must vary like II in order to keep the number of
carriers constant, and consequently the density of
states at the Fermi level varies at EP. In addition, the
factor (V') has diferent magnetic 6eld dependences for
different scattering mechanisms so that AH find 0. ,
variations ranging from H' to H ~'. However, when the
scattering centers are screened impurities and it is
taken into account that the range of the screening de-
pends upon magnetic Geld, the variation of $X(E)]'can
compensate that of (V2).

The resistance of the present sample is certainly
limited by impurities. It has a zero-field resistivity
three times greater than KP-14, which has a tempera-
ture-independent resistivity4 below 4.2'K. It is reason-
able to assume that the scattering centers are charged,
and probably are the centers which contributed the
excess carriers (though, of course, compensation may
be present). Because of the relatively high carrier con-
centration in graphite, the potential of a scattering
center will be screened out in a short distance. We shall
use the simple linearized Thomas-Fermi model' " to
discuss the scattering potential. The potential is then
given by

the magnetic field strength, being about 4.4X10 ' eV '
atom ' at 100 kG.) The values of the projection of k in
the x—

y plane which contribute most to the integral
in Fq. (5.2) are those corresponding to the maximum
value of q' exp( —-', q'), or q' equal to two. At a magnetic
6eld of 100 kG, this gives a value of about 1.7X 10' cm '
for the projection x=(k,'+k„')'". The product of Ka

is then about 0.1 to 0.15, so that we may take

U(k, k„,0)= AZ47re2a'/—e= —hZ/Ar(g) . (5 7)

This simple result is actually Friedel's sum rule"
(V)1V(l) = —AZ, and states that the addition of ~AZ~
carriers of opposite charge from the scattering center
screens out the potential so that the Fermi level far
away is unchanged.

The value of 2k, which goes in Eq. (5.2) is the length
of the Fermi surface, which is about vr//t,

.p=4.7X10"
cm, where cp is the lattice constant in the cp direction.
The ratio of U(k, k„,—2k,) to V(k„k„,0) is then no more
than 0.1. As the squares of the two quantities enter in
Eq. (5.2), we are justifred in keeping only the U(k, k„,0)
term.

With these approximations, the two integrals become
trivial. The evaluation of (5.2) yields

(U') =2 (~Z)'/LA'(&)]'. (5.8)

Substituting this result into (5.1) and using the result
for degenerate statistics J dE( Bf/BE)g(E—)=g(l) for
any function g(E), the density of states factors cancel
to yield

o„=27r(AZ)'e'n, /32m q&o= x (hZ)'m, ec/16K (5.9).
The result is remarkable in that it is independent of any
properties of the carriers and is independent of any
property of the scattering centers save their valence and
concentration. The result should not be used to predict
conductivity in the absence of carriers, as the derivation
assumed the existence of carriers obeying degenerate
statistics. The result would also become invalid for fields
so large that the screening length became less than the
interatomic spacing. However, in the present case the
field limit from this consideration is greater than 1 MG.

The most serious approximation in the derivation is
the use of the linearized Thomas-Fermi method. An
improved treatment" of the potential yields a similar
result with a different numerical factor. Another source
of error is that the AH theory is based on the first Born
approximation. In the improved treatment, " this ap-
proximation is corrected using the method of Kubo
et a/. "A simple way to estimate the error introduced by
use of the 6rst Born approximation is provided by the
work of Kahn, 2~ who solved the scattering problem
exactly for 5 function potentials. His result was that
the Born approximation expression is divided by the

"J.Friedel, Advan. Phys. 3, 446 (1954).
2' G. A. Barnes and J. W. McClure (to be published).
~~ A. H. Kahn, Phys. Rev. 119, 1189 (1960).
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factor 1+m'[kV(f')]'Vo', where Vg is the strength of
the b function. If we use our V(0,0,0) for Vs (which is
also the Fourier transform of the delta function poten-
tial) the factor becomes 1+(s/8)'= 1.15. Thus, an
accurate treatment must go beyond the 6rst Born
RPPrOxlmatiOn o

The result for O„has the same form as o,„with p —n
replaced by (hZ)'~n. /16. If there are several types of
impurities, the conductivity wouM be proportional to
P, n, (AZ,)'. Let us assume that the valence differences
in the present case are AZ, =~1. The experimental
result for O„yields an estimate of 7.2&&10" cm-' for
P, n, . Together with the result from 0,„, this would
imply a concentration of about 4.1)&10"cm ' of ionized
donors and 3.$)&10'" cm ' of ionized acceptors.

Next, we shall show that the model also gives the cor-
rect order of magnitude for relaxation time in the
absence of a magnetic field. The scattering is isotropic
iil the plane of the crystal so that the relaxation time
is given by .-'=-;(2~/f y"(f)yS2), (5.10)

(M')=n, V'(0)((1+a'k.2) '). (5.11)

In the above, we have taken b equal to one fourth and
allowed scattering between electron and hole surfaces
on the same BriHouin zone corner, so that the average
in Eq. (5.11) extends over the entire height of the
Brillouin zone. If we did not allow scattering between
electron and hole surfaces, the results would diBer very
little. The indicated average in Eq. (5.11) gives about
0.12, so that we find w

—'—6.2&(10 7e„where n, is in
cm '. For sample EP-14, if e, is equal to the number of
excess electrons (4X10"cm ') then ~ would be about
4X10 "sec. The average value found experimentally"
is about 3)&10 " sec, which gives agreement for 0„
in both the zero-Geld and high-Geld classical limits.

It is interesting to examine the conditions for the
same kind of linear magnetoresistance to exist in other
materials. The most important requirement is that all
carriers be in the quantum limit, which rules out
materials such as zinc, in which a small number of
light carriers coexist with a large number of heavy

carriers. %'e have made explicit use of the extreme
anisotropy of the graphite Fermi surface to neglect
the second term in Eq. (5.2). However, a dif'ferent ap-
proximation is valid in the isotropic case: 2k, is smaller
than the value of a= (2eII/Ac)'~' which corresponds to
q'=2. In tbis case, the approximation au&&1 may not
bc VR11d, but it docs not ch.ange thc 6cM dcpcndcncc of
cr .Our derivation does not require the nearly constant
Fermi level characteristic of a two carrier system; it
requires only that the statistics be degenerate. However,
in the case of a single kind of carrier, the factor b

would be equal to ~~, and the corrections to the 6rst
Born approximation would be of the order of 70%.
Thus, it appears that this particular type of linear
magnetoresistance may appear only for systems of
several carriers which are rather similar.

Finally, we should point out that Kubo et a/. "pre-
dicted that 0, is proportional to H ' for scattering by
long-ranged impurities when the CGective Fermi energy
is constant. However, the screened impurities do not
meet the condition for long range, a2»(eH/hc) '. Kubo
et c/. "list a linear magnetoresistance for a ease in which
0 is proportional to H, but this result does not apply
in the present case due to their assumption that

VI. CONCLUSIONS

We have found experimentally and explained theo-
retically a linear magnetoresistance in the quantum
limit. With the correction of a numerical factor, "the
CGect can provide an easy way to analyze for the
number of scattering centers in graphite. The condi-
tions for such R llleRI' IQRgnctores1stRncc to RppcR1 in
other material have been found to be rather special.

It has been definitely established that the use of the
high-field Hall coefficient alone to determine the excess
carrier concentration in graphite leads to large errors.
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