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Pippard's effective-path method for calculating the conductivity in a breakdown network is extended

by the use of a Kubo formula. It is shown how to calculate oscillations of the conductivity with frequencies
in II ' corresponding to (a) the lens orbits in the hexagonal network for Mg and Zn, and (b) the area of the
Brillouin zone of the hexagonal network. At fields much greater than the breakdown 6eld, the lens oscillations
in the two-dimensional system have the same amplitude as the average conductivity. A rough calculation
suggests that in magnesium the lens oscillations should have a magnitude comparable with the triangle
oscillations at high fields. The calculations made for the "zone" oscillations are very crude, but it seems quite
likely that they are observable.

1. INTRODUCTION

'HE discovery of magnetic break. down' has re-

quired some modifications in the usual theories
of the de Haas —van Alphen effect and of the magneto-
resistance. Pippard' ' has discussed the consequences of
breakdown in terms of network models and the author
has attempted to justify this approach in terms of a
nearly-free-electron mode14 and in terms of the theory
of the effective Hamiltonian. ' A modified theory of the
de Haas —van Alphen eflect was developed by Falicov
and Stachowiac' in terms of a time-dependent Green's

function and a similar theory was later developed by
the author in terms of a time-independent Green's

function. 4 ' Both approaches treat the Green's function
as a propagator on a Pippard network.

Falicov and Sievert' developed a theory for the
magnetoresistance using a Pippard network and the
method of Chamber's path integral. Another method
was developed by Pippard, ' which is very simple and

powerful when the relaxation caused by impurities and
phonons can be neglected. This is called the "effective-

M. H. Cohen and L. M. Falicov, Phys. Rev. Letters 7, 231
(1961).

2 A. B. Pippard, Proc. Roy. Soc. (London) A270, 1 (1962).
'A. S. Pippard, Phil. Trans. Roy. Soc. (London) A256, 317

(1964).
4 W. G. Chambers, Phys. Rev. 140, A135 (1965).
5 W. G. Chambers, Phys. Rev. 149, 493 (1966).' L. M. Falicov and H. Stachowiac, Phys. Rev. 147, 505 (1966).
~ L. M. Falicov and P. R. Sievert, Phys. Rev. 138, A88 (1965).
s A. B.Pippard, Proc. Roy. Soc. {London) A287, 165 (1965).

path" method. This technique was applied by Falicov,
Pippard and Sievert' to explain the remarkable oscil-
lations observed by Stark'0 in magnesium and zinc when
the magnetic field was aligned along the hexad axis. It
has also been applied by Young to explain oscillations
in the magnetoresistance observed in tin."

In the case of magnesium and zinc the relevant
Pippard network is a hexagonal system of coupled
orbits as shown in Fig. 1. The triangles (at E) are very
small, and they appear to be responsible for the oscil-
lations. Phase coherence within these triangles was
fully taken into account, but it was assumed that phase
coherence on the longer arms could be neglected. In
consequence the triangles acted as three-way scatterers
which came into resonance whenever the magnetic field
was such that a Landau level for the triangular orbit
was at the Fermi energy. But further experiments by
Stark" have also detected oscillations caused by the
lens orbits, and to explain this it would appear to be
necessary to develop a theory which can take phase
coherence into account to a higher degree.

The purpose of this paper is to develop such a theory.
It is based on the Pippard effective-path method, but
this method is extended by the use of a Kubo formula
for the conductivity. In order to apply this theory

9 L. M. Falicov, A. B. Pippard, and P. R. Sievert, Phys. Rev.
151, 498 (1966).

1o R. W. Stark (to be pubhshed)."R.C. Young, Phys. Rev. 152, 659 (1966)."R.W. Stark (to be published).
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Fn. 1. The hexagonal net-

work for breakdown in the
basal plane of the 8rillouin
zone of magnesium and zinc.

certain propagators have to be evaluated. These propa-
gators are treated by a diagrammatic method similar
to that used for the de Haas —van Alphen effect, ' 5 and
as much phase coherence as required can be included by
summing enough diagrams. This theory thus employs a
combination of three methods, the Pippard effective-
path method, the theory of propagators on a Pippard
network, and a Kubo formula rather than a Boltzmann
equation. The development is guided by the theory of
the effective path. The treatment of the Kubo formula
is not rigorous but it gives an unambiguous answer and
the resemblance to the successful theory of Falicov,
Pippard, and Sievert should be strong enough to sug-
gest that it is on the right lines.

The theory has been used to calculate two types of
oscillations, the lens oscillations, and oscillations which
might be called "zone" oscillations, since they corre-
spond to an area equal to the Brillouin zone. No attempt
has been made to carry through the calculations to the
end but the results suggest that both types of oscil-
lations should be observable. The interest in the "zone"
oscillations comes from the theory of the magnetic band
structure particularly in two-dimensional models. '4 It
turns out that the magnetic band structure is very
simple when the applied field is such that the area
covered by one fiux quantum is an integral multiple of
the area of the unit cell, but for intermediate values of
the field the structure becomes very complicated. This
consideration suggests that the properties of the system
like the magnetic susceptibility and the resistance
should have an oscillation with the "zone" frequency
in H '. However, the theory of the de Haas —van Alphen
effect rules this possibility out because there are no
orbits with this area, but the theory of the magneto-
resistance (though it is not directly concerned with the
band structure) suggests that such oscillations should
be observable.

The paper is divided up as follows. The next section
is a description of the effective path theory as used in
the hexagonal network. Section 3 is a treatment of the
Kubo formula using propagators on a network. Section
4 describes a self-consistent method for obtaining the
effective path and Sec. 5 shows how the theory can be
applied to calculating the lens oscillations and the

"zone" oscillations. The final section is a brief discussion
of the results.

2e
I E dS=

26 dS
I,E v—,

where v is the Fermi velocity which is of course directed
normal to the Fermi Surface. L(k) is called the effective
path.

We shall only be concerned with two-dimensional
models. In this case dS is replaced by the element of
arc dsI, on the Fermi curve (which however we shall
still call the "surface" by force of habit), and the factor
8x' is replaced by 4m'. The conductivity tensor may then
be written as

2/2 dSg
Lv

We now consider the application of this approach
to the hexagonal network used for calculating the
magnetoconductivity in magnesium and zinc. The net-
work is the set of coupled orbits which can arise in a
two-dimensional hexagonal metal with the magnetic
Geld 8 applied along the normal (which is taken to be
the s axis). In this case it will be assumed that the
Fermi surface is a circle with a diameter just greater
that the maximum dimension of the Brillouin zone.
The structure in k space is shown in Fig. 1. In a mag-
netic field a particle of wave number k moves along the
Fermi surface, and we shall assume that it travels
clockwise as indicated by the arrows in Fig. 1.When the
particle reaches a junction (a point of Bragg reQection)
it may be scattered on to another circle. On any circle

2. THE NETWORK AND THE EFFECTIVE-PATH
METHOD

Before commencing the main argument it is con-
venient to give a description of the Pippard effective-
path method and its application to the network models
used for magnetic breakdown, because many features
of this approach will be adopted with the necessary
modifications.

The method is as follows. Suppose we have a specimen
of metal to which an electric field E is applied. We may
picture this as causing the Fermi surface to move
through k space. A surface element dS of the Fermi
surface will sweep out a volume of k space at a rate
eE dS/h per unit time, where e is the electronic charge
and A is Planck's constant divided by 2x. We may
imagine the sweeping process as "creating" particles
at a rate 2eK dS/h(2m)'. (The specimen is taken as
having unit volume, and the factor 2 arises from the
spin degeneracy. ) If we then suppose that these particles
travel an average distance L(k) after "creation" at k,
it can be shown that the current J is given by



165 OSCILI ATORY MAGNETORESISTANCE 80i

the motion is given by dk/d1= vXh, where

h= eH/33c (2)

(where c is the velocity of light), and the integral of
this equation is then

k= rXh+&, (3)

where II is a constant of integration and r is the
position of the particle in real space. Thus the motion
in real space follows a network similar to the k space
network but rotated by 90' and scaled by a factor h '.
The axes on the right of Fig. 1 are used to illustrate this.

The method of calculating the e8ective path is as
follows. The points Ap, A~, A2, and A3 in Fig. i will be
taken as being just before the nearby junctions. The
origin of coordinates will be taken at Ap and the
positions of A~, A2, and A3 will be called R~, R2, and
R3, respectively. The effective paths from the points
A; will be called L;. Suppose now a particle is created
at 8, whose position vector will be called —b. This
particle must migrate to Ap and its averaged final
position must therefore be Lp. Thus the effective path
from 8 is given by

L(8)=h+Lp

Lp is determined as follows. For the sake of simplicity
it will be assumed that the triangles are vanishingly
small, and that they act as three-way scattering junc-
tions. The probabilities for the scattering of particles
coming in from A p towards A i, A &, and A3 will be called

c~, c2, and c3, respectively. For the sake of conservation
these quantities must satisfy

Ct+C2+C3 ——1.
Then of a number of particles "created" at A p a fraction
c~ will travel to A ~ and must finish up on the average at
a position (Rt+Lt) and similar results will apply for
particles scattered towards A2 and A3. Thus it will

follow that by self-consistency

Lp Cl(R1+Ll)+C2(R2+L2)+C3(R3+L3) . (6)

By the rotational and translational symmetry of the
network it must follow that Ly=Q Lp where Q is the
matrix that rotates a vector anticlockwise by 60'.
Similarly it must follow that L2 ——QLp and LS=QLp.
Then the following equation determines Lp.

(1—ctD —c20—csQ )Lp= ctRt+c2R2+csR3. (7)

Thus the terms R; in (6) are the inhomogeneous terms
in the equation from which Lp must be determined.

The actual calculation of the conductivity is straight-
forward. ' The features in this argument which we shall
attempt to reproduce from a more fundamental view-
point are (a) the use of a network; (b) an expression
like (1) for the conductivity; (c) an effective path
satisfying a relation like (4); (d) a self-consistent
scheme like (6); and (e) a conservation rule like (5).

3. THE USE OF A KUBO FORMULA

We commence by modifying a Kubo formula for the
conductivity so that it is written in a time-independent
manner. Then a diagrammatic scheme is set up to
represent the propagators in such a formula by means
of paths on a Pippard network.

The basic Kubo formula will be taken as" '4

o„,= —lim Re Trttf'(H) J„(s)j.].
Here H is the single-particle Hamiltonian, j„is the

single-particle current, and f (E) is the derivative of
the Fermi-Dirac distribution function. J„(s) is given by

~
—gt~sHt j e

—sHtd]

We shall set j„=ee„, where v is the velocity.
f'(H) is represented as

(10)

and then we need to evaluate

Xpp= 8 Tl b(E H)e "e'—~'v„e '~'v„dt (11).

"This formula is like the one suggested by G. V. Chester and
A. Thellung t Proc. Phys. Soc. (London) 73, 745 (1959)g but the
cutoB in the time integration is represented by an exponential
cutoff D. Mannari, Progr. Theoret. Phys. (Kyoto) 26, 51 i1961)g
and according to K. Verboven t Physica 26, 1091 (1960)g only the
real part is used.

~ See, for instance, J. M. Ziman, Princip/es of the Theory of
Solids (Cambridge University Press, New York, 1964), p. 279.

in the limit s —& 0+. By the property of the 8 function
we can replace H by E in an adjacent factor, and then
the integration is simple. It gives

X„„=e'Tr{p(E H)v„(s iE+—iH) 'v„—}.
We introduce the coordinate operator by

v„=i (IIx„x„H), —

and we define the propagators or Green operators by

G~, =(E&is H) '—(12)

By the use of the formulas p(E H)H= 8(E H)E an—d-
is8(E H)G+. 8(E —H), we c——an obt—ain

X„„=e' Tr{8(E—H)is(x„G+,—G+,x„)v„}. (13)

We also need the formula

22rib(E H) =G p G+p,— —

where Gyp=lime p+ Gys
It is now necessary to show how the propagators can

be treated by a diagrammatic method. ' We shall use
the simplest possible scheme, a nearly-free-electron
system4 with a periodic potential dependent on one
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(~) (6) (c)

I'zo. 2. (a) Linear network for one-dimensional model. (b)
Scattering amplitudes. (c) "Extrinsic" phase shifts for Bragg
reRection.

rr, rr„—rr„rr, = —ih.

The Hamiltonian will be taken as

(16)

II=P '+P„'+2VO cos(2vry/b). (17)

Here Vo is the strength of the periodic potential and b

is the lattice spacing. With a Landau gauge A= (—hy,
0, 0) the Schrodinger equation IJQ= PiP can be satisfied
by

where N(y) is a solution of

f —d'/dy'+h'y' —8+2Vo cos[2~ (y/b) —a])
XN(y) =0, (19)

where

a = 2m q,/bh. (20)

P(x,y) is an eigenfunction of II, with eigenvalue q„and
the origin of y has been shifted in (18) for convenience.

The free-electron travelling wave solutions for (19)
(with Vo ——0) are in the Wentzel-Kramers-Brillouin
(WKB) approximation

dimension only. The units will be chosen so that
It= 2m = 1, where m is the electronic mass. The kinetic
momentum P is equal to y —A, where p is represented
by —i% and curl A =h, where h is given by (2). We also
need the operator

11=P+hXx,

which is the quantum analog of the quantity 1I in (3).
II commutes with P (and therefore also with the kinetic
energy P') and its components satisfy the commutation
rule

velocity. Bragg reQection occurs at the points y= &yo,
where k(yo) =~/b, and it will be assumed that F. and b

are such that there are only two such points.
The propagation of the solutions can be described on

a one-dimensional network as shown in Fig. 2(a).' The
solution I+ is pictured as propagating upwards. When
it reaches the turning point T it is rejected and returns
as I . But when Vo is not equal to zero, there is also
Bragg reQection at y=&yo. At these points we shall
call the transmission amplitude p and the reflection
amplitude q [Fig. 2(b)]. For unitarity we must have
p*p+q*q=1, p~q+q*p=0. There are also "extrinsic"
phase shifts upon Bragg reflection, determined by the
phase of the position of the reAection points ~yo with
respect to the periodic potential. 4 These are given in
Fig 2(c.). Here b is equal to 2~yo/b and n is given by
(20). The method of determining the eigenvalues in
such a network has been considered elsewhere. "

The Green's function 6+0(y,y') is the solution of an
equation like (19) but with a term —8(y—y') on the
right-hand side. y' can be regarded as a source point
radiating outgoing waves and so the Green's function
contains the term

zu+(—y&)N (y(), (23)

where y& and y& are the greater and lesser, respectively,
of y and y'. The other terms in the Green's function
can be regarded as being caused by the reQections.
Each term can be represented as a path in Fig. 2(a)
following the arrows. A wave starting upwards (or
downwards) at y=y' is pictured as commencing at P
(or Q).

However it is in many ways better to represent the
path on a Pippard network' in real space, as shown in
Fig. 3. %e shall use the following notation. Positions
on the network will be denoted by r, r', etc. , and the
position along the y axis by y, y', etc. The y component
of the velocity will be written as v(y), and the actual
velocity at the point r as v(r), and its magnitude as
w(r). The network does not have to represent anything
"actual, " though it is possible to set up wave functions
lying on the network. 5 The main difference from the
network of Fig. 2 (a) is that every time a wave is Bragg-
reflected upwards (downwards) it is transferred one
circle to the right (left).

For the sake of illustration let us consider the con-
tribution to G+o(y&,y&) represented by the path in Fig.
3 from r& to r2 drawn as a heavy line. This contribution
1s

u~(y) = [i'(y)]—&e+' &», (21)
a(r~ ri) = ~~[~(yi)~(y2)] " (24)

where the coeKcient c is the product of the scatteringwhere
amplitudes, pq in this case, and p is the sum of the
extrinsic phase (n+b) and the propagation phase which
is given by the upper shaded area times h. 8 is also
represented by an area in this diagram. Then we sum

Here k(y) = (E—h'y')"' is the y component of the mo- over both values of ri (with y coordinate yi) on one
mentum and v(y)=2k(y) is the y component of the arbitrarily chosen circle (called the "primary" circle)
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and over all possible values of r2 (with y coordinate y2)
on the network, and over all possible paths following
the arrows and joining f~ and x2. There is one exception
to this rule. When y~=y2, it is possible to have x~=x~
at two points, with two corresponding "paths" of zero
length joining them. But only one of these must be
counted, and the contribution to G+e(y, y) is just
—i[e(y)] ' from (23).

As an example and for later use we now consider the
evaluation of the energy density of states' '

e(E)=Trb(E —B).

,7
~2&lbh =-&

Flo. 3. Pippard network for one-dimensional model. Areas
giving certain phase shifts are shaded.

where

By (14) this can be written as A(r) = 1+2 Re P~ c„(r)e'&~&'. (28)

(2s)'
dq, 2 ImG+o(y, y) ~ (26)

G+0 is of course a function of q, . The important point
is that the only terms in G which contribute are repre-
sented by closed orbits. We can give the following
reason. ' If a path commencing upwards (at P, say)
finishes downwards (at Q, say) then the propagation
phase shift varies rapidly with y and the contribution

goes out by "random phase. " Thus we need only
include paths which return in the same direction as they
set out. But if a path 6nishes on a di6erent circle, then
its phase contains a multiple of o. from the "extrinsic"
phase shifts and so when the integration over q, (on
which n depends) is performed this contribution must
also go out. So in the end we are left with closed paths.
The sum of the propagation phase shifts and the
"extrinsic" phase shifts is simply the area of the orbit
times h. Such a term is of course independent of q .

Another reason can be given why only closed orbits
can contribute. The propagation phases are measured

by areas, but for open paths the area is not unique and
depends on the gauge. Thus we can argue that gauge
invariance requires that the orbits be closed.

We now reconsider (26). The terms that are kept are
independent of q,. They also contain a factor Pv(y)] '
besides the phase factors and the attenuation factors.
It is then possible to write dr/v(r) instead of dy/e(y),
where dr is an element of arc on the network. The 6nal
result is then

AB hdr
n(E) = — a(r),

(27r)' v(r)
(27)

s (E)= —(2~) ' Tr {i(G 0
—G+e) }. (25)

Suppose the metal has dimensions A in the x direction
and J3 in the y direction. Taking the trace involves

integrating over y and over q,. It is sufBcient to in-

tegrate over y between the turning points, and the
range of integration over q, can be taken from 0 to hB,
since such a shift in q, moves the center of the line of
orbits by a distance 8 in the y direction. Thus we have
to evaluate

In this formula the sum is taken over all closed paths
following the arrows from r back to r. c„(r) is the
product of all the scattering amplitudes on the path p.
The phase factor &p~(r) is given by h times the area of
the orbit p in real space, or alternatively by h ' times

the area of the equivalent orbit in k space. The inte-
gration in (2'/) is confined to the "primary" circle in

the network. The 6rst term on the right-hand side of

(28) comes from the path of "zero length" as described

above.
In a similar way (13) can be expressed as a sum of

terms represented by diagrams. We replace the 8

operator by (14), and there are two contributions to
X. The one which will prove to be important is

X„„&'&=e'(2s) ' Tr(sG 0(x„G~,—G+,x„)v,}, (29a)

and the other is

X„,&'& =e'(2s) ' Trf —sG+0(x„G+,—G+.x„)e„}. (29b)

In the scheme described above the operators x„and
J'„=-,'v„are represented as follows:

xg= y ~ Py, = —zB/By,

P,=by, xi=h '( iB/By ihB/B—q,). —(30)

Pi would be q,+by were it not for the shift in the y
coordinate in (18).The representation of xi is obtained
from (15) and (16). The propagator G+, is much the

same as G+0, but there is also an attenuation factor.
The operator G 0 is the Hermitian conjugate of G+0,
and it will be represented by paths traveling against
the arrows of the network. Its representation satisfies

G 0(y,y') = LG+0(y', y)$*. A differential operator on the
extreme right of the trace operates on the extreme left.

The derivative operators i 8/By in (30) acting on—a
term of a Green's function like (24) simply give the
momentum k„as measured on the "primary" circle of
the k space network. Thus in particular ik '8/By—m

Xg(rg, ri) will give the length Irm in Fig. 3. The oper-

ator —i8/Bq, measures the number of times n appears
in the "extrinsic" phase and hence how many circles

the path has gone to left or right in Fig. 3. All in all we

find that x and v acting on a term g~o(rg, ri) of

G~o(y2, yi) give r2 and v(r2) times the term.
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Fio. 4. Diagrams for the effective path.

This result assumes that we may neglect the deriva-
tives of $e(y)] & which appear in the Green's function
and the commutators of x and v. Such terms are pre-
sumably one order higher in h than the terms just
considered, or alternatively are reduced by a factor
(b/I'z) where Er is the Fermi energy. Moreover they
are imaginary and will not contribute to (8).

We now express (29a) as a sum of terms which are
represented by closed diagrams on a Pippard network.
We may as before argue that the diagrams are closed
for reasons of gauge invariance, or that the terms left
out vary rapidly with y or q and so must go out when
the integrations are performed. The formula for X&'&

may then be written as

where

AB hdr
Xi'& =e' -L(r)v(r),

(2m)' r (r)
(31)

S
L(r) =e(y)— G 0(r,r')(r' —r)G+, (r',r). (32)

2'

With AB set equal to unity, (31) is equivalent to (1).
Here G(r, r') is the sum of the subset of terms of G(y, y')
which are represented by all paths going from r' to r
on the network. We restrict r to the two points on the
"primary" circle with y coordinate y, but r' can be
any of the points with y coordinate y'. To obtain
G(y,y') we have to sum over all these possible values
of r and r'. Thus we represent the integration over y
by the integral over r in (31) restricted to the "primary"
circle. But the integration over y' is represented by an
integration over r' all over the network, and in this way
the summation over the values of r and r' is auto-
matically taken into account. Moreover we need keep
only those terms in the product 6 ()G+, which are
represented by closed diagrams because the others go
out by "random phase" in the integrations- over y in

(31) and over g, (implicit in the trace operation). G+,
propagates with the arrows of the network and 6 0

against them. The sum of the propagation phases and
the extrinsic phases is given by the area of the diagram
times h. Areas encircled clockwise (anticlockwise) are
considered positive (negative). We also multiply to-
gether the scattering amplitudes at the junctions, but
we use the complex conjugates when the junctions are
on the return path.

We may now consider the term (29b). A similar
diagrammatic expansion is possible, but this time both
paths must go with the arrows. [A typical diagram is

shown in Fig. 4(b).] In the limit s —+0+ we shall
assume that the term vanishes for the following reason.
There are only a 6nite number of diagrams with a
perimeter less than some given length. In the limit
s -+ 0+ the contribution of these diagrams goes to zero
because of the factor s in (29). Thus the contributions
can only come from diagrams of very large perimeter.
Since the return path cannot go back along the outgoing
path such diagrams will have large areas on the whole
and presumably the sum will vanish by "random
phase. "The argument is stronger if the effect of thermal
averaging at a finite temperature is considered. Orbits
of very large perimeter have a very low cyclotron
frequency and their contributions will be "washed out"
just as in the theory of the de Haas —van Alphen effect.
If for any reason it seems possible that these terms can
contribute to the conductivity then their sum can be
added in later, but it seems very unlikely that this is so.

We return to considering the terms in (29). In this
instance we have a class of diagrams (to be called
"zero-area" diagrams) where the return propagator
comes back along the outgoing path. These diagrams
must give a contribution which is not oscillatory in h ',
and they are presumably the ones which can be treated
by the standard effective-path method. Similarly there
will be a class of diagrams where the return path divers
from the outgoing path only by the inclusion of a single
loop of a given area. These terms will all be phase-
coherent, even though the lengths of the paths may be
very large. Since no one diagram contributes finitely
in the limit s~ 0+, a self-consistent method will be
used, just like the eQ'ective-path method.

The extension to a two-dimensional network should
be straightforward. As an illustration we shall use a
two-dimensional rectangular lattice with a period a in
the x direction. 4 5 We may apply periodic boundary
conditions over a distance B=Ãb, where E is some
integer, if the magnetic field h satisfies h= (2n./ab)
X (X/Ã), where X is some integer. This time, however,
lI does not commute with the Hamiltonian, and we
have to use the magnetic translation operator r= e' "~

instead. With it we may associate eigenvalues e' &

where the range of g, is 0 to 2m/u instead of 0 to
hB(=2sX/a) as before. The network now consists of X

links along the y direction instead of the one link as
shown in Fig. 4(a). The integration over y takes in all
these links and if we keep y on the "primary" link this
introduces a factor X which exactly compensates for
the decrease in the range of g, . Thus in (31) and (32)
we again keep r on the "primary" circle, but r' can
wander all over the two-dimensional network.

4. THE SUMMATION OF THE DIAGRAMS

Let us suppose that we somehow know the effective
path L(ri) from some point on a network and we wish
to calculate I (ri—a) from a preceding point (ri—a)
on the same arm of the network. It is evident that
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except for one diagram where the 6nal point r' is
between (r1—a) and r1, both the outgoing and return
paths from (r1—a) must pass through r1. This ex-
ceptional diagram gives no contribution in the limit
s ~ 0+ and can be ignored. Moreover the product of
the propagators and of the term v(y) in (32) is un-
changed if we start the diagram at r~ rather than
(1'1—8). Tllus WC Shall llave

o(y1) .
L(r1—a) = lim s G o(r1,r') (r' —r1+a)

2' '~+

&&G+ (r', r1)

(33)

where

S
d, (r,r) =o(y) lim — G o(r, r')G+, (r', r) . (34)' '+2m

This expression looks like a matrix element of the
operator product

sG oG+s =o(G+—I G+o)+2m —8 (E H), —(35)

w111cll follows fro111 (12) Rnd (14). II1 tile 111111ts ~0+
the 6rst term on the right vanishes. The integration in
(34) is the integration over y' of a subset of "gauge-
invariant" terms of the product G o(y, y')G+, (y', y),
which are peculiar in that they do not change rapidly
with y and in that they are independent of q, . Thus by
(35) and (14) the result must be a subset of terms of
ImG+o(y, y) with the same properties, in fact the terms
which appear in the expression for the energy density
of states (26). The factor o(y) in (34) cancels out a
similar factor in the denominator of the Green's func-
tion, and thus we may identify h(r, r) with h(r) given
by (28). According 'to (27) tlM Rpplopllatc 111tcglatloll
of h(r) over one circle of the network gives the energy
density of states, and h(r) can be regarded as the ratio
of the actual density of states at r (or at the corre-
sponding point in k space) to the density of states
[v(r)g ' in the usual theory.

Thus 111 tllc gcllel'Rllzcd tlleol'y (33) llas 1cplaccd (4).
%C are now ready to set up the self-consistent theory.
Because of (33) it is sufficient to determine the effective
path L(r) from some point just before a junction (like
Ao in Fig. 1).For convenience both propagators will be
drawn foHowing the arrows of the network, though of
course the arrows on the return path should be reversed.

Figure 5(a) represents some portion of a network.
Let us choose Ao as the origin, and let the positions of
the points A, be R;.I.et the amplitudes for transmission
and reflection be p and q. To calculate L(Ao) we com-
mence the paths. at Ao. At the neighboring junction
two different possibilities arise. Either the paths remain
together until at least the next junction [Figs. 5(b) and
5(c)j or they branch [Fig. 5(d)]. In the former case
the diagram is always terminated just before the next

(C)

I'"IG. 5. Terminated diagrams in the self-consistent method.

junction [at A1 and A o in Figs. 5(b) and 5(c)] because
it wiH be assumed that the effective paths L(A1) and

L(Ao) are known. If the paths branch we follow them
until they coalesce on to the same arm at some junction
A 1 [Fig. 5(d)] and then they are terminated just
before the very next junction A„. (If the paths come
together at A ~ and then branch again we do not
terminate the diagram at this point. %e must wait until
the paths coalesce on to the same arm of the network. )
H as in Fig. 6(c) one of the paths coalesces with the
other path that has just begun, then the diagram is
terminated not immediately, but at the following junc-
tloIl. Thus R diagram ls terminated just bcforc R junc-
tion if and only if the paths have coalesced at a junction
immediately preceding. It is not suggested that the
above scheme is the only way of summing the diagrams,
but it seems the most obvious method. The branching
diagrams have a complex conjugate where the roles of
the two paths are interchanged. . Thus the above dia-

grams will give rise to the equation

L(A,)=p~p[L(A, )+R,a(A, )$+q~q[L(Ao)
+R,h(A, )j+P„(2Rec„c"")

&&[L(A„)+R„S(A„)). (36)

The sum is over all possible diagrams of the type in
Fig. 5(d). c„and 8„are determined as follows. We
reverse the path of one of the propagators in Fig. 5(d).
The propagation phase shift 8 is given by the area of
the diagram times h. Areas encircled clockwisc or anti-
clockwise are treated as positive or negative, respec-
tively. c is given by the product of the scattering
amplitudes on the outgoing path and of the complex
conjugates of the scattering amplitudes on the return
patll. Equation (36) 1s tllc11 thc gclM1Rllzatlon of (6).

We can also use this approach for the expression (34)
rather than (32). We obtain an equation like (36) but
this time L(A o) is replaced by d (A o) and the expressions

[L(A;)+R;h(A~)g by h(A;). Such an equation should
represent the conservation of particles. %hen an
approximate expression for the CBective path is derived

by summing only a subset of RH possible diagrams, it is
important to check that the conservation rule is obeyed.
This is actually quite easy to arrange, as will be seen
in the examples of the next section.

Presumably this theory will fail to give answers con-
verging to anything sensible in the limit as the number
of diagrams summed is increased without limit, since
we are calulating the conductivity of what is in effect
a perfect lattice. So it is pertinent to inquire whether
the theory can be used at all. Pippard has argued that
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These amplitudes can be calculated by the method of
Falicov, Pippard and Sicvert. ' If the "intrinsic" scat-
tering amplitudes at a junction are v for transmission
and p for reflection, then they must satisfy r*r+p*p = I,
r*p+p~r=0.

~
r ~' is given by exp( —H~/B), where H

is the applied Geld and H~ the breakdown Geld. This
leaves one free parameter, the phase of r (or p). The
phase shift for propagation around the triangle will be
called T. To satisfy the unitarity condition (37b) we

may introduce this phase as "extrinsic" phase of -,'T
for reflections inside the triangle (and a corresponding
phase of —sT outside) and forget about the propagation
phases. Then if we deGne py ——p8'T~'y p2

——pe
—' "p the

scattering amplitudes are given by

FIG. 6. Diagrams with up to on,e lens orbit.

in very pure specimens the principal relaxing mechan-
ism is not impurity scattering but phase incoherence in
the Bragg rcQections which is produced by dislocations. '
This will presumably affect most the diagrams enclosing
large areas and containing many points of Bragg re-
Qcction. Thus a judicious selection of only the smaller
diagrams for summation should give results that will
relate to experimental data. This is evidently only an
approximate method of taking the phase incoherence
into account, but the answers should be adequate
because of the great difhculty of obtaining accurate
experimental results.

Rnd thc conditions fol unitarity Rle

p*p+q*q+r*r =1,
p~q+q*r+r~p= 0.

(37a)

(37b)

S. SOME CALCULATIONS

A. Lens-Orbit Oscillation in First Order

The diagrammatic method will be illustrated by a
calculation of the oscillations in the conductivity caused
by the lens orbits. Only diagrams with one lens orbit
will be included for simplicity, and presumably this
approximation will be adequate since it is probably
rather difBcult to observe the harmonics. It will also be
assumed for simplicity that the triangles are very small.

The amplitudes for scattering of a wave coming in
from Ao by the triangle centered on E in Fig. 1 will be
taken as p, q, r in the directions of A~, A2, and Aq,
respectively. By the threefold symmetry the scattering
matrix is

p q r I

p
q r p~

RIld ls independent of thc posltlon on thc netwol k.
There are nine diagrams altogether for the CGective

path L(AO), as shown in Fig. 6. We then obtain an
equation like (6), but this time R,, R,, and Ra are
multiplied by a coeScient 6, and c&, c&, and c3 are given

by
c,=p~p+2 ReLc'c(p*q'r+ p*pr') 7,
cp ——q*q+2 Re[c'~(q*p'r+q*qr')7,

cg r*r+2 Re[c'~——(2r*pqr) 7.
(40)

Since 6 is the same at all points, wc may in this case
leave it out until the end, when it is used as a factor in
thc answer. II1 this way thc dc HRRs —Shubnlkov oscll-
lations duc to the density of states are introduced. The
method of calculation of the conductivity is just the
same as that given by Falicov, Pippard, and Sievert. "

The self-consistent method involves an inversion
and so it is apparent that terms proportional to cosl.
and sinL will appear in the denominator of the ex-
pression for the conductivity. Therefore the conduc-
tivity should be expanded as a power series in such terms
and only the Grst-order terms shouM be kept. Other-
wise we are in effect doing a partial sum of (untermi-
nated) diagrams with two or more lens orbits. It would
of course be best if a complete sum over all possible
orders could be carried out.

It can readiLy be shown that the above choice of

diagrams obeys the conservation rule. In (6) we replace
Lo and (R;+L;) by h(A0) and A(A;). Since 5 is the
same everywhere, this simply means that the coefI1-
cients c, must satisfy (5). It is evident from (40) that
since e'~ is of arbitrary phase the coeKcients of this

After this stage the size of the triangles will be neg-
lected, and they will be treated as three-way scattering
junctions.

The phase for propagation around the lens orbits
will be called I.. Then to erst order the factor for the
energy density of states h(r) is given by

6= 1+2 Re(r'e*'~) (39)
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quantity must add up to zero. The terms independent
of e'~ must add up to 1.These results follow from (37).

It seems that in most cases conservation can be
arranged almost automatically as follows. In any final
coalescence all three possible ways that the paths can
go to the terminating junctions must be summed (Fig.
7). The contribution to the propagators from these
parts of the diagrams are, respectively, pq*, »p*, and
q»* (if the propagator coming in from the left is taken
as the outward propagator). It is then evident from
(37b) that the sum of the appropriate terms in the
conservation equation must be zero.

B. "Zone" Oscillations

As another example we shall discuss some diagrams
where the area is that of the primitive cell in the net-
work. Periodicities corresponding to such an area (the
area of the Brillouin zone in k space) are not found in
the de Haas —van Alphen effect, because there are no
closed orbits following the arrows of the network with
this area. Hence we shall set 6= 1, because there is no
de Haas —Shubnikov effect with such a period. The area
is given by (C—3L), where C is the area of the circle,
and I the area of a lens.

There are nine diagrams with the lowest possible
number of passages through junctions (eight). Three
of these are shown in Figs. 8(a), 8(b), and. 8(c), and the
others are constructed as indicated in Fig. 7. Thus the
conservation rule is obeyed. A diagram with ten junc-
tions is shown in Fig. 8(d), but we shall not consider
these higher order diagrams any further. Besides those
nine diagrams we also shall use the diagrams of Figs.
6(a), 6(d), and 6(g). The terminal points are marked
in Fig. 8(e). The following equation is obtained for the
effective path Lo from 0 (which is the same as A, in
Fig. 1):

Lo=P*PLR +L(A )]+At R +L(A )3
+»*»LR +L(A,))+g„=',,(X +L )g,

where R~, R2, and R3 are the positions of A ~, A2, and
A3, the X„are as shown in Fig. 8(e), and the coefEcients
g„are given by g„=2 Re(e"a ), where 8 is the propa-
gation phase around the orbit, and the a„are given by

o =Vp (Vp )0 P ~ =P (»'I )I » o ="P (P» )P
~2='Ip'(»0*) I P", «=P'(P»*) I*'»*, «=»P'(Up*)e',
«= op'(P»") I 2P*, ~9 =P'(Vp*) V*'»*, ~i =»P'(»F)P

The L„are the effective paths from X„and the rota-

FIG. 7. Three ways of terminating a diagram.

(c)

x( g, x)~+I'+l
x,

(~)

Fio. 8. (a)-(d) Diagrams for the zone oscillations.
(e) Positions of the terminating points.

tional symmetry relates them to Lo as follows:

L1) L4) L5= LO j Lp) L6) L8 (a)LO j L3) L7) Lg=oPLO)

6. SOME RESULTS

Some numerical computations were carried out, but
they will not be discussed at great length since with the
limited number of diagrams used the results are not
likely to be very accurate. However, they should be an
adequate guide.

The lens oscillations are discussed first. The most
important parameter is the ratio of the applied field H
to the breakdown field B~. At low values of this ratio
the lens oscillations certainly show up but not in any
especially interesting manner. The magnitude was com-
parable with that which would be obtained by using
only the de Haas —Shubnikov theory, that is, by ascrib-
ing the oscillations to the oscillations in the density of
states A. At high fields (II&SHE) the lens oscillations
become rather strong. They dominate the triangle
oscillations and have an amplitude roughly equal to
the average conductivity. For H &8III the diagonal
conductivity becomes slightly but definitely negative
at the bottom of some cycles. This disconcerting result
will be considered in a moment.

We may make an estimate of the ratio of the ampli-
tude of the lens oscillations to that of the triangle
oscillations for magnesium as follows. We shall choose

where ~ is the operator that rotates a vector anticlock-
wise by 120'. In this way a self-consistent equation for
Lo is obtained.
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FzG. 9. Diagrams for the lens and triangle oscillations in the
high-6eld region.

is then about 0.6 for the lens orbit and very nearly 1.0
for the triangle. The integration over k, gives an extra
factor proportional to (822/Bk, 2) & where 2 is the area
of the appropriate orbit in k-space. The ratio of these
factors for the two orbits is given by the inverse square
root of the ratio of the effective masses; that is, 0.5.
Thus the ratio of the amplitude of the lens oscillations
to that of the triangle oscillations is 1.7X0.6X0.5
which is just over 0.5. (If the de Haas —Shubniimv
theory alone is used for the lenses the ratio is about
0.25.) This is a very rough figure, particularly since the
breakdown field is not well known. As the breakdown
field is increased the ratio falls.

We now look at the theory for the conductivity at
high fields to see why it may give negative results. In
terms of the coefficients ci, c2, and c2 in (6) the con-
ductivity (appropriately scaled) can be written thus:

with

oH= P ,'iir+22X—(—1+(o2E)'jA,

X= (1—co)c2+ (1—aP)c2.

(41)

Here a complex number scheme has been used, with 0.

set equal to (o&i+ioi). In this expression o„ is the
ordinary conductivity and 0& is the Hall conductivity.
The quantity co is equal to e 2 ~2 and the sum rule (5)
has been used to eliminate ci. The scale factor is such
that in the limit of complete breakdown a.III is equal
to ——,'m. The condition that 0&t be non-negative requires

C2+C2~& C2 +C2 +C2C2. (43)

II=35 kG and the temperature as 1.2'K. We shall take
the cyclotron mass m* for the lens orbit as 0.4 simply
because the perimeter is 0.4 times the free-electron
circle; this value is obtained if the perimeter of the
free-electron triangle is 0.1 times the perimeter of the
circle. ' We shall take the breakdown Geld at 7 kG. Then
numerical calculations give the ratio as about 1.7 in
the two-dimensional model. At 1.2'K the thermal
damping factor' Lfrom the integration in (10)],|=X/SinhX, With X= 22r2(r)2*/2)2) kT/(ehH/2riC),

In the high-field region (H/Hi))'"»1, the reflection
amplitude p is of order (He/H)" and

~
r

~

is unity plus
a term of order p'. The Hall term o.&H is dominated by
the quantity ——,'x and the corrections will not be treated
further. The leading term in r&IH is of order II ' or p'.
For simplicity we shall only consider the terms of order
p' and p'. Then it can be seen quite simply that we may
take the magnitude of 7 as unity. As a further simpli6-
cation we shall set v = 1 and then by unitarity p is pure
imaginary. To this order the condition (43) is c2+c2&&0.

Instead of the diagrams of Fig. 6, we shall use a set
of diagrams (Fig. 9) containing up to three reflections.
Moreover the triangles will be considered explicitly. Of
the diagrams in Fig. 9, only (a) contributes to c2 and
the others contribute to c2. The contributions are

(a), (b):
(c):
(d):

(e), (f):
(g):

p p)
2 Re(p*pe' )
2 Re(p*p2e'r)

2 Re(p*p'e'~' ))

(p&p2ei (2L-r ))

There are four more diagrams with three reQections.
Two of them (h, i) are the same as Fig. 6 (h, i). The
third (j) has one path going to A2 (Fig. 1) as in Fig.
9(a), and the other path goes around one lens through
A i and then around another lens through A 2 and termi-
nates at A 3. These diagrams contribute to c3. The fourth
(k) has one path going around a triangle as in Fig. 9(d)
and the other path going around the lens through Ai
as in Fig. 9(c). This diagram contributes to c2. The
contributions are

(h) (i): 2 Re(p*p'e'&~ ))

(j) 2 Re(p& p2
ie(2L r))

(lr): 2 Re(p*2pe'i~r))

We observe that the lens oscillations come in in second
order while the triangular oscillations come in in third
order. It is immediately obvious that c2+c2=0 in
second order for e'~= —1. Thus at high fields the lens
orbits sweep the conductivity from zero up to twice the
average value.

The triangular orbits enter in third order, by (d).
We note that when e'~= —1 this contribution can
violate the rule c2+c2~&0. To prevent this happening
it is necessary to include the remaining diagrams. Then
for e'~= —1 the third-order contributions vanish as
well since p is pure imaginary. But we observe that it
is necessary to employ diagrams with two and three
lenses to prevent the violation. In consequence the
conductivity as calculated by the diagrams of Sec. 5
may come out negative at the bottom of some of the
oscillations, since they include diagrams with only one
lens. A similar analytic check on the fourth-order
diagrams (with four reflections) would be very cumber-
some, but the author verijj. ed numerically that summing
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a set of diagrams including all the fourth-order ones
gave oscillations which went only slightly negative and
it was a marked improvement on a summation including
all the third-order diagrams but not all the fourth-order

diagrams. This suggests that the violations of (43) may
just be a consequence of a limited summation. A similar
situation occurs in evaluating the density of states by
summing the diagrams for 6, where a limited sum can
give negative answers. L'For instance, this can happen
in (39) if

~
r

~

') -' ]
Computations were also carried out for the "zone"

oscillations using the diagrams of Sec. 5. It was found
that the oscillations were of the same order as the
average conductivity for II=3II&, but negative con-
ductivities were not obtained in this case. The mag-
nitude was strongly modulated by the triangle oscil-
lation. The magnitude fell for H going away from 3H&.
Not too much weight should be attached to these
results because of the neglect of other diagrams with
the same area. [Thus in the high-field limit the dia-

grams chosen give a contribution of order p' (or Il—'),
but the diagram in Fig. 8(d), which has not been in-

cluded, is of order p3.j However, it seems that the
oscillations should be experimentally observable. They
are unique in that they are not susceptible to "thermal
washout" and are not severely reduced by the integra-
tion over k, since the area is determined by the lattice
parameters only, and is independent of k, and the
energy. Thus provided a very good sample can be made
so that phase coherence can be maintained, the oscil-
lations should be extraordinarily strong.
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Linear Magnetoresistance in the Quantum Limit in Graphite

J. W. MCCLURE* AND W. J. SPRYt

Union Carbide Corporation, Carbon Products Division, Cleveland, Ohio

(Received 21 August 1967)

Measurements of the galvanomagnetic properties of single-crystal graphite were made at 4.2'K in pulsed
magnetic fields up to 160 kG. With the magnetic Geld parallel to the c axis, the transverse magnetoresistance
is approximately proportional to the magnetic field strength, and the Hall coefBcient is constant above about
80 kG. The results imply that both the diagonal and oG-diagonal elements of the magnetoconductivity
tensor are inversely proportional to the magnetic field strength. The results are explained theoretically using
the following facts: (1) both electrons and holes occupy their lowest Landau levels for fields stronger than
about 60 kG, (2) degenerate statistics apply throughout the field range, and (3) the scattering is by ionized
impurities whose range depends upon the magnetic field strength. The effect provides a simple way to deter-
mine the concentration of scattering centers in graphite. lt is also definitely established that the concentra-
tion of excess carriers must be determined from the oB-diagonal magnetoconductivity; use of the high-Geld
Hall coeKcient alone leads to large errors.

r. rNTRODUCTION

"PREVIOUS investigations' 4 of the galvanomagnetic
properties of graphite single crystals have been for

magnetic fields not exceeding 25 kG, though investiga-
tions of the de Haas —van Alphen oscillations in the
magnetic susceptibility' ' have extended up to 85 kG.
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These investigations have provided a great deal of in-

formation about the properties of the current carriers
and the energy band structure. The present work ex-
tends the measurements of galvanomagnetic properties
up to 6eld strengths of 160 kG. The measurements of
the transverse magnetoresistance and Hall coefficient of
a graphite single crystal with the magnetic 6eld parallel
to the c axis were carried out at 4.2 K.

Above 60 kG, graphite is in the quantum limit regime,
the term being coined by Adams and Holstein' to in-
dicate that all carriers in each group occupy the lowest
Landau level for the group. In this region, we have
found that the magnetoresistance varies linearly with

7 E. N. Adams and T. D. Holstein, J. Phys. Chem. Solids 10,
254 (1959).


