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New Method for Computing the Weak-Field Hall Coefficient
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The factor r in the expression Re =r/rte for the weak-treid Hall coetircient is computed for a wide variety
of metallic band models. The technique employs a planar-faced approximation to the true Fermi surface,
and this greatly simpHGes the mathematics. Strongly distorted Fermi surfaces, multivalley models, aniso-
tropic scattering, and band;611ing effects are studied, and the results are used to develop a general theory of
the behavior of the factor r. The effects of shape and scattering anisotropies, the question of their equivalence,
and the reason why a Hall coeKcient changes sign are discussed. Finally, the results are applied to the model
of Cooper and Raimes, to lead-pipe models, and to experimental Hall data on the noble metals.

1. INTRODUCTION

'HIS paper describes a new way to compute the
ordinary weak-Geld Hall coeflicient which can be

applied to abnost any kind of band model. ' The essence
of the method. is to approximate an actual constant-
energy surface of the band structure by a planar-faced
energy surface (PI'ES). The main advantage of the
approach is its simplicity, which persists for the variety
of models studied in this paper.

The weak-Geld Hall coefhcient Ro may be written in
the form

Eo——r/Ne,

where e is the number of carriers per unit volume, e is
the carrier charge, and r is a dhmerIsiorlless factor which
depends on the details of the model. ' For reasons to be
explained shortly, we call r the euxAsg factor.

All results in this paper will be expressed in terms of
r. The charge e in Eq. (i.) always means the negative
electronic charge, but we will never explicitly use this
fact. Ke need only note that a positive r is the normal
case for which the signs of R0 and e are the same, and a
negative r is the anomalous case which is conventionally
described as p-type behavior.

It will sometimes be convenient to redeGne r by
substituting tts for I in Eq. (1), where tts is the density
of missing carriers, i.e., holes. This a6ects the magni-
tude, but not the sign, of r.

2. WHAT DETERMINES THE VALUE OF rT

The Hall angle 0 for an individual carrier is deGned. by
tang= pH, where p, is the drift mobility and II is the
magnetic field intensity. We have tt =or/rtt*, where r is
the scattering time and m* is the CRective mass. Hence
the Hall angle always depends on these two fundamental
carrier properties.

If all contributing carriers in a given Inodel have the
same Hall angle, r=1; otherwise, different Hall angles
mix, and r~ 1, except when opposing eRects accidentally
cancel.

' Some examples have already been described: R. S. Allgaier,
Bull. Am. Phys. Soc. 12, 398 (1967};Phys. Rev. 158, 699 (1967}.' Hall coefficient behavior in numerous models is discussed in
A. C. Beer, Gatoartotttagttetic sects ett Seratcortdtcctors iAcademic
Press Inc., New York, 1963}.

The CRective mass and scattering time may depend on
carrier energy; for a given energy, they may depend on
direction (i.e., on the carrier s position in momentum
space); and even at a given point in momentum space
there may be two or more carriers with different proper-
ties (a multiband model in the reduced Brillouin zone
representation).

In this paper, we will concentrate on single-band,
metallic models. In realistic examples of such models,
the main source of Hall-angle mixing will almost always
be the variation of v and m* over the Fermi surface.

The variation in the response of digerelf carriers to
the same force determines r in any particular case. This
is one kind of anisotropy. A second. kind is the aniso-
tropic response of a given carrier to forces in different
directions. For noncubic models, this may lead to a
value of r which depends on the direction of applied
folCC.

The factor r is sometimes called an anisotropy factor
in cases of metallic models. This can be confusing, be-
cause of the two distinct types of anisotropy just
mentioned. It can also be misleading, since mixing can
occur without anisotropy (e.g. , r/1 for a simple
metallic model with two spherical, parabolic bands)
while an anisotropic Fermi surface does not always
produce mixing (r=i for a single, ellipsoidal energy
surface). '

For these reasons it seems preferable to treat r as a
mixing factor. It is always the mixing of diRerent Hall
angles which makes r/ i.

3. PROBLEM OF THE WEAK-FIELD
HALL COEFFICIENT

Thc Gist, ploblcn1 which arose ln collncctlo11 with the
Hall coeKcient was the occurrence of both negative and
positive Hall coeKcients in various common metals.
Nearly SO years passed before the quantum-mechanical
band, theory of sohds Gnally provided the solution to
this problem. The same theory, however, made it

3 N. F. Mott and H. Jones, The Theory of the Properties of M etals
and Alloys (Clarendon Press, Oxford, England, 1936},p. 283.

4Karly measurements are summarized in L. L. Campbell,
Galeanomagnetic and Thermomagnetic Egects: The Hall and Allied
Phenomena (Longmans, Green and Company, Inc. , New York,
1923},pp. 120—124.
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possible to predict complicated band models undreamed
of in earlier days.

All of the simple calculations of r which have been
carried out to date have been based on spherical or
ellipsoidal energy surfaces. Even small deviations from
these nonmixing shapes lead to enormous complications.
For example, Cooper and Raimes' considered a metallic
model with slight anisotropies in the Fermi surface and
scattering time. They found that these modifications
introduced about 100 terms into each of two integrals
that had to be evaluated.

Another long computation' was based on Cohen's
nonellipsoidal, nonparabolic model. ' It is one of very
few examples of a strongly distorted Fermi surface for
which the integration over the Fermi surface may be
carried out exactly. The result was very complicated.

The present-day problem of the Hall coeQicient,
therefore, is to compute reasonably accurate values of r
for the many kinds of band models now known to occur
in metals. The factor r has become a rather nebulous

quantity in today's world of monstrous Fermi surfaces,
and the ordinary weak-field Hall coefficient does not
enjoy a very high reputation as a useful solid-state
parameter.

4. GENERAL DESCRIPTION OF
THE PFES METHOD

A. Why a PFES?

It might seem at first that substituting a PFES for the
actual curved Fermi surface is a large step in the wrong
direction, since the conventional Jones-Zener weak-Geld

solution to the Boltzmann equation' breaks down for a
PFES. This occurs because carriers drifting across an
edge of a PFES undergo a large change in direction, and
this connects with the assumption of weak magnetic
fields.

The kinetic method of Shockley, ' McClure, " and
Chambers" can be applied to a PFES, but it is rather
long and mathematical. So far as we know, this al-
ternative method has been used to compute r for just
two PFES models, a cube" and an octahedron, " as-

suming degenerate statistics and an isotropic scattering
time. The results, surprisingly enough, were simply
r=-,' and —,

' for the cube and octahedron, respectively.
We showed recently that these same two results could

be obtained using a very short and elementary geo-

metrical approach to the problem. ' It turns out that the
same approach may easily be extended to a much larger
class of models, without losing its simplicity.

Substituting a PFES for the actual Fermi surface
imposes only a slight limitation on the utility of the
method. We will present examples which suggest that
rather crude PFES approximations can lead to values of
r within 10%, and sometimes within 5%, of the correct
result. Furthermore, we will demonstrate several ad-
vantages which are specifically associated with the
PFES approach.

B. Outline of the Method

The procedure described below applies to all of the
models investigated in this paper. The electric and
Inagnetic Gelds, E and H, are oriented in the positive x
and s directions, respectively. The sample is assumed to
have no transverse boundaries so that the electric field
may be held fixed in magnitude and direction. The
applied fields and resulting components of the current
density i are shown in Fig. 1. Under these conditions,
the weak-held Hall coeScient is given by'

Ro EII/i~ =——E( i„)/i,'H .— (2)

This formula is appropriate for all of the cases con-
sidered in this paper, viz. , models with cubic symmetry,
or models in which the x and y directions are equivalent
(i.e., models with isotropic conductivity in the x-y
plane).

The formula is also correct for cases in which the
conductivity in the x-y plane is not isotropic, but Eo is
also anisotropic, and the value given by Eq. (2) will
differ from that obtained when the current, rather than
the electric Geld, is parallel to the x axis.

The figures in this paper which illustrate the response
of the carriers to the applied forces actually correspond
to the behavior of positive charges. We Gnd it less
confusing to consider the response of positive charge to
applied fields. This does not aGect the results, which are
expressed in terms of r, since r never contains the
charge e.

' J.R. A. Cooper and S. Raimes, Phil. Mag. 4, 145 (1959).' R. S. Allgaier, Phys. Rev. 152, 808 (1966).
7 M. H. Cohen, Phys. Rev. 121, 387 (1961).

H. Jones and C. Zener, Proc. Roy. Soc. (London) A145, 268
(1934).

9 W. Shockley, Phys. Rev. 79, 191 (1950)."J.W. McClure, Phys. Rev. 101, 1642 (1956).
"R.6. Chambers, Proc. Roy. Soc. (London) A238, 344 (1957).
~2 C. Goldberg, E. Adams, and R. Davis, Phys. Rev. 105, 865

(1957)."H. Miyazawa, in Proceedings of the International Conference on
the Physics of Semiconductors, Exeter (The Institute of Physics and
the Physical Society, London, 1962), p. 636.
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FlG. 1. Configuration of fields
(E,H) and currents (i,i„) used to
compute the Hall coeScient. 8 is
the Hall angle.
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FIG. 2. A cubic Fermi surface in momentum space. The dis-
placed distribution (height=hP ) which produces i~ is shown by
dashed lines. The edge-crossing part (width=A, p„) of the displaced
distribution is separated from the rest by dotted lines. Carrier-
drift arrows identify the edges across which carriers Qow to
produce i„.

We illustrate the procedure by reviewing the case of
a cube. The result for the cube was derived earlier, ' but
the present version eliminates some unnecessary steps.

Figure 2 shows a cubic Fermi surface of edge length
2p, centered on the origin of momentum space. The
electric field displaces the occupied region of momentum
space along the p, axis, as indicated by the dashed lines
in the figure. The magnitude of the shift, for this and all
other cases to follow, is Ap, =eEr. The longitudinal
current produced by the displaced carriers is the product
of (a) the carrier density in the newly occupied and
newly vacated states, (b) the charge e, and (c) the
velocity ~, on the top face of the Fermi surface. The
result is

i,= (2/h') (Sp'eEr) (es,) . (3)

The I orentz force causes part of the displaced distri-
bution (separated from the rest by dotted lines in
Fig. 2) to drift across the upper right edge of the Fermi
surface and this produces a transverse current. There is
an equal contribution from carriers no longer drifting
across the lower left edge. The width of the edge-
crossing volume of carriers is Ap„=eo~r, and the
transverse current is therefore

i „=(2/h') (4peEr) (ever) (ew„) . (4)

Equations (3) and (4) are written in what might be
called a (An)eo notation. The result becomes simpler if
we change to a nc(hw) form. To do this we use the
relation

n= (2/h') (2p)' (5)

between the total carrier concentration and the occupied
volume of momentum space. Combining Eqs. (1)
through (5) and using the symmetry-imposed condition
v, =~„ leads immediately to

1r=2 ~

We did not have to know the magnitude of the
carrier velocity on the Fermi surface, nor specify the

relation between carrier velocity and energy (i.e., the
dispersion relation), to obtain this result. We did
assume implicitly that "nearby" energy surfaces (within
a few hT of the Fermi energy) also had planar faces
which were parallel to the corresponding faces of the
Fermi surface. This makes the velocity constant over
any given face.

The method outlined above neglects the change in the
longitudinal current which occurs when the magnetic
field is turned on. The fractional change ini is of order
(pH) . This is a higher-order correction, negligible for
E.o but it prevents the results from being used to com-
pute the weak-Geld magnetoresistance.

In Appendix A, we show that the computation of the
above result may be extended, without complication, to
the case of classical statistics.

C. Procedure for Oblique Faces and Edges

In the more general case, the PFKS will involve
obliquely oriented faces and edges, such as those shown
in Fig. 3. The contribution to i, from a given face is
determined from the x component of the velocity on
that face, and from the volume swept out by the face as
it is displaced in the p, direction. That volume is simply
eEr times the projected area A' of the face on a p„-p,
plane. This projected area is usually easier to determine
than the area of the oblique face itself.

Similarly, the contribution to i„ from the volume of
carriers crossing a particular edge is computed from
three projected lengths: the P, projection of the edge
length, the p, displacement eEr, and the p„component
of the displacement along the face due to the Lorentz
force. This force generally involves both e and e„, but
only s, appears in the P„projection. Also needed is the
change in e„ in going from the initial to the 6nal face (in
the case of the cube, the initial value of o„was zero).

Hence for the general case shown in Fig. 3, the
contribution to i„from the carriers passing from face 1

ly

I

I

I

I

I

'azI I

I

A2

FH'. 3. Two adjacent, oblique faces of a PFES, intersecting in an
oblique edge, and the projections needed in the computation.
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to face 2 across ed ege p pb (and from the two
re ated to them by inversion) is

2)= (2/&')(p .—p-)(2 & )
)& (eerier) (e) (e2„—e,„).

D. Constant-Shaye Apyroxim ti

In the case of the cube, the plane-parallel (e= con
condition automatically means that ths a e over-all sh

e constant-energy surface does not h
ener .This fgy. is ollows because all faces are e

'
1

s no c Rngc w

symmetry.

RI'c cqulvR cnt by

When the PFE~ 'ES is composed of two or more kinds of

lm Qscd
nonequivalent faces, the plane-parallel c d'e con itionmaybe

posed, but the overall shape of th PFES yo e may still
Rngc w1th cncI'gy. TQ slDl llf thc

ways ma e a constant-shape approximation. Again, it
need only apply within a few kT of the Fermi level.

This approximation means that the sepa t'
fRcc of thc Fermi

separation of each

a nearb su
e ermi surface from the correspond' f

y suI'fRcc will bc pI'opoltlonRl to thc di
ing RCC Q

that face fr
o e istance of

rom the origin of momentum space. As a

S. RESULTS AND THEIR DISCUSSION

A. PFES Approximations to a Syhere

Figure 4 presents a series of PFES a
a sphere. Th t

Rpp1 OxlmatlonS to
e s arting point, shown in part (a) of the

gure, is indeed a crude
whic

e approximation —a cub"
w ich, as we already know gives r=-'

InFig. 4 b weg. t' ~ e &ave cut off the corners of the cube b
co~~~ct~ng the midp ts f d'

g sc n s o a ~acent edges thus
creatmg a PFES with ei ht {111 fcrea

'
ig aces and six {100}

g q s

faces result, the velocities onies on nonequivalent faces of the
ermi surface will be inversel rrse y proportional to the

orrespon ing istances. Since r is

q
'

y, "is relation among velocitie
'

ffi
'

eliminate all ve
i ies is su cient to

We note t
e a ve ocities from any given result fsu QI' t'.

e note that specifying a constant shape does not

st) that thee constant-shape approximation is ver
1 11 1 h

r,

i&P

f c) r = 816/961 = 0. 849

(c}
FIG. 4. A series of PFKS aP-

pro ximations to a spherical
Fermi surface. The edges con-
tributing to the transverse cur-

the li
rent are marked by arro ifroYvs

ey he on the upper front
quarter of each surface}.

Py
=

I

t

i

Pz {b) r =20/27=0. 74l

(b}

fd) r = 9/10 {for s=l/2j

(1)
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faces. The result is

r =20/27=0. 741. (8)

Cutting oB the corners has taken us approximately half
way from the cubic value 2 to the spherical value of
unity.

In Fig. 4(c), we again connect midpoints of adjacent
edges, thus creating twelve {110)faces, in addition to
the 14 faces already present. We now find

(a) r-21/25 0.84

r =816/961=0.849 ~ (9)

Again, we have gone nearly halfway from the previous
value toward unity.

Carrying this edge-bisecting procedure a step further
becomes rather tedious; instead, we examine the PFES

'P
x 2p t/ii/ /

Py— 2p,
(b) r-4307 870/4481 689-0.961

FIG. 6. Cross sections for two cylindrical models. Part (b) shows
one quadrant of a 16-sided cross section.

FIG. S. A(100) multi-
valley model.

(a)

'px

Pz (b)

Py-

3. Multiva11ey Models

Figure 5 presents another group of models which use
the cube as a point of departure. In parts (a), (b), and
(c) of the figure, the cube edges parallel to the p„p„,
and p, axeshavein turnbeenlengthened relative to the
other two sets of edges. The longer and shorter edges are
now labelled pt and p, . We let K=pt2/pp; this reduces
to the usual definition E=mt/m~ when the bands
become parabolic.

According to thediscussion following Eq. (2), wernay
use that equation to compute r only for the elongated
surface in Fig. 5(c).The result is

12'

pY (c) r. 1I2

r=(1+s)(s'—s'+2s+1)/2(1+s')' (10)

When s=0, the PFES becomes a cube and r=2, as it
should. For s=~~, r=9/10, its maximum value. This is
rather close to unity for such a simple model. When
s=1, the cube edges disappear, the PFES acquires the
dodecahedral shape of the bcc Srillouin zone, and r= &4.

With further extension of the pyramids, r falls very
slightly below -'„and then approaches —,

' as s —+~.

shown in Fig. 4(d). It has only one kind of face. The
occupied volume consists of a central cube (of edge
length 2p) oneach faceof whicha square-basedpyramid
ofheightsp has been erected. The figure corresponds to
a case for which s&1.When s&1, the edges of the cube
become concave (i.e., p type) ~ The result for this model
1s

r =84/100 ~ (13)

The results for the two octagonal cross sections differ

~ J. M. Ziman, Phil. Mag. 3, 1117 (1958).

as for the cube. This is not surprising, since the longi-
tudinal and transverse currents involve only v&. The
longitudinal dimension pt cancels. The result remains
r=-', when the surface is made endless by letting E~00,
or by allowing it to intercept opposite faces of a Brillouin
zone. Ziman'4 has shown that the corresponding case of
a cylinder with a circular cross section gives r=1.

We have investigated some intermediate cases as a
further assessment of the potential accuracy of the
PFES approach. For a cylinder with a regular octagonal
cross section,

r=(V2'+1)/2&2=0. 854. (12)

For the octagonal cross section shown in Fig. 6(a),
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only slightly, but the latter case was easier to derive
because the vertices were located at simpler positions.

Figure 6(b) shows one quarter of a 16-sided ap-
proximation to a circular cross section. This case gives

r= 4, 30'?, 870/4, 481, 689=0.961. (14)

The large numbers are not due to mathematical com-
plexities, but are merely the result of finding the least
common denominator of a sum of fractions.

This PFES approximation has come within 4% of the
result for the circular cylinder. Actually, the latter case
itself may be treated by a simple extension of the
present method. This is shown in Appendix B.

We return to the main purpose of this section, and
arrange the surfaces of Fig. 5 in a cubically symmetric,
(100) multivalley model. The current components from
the combination of surfaces lead to

r = st 3K(K+2)/(2K+1)'g, (l 5)

py =

py
=--

ii p

{a) r=3/8

"'x

FIG. 7. A model to illustrate
band-filling eBects. The Fermi
surface (arm thickness =2p ) is
placed in a simple cubic Bril-
louin zone (edge length 2pq).
Parts (a) and (b) correspond to
nearly-empty and to nearly-
filled bands, respectively.

which differs from the result for a (100), ellipsoid-of-
revolution multivalley model only by the presence of the
factor ~~.

In Eq. (15), f(K) ~ 4 as K ~~ . This result may be
obtained directly from Fig. 5, keeping in mind that the
ends of the three surfaces have vanished. For orientation
(c) i, and i„rae the same as for the cube, and hence by
themselves would give r= ,'For o—r.ientation (b), the
contribution to i, is the same as for (c), but there is no
i„.There is no i, for orientation (a), and hence no i„
either. Since the new result will be expressed relative to
the total carrier concentration E=3e, and since the
combination i„/i, appears in Re, the effect is to
multiply the result for (c) alone by 3 and divide it by 4.

C. Band-Filling Effects

We consider next the model shown in Fig. 7. The
carriers lie within the volume formed by a cube sur-
rounded by six arms with square cross sections. Perti-
nent "length" and "width" dimensions, ps and p„are
identi6ed in the figure. The two situations shown in
Fig. 7 correspond to p,((ps and (ps —p )((ps. The re-
sult for this model is

r = (ps 2p.+2p'/ps) (3—ps 2p.)/—
2 (2pb —2p.+p.'/ps)'. (16)

When p,/ps ~ 0, r —+ s. This is the same limit that
occurs for the multivalley model of the previous section
as K —+~.This shows that when the arms become long
and thin, it no longer matters whether their ends are
connected or not. When p,/ps ——1, the surface becomes
a cube, and r= —,

' as it should. For some intermediate
values, r falls slightly below —,'. We have not determined
the precise value of the minimum, but it is approxi-
mately 0.31 and occurs near P,/Ps= rs.

The main purpose of this section, however, is to
investigate band-filling effects, so we place the PFES of
Fig. 7 in a simple cubic Brillouin zone of edge length

pW
I 2p

2pb

(b) r=-3/8

2ps, as suggested in part (a) of the figure. The outer
ends of the arms vanish, and the occupied region of
momentum space (in the repeated zone scheme) be-
comes a mutually orthogonal array of intersecting tubes
with square cross sections. The two parts of Fig. 7 now
correspond to a nearly empty and a nearly full band.
The result is simpler, because now there is only one kind
of face instead of two:

I I

0.

n/n)b

I I I I

' i.o

-4

Fio. 8. The behavior of r for the model of Fig. 7, plotted as a
function of carrier concentration e relative to the filled-band con-
centration eye. The dashed curve is r as computed from the
equation?to r/nse, where =Is is the hole density.

r= (p,—2p.) (3p,—2p.)/8(p, —p.)'. (17)

The behavior of r is summarized in Fig. 8, plotted as a
function of tr/tsr&, where tr y& is the carrier density for the
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completely 611ed band. As before, r -+ ssas n/nest, + 0.
For n/nlrb=-', , r=0, and r becomes negative (the Hall
coefFicient becomes p type) for all higher carrier densi-
ties. If we recompute r relative to ei, (the density of
missing carriers) the dashed curve results; it approaches
—3s as mi„—& 0. In fact, the dashed curve for n/Nr~&
and the solid curve for e/erg(-2 are exact antisym-
metrical reflections of each other. This occurs because
the multiply connected arrays of occupied and empty
states are identical for equal values of n and e&.

We believe this is the first time that a simple expres-
sion for a Hall coeAicient has been written down which
(a) is valid for all energies between the bottom and top
of a band, (b) changes from e to p type as the band 6lls,
and (c) reduces to simpler limiting forms near the
bottom and the top of the band. We mention once again
that these results were obtained without specifying the
dispersion relation.

One unrealistic feature of the above model is that
both the bottom and top of the band consist of an array
of lines, rather than a 6nite number of points. This
defect is eliminated by a model consisting of a cubi. c
Fermi surface in the dodecahedral bcc Brillouin zone, as
shown in Fig. 9. In this case, both the bottom and top
of the band collapse to a single point. The trouble with
this model is that r=2 in the bottom half of the band
and r = —~~in the top half. A discontinuous jump from
the one value to the other occurs when e/nr ~= -,', at this
point, the entire lengths of all 12 edges of the cubic
Fermi surface simultaneously contact the Brillouin
zone, and suddenly the Fermi surface becomes a cube
enclosing empty states rather than full ones. The solid
and dashed lines in Fig. 9 suggest a filled cube, and part
of an empty cube, respectively.

We consider one more band-61ling model, an octa-
hedral Fermi surface enclosed in a simple cubic Brillouin
zone of edge length 2p. Three stages in the band 61ling
are shown in Fig. 10.For m/erg(x6, the octahedron doe

"'x

Py-

a r=

„p

Py-

(b)2(l-2s)(l+3s+3s-2s)2 3

223(l+2s-2s )

"Px

Py
=

(c) r. -2/3

FIG. 10.Three stages in the filling of a simple cubic Brillouin zone
by an octahedral Fermi surface.

not touch the zone faces. The result is r =-'„as derived
earlier. ' "When e/mob lies between 6 and, -'„ the octa-
hedron is truncated by the faces of the Brillouin zone,
and gradually changes its character with rising Fermi
level. The result in this range is

r = 2(1—2s) (I+3s+3s'—2s')/3 (1+2s—2s')', (18)

Py

Pz

where 2sp is the distance between opposite corners of a
square face of the Fermi surface. The formula changes
sign at s = i~, when the band is half-611ed. For e/n~i, & 6,
r= —-„ if the result is expressed relative to eI,. In this
Anal range, the Fermi surface has again become a
simple octahedron, now enclosing empty states. The
behavior of r is summarized in Fig. 11.

FIG. 9. Another band-filling model: a cubic Fermi surface in the
bcc Brillouin zone. When the zone is more than half-filled, the
Fermi surface becomes a cube enclosing empty states, as suggested
by the dashed lines.

D. Anisotropic Scattering

To show how anisotropic scattering a6ects the PFKS
approach, we once again start with the cube as an ex-
ample. At 6rst, we assume that the scattering time has



782 R. S. ALLGA I E R

n/n&

t

1.0

w 3

-4

Fzo. 11.Behavior of r for the model of Fig. 10. The dashed line
is r relative to the hole density.

or concave) and planar faces which are "neutral. "The
condition f(1 emphasizes the edges; this makes the
surface more strongly n-type, and r increases. There are
no p-type regions, so r cannot change sign, and in fact r
can become zero only in the limit of infinite discrimi-

nation against the edges (f= oo ).
In the most general case, r could vary along the cube

edge, as well as between the edge and center of a face.
We would then replace r. by r„but we may still write
z.=fz „so the result retains the simple form of Eq. (19).

For a second example of 7 anisotropy, we consider

again the PFES shown in Fig. 4(c). It consists of six

(100},eight (111},and 12 (110}faces. The area of an
individual face is no more than about 5% of the total
surface area. A simple way of introducing scattering
time anisotropy into such a model is to assign a con-

a constant value r, along the edges of a face, but varies
in some fashion as we move from an edge toward the
center of the face. Then the average scattering time r
will generally differ from r,.

Parts (a) and (b) of Fig. 12 suggest how the cube
might be displaced by the applied electric field when r
increases and decreases, respectively, in going from the
edge to the center of a face. Equation (3) for i, will now

contain r instead of r, but r will be replaced by 7, in

Eq. (4) for i„, since the latter formula refers only to
carriers lying within an infinitesimal distance hp„of the
edge. If we let r= fr„Eq. (6) becomes

0.94

0.92—
»0

0.90—

0.88 —
~»0

~111 '~»0'~100

»1' ~100

100 +»1

r= 1/2P. (19) »lT'

This result may be interpreted using the notion that
every PFES consists of n- or p-type edges (i.e., convex

'Px
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I
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/
ii

pz/ ra) r& 1j2
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Z

FzG. 12. The eGect of scat-
tering anisotropy on the dis-
placement of a cubic Fermi
surface. Parts (a) and (b)
correspond to a v which in-
creases and decreases, respec-
tively, in going from the edge to
the center of a face.

Fzo. 13.The factor r for the model of Fig. 4(c) when each kind
of face has a diferent scattering time. Plotted as a function of
t=r~/~=~/r, where a, b, c identifies the inequality sequence
associated with each curve.

stant, but different, r to each of the three kinds of non-

equivalent faces. We do this and obtain

r= 35(24+36tzzoa+12tzzza)/3(12+16tzzo+3tzzz)' (20)

where tuo= o zzo/rzoo and tzzz= rzzz/bazoo The beha»o»f
Eq. (20) is plotted in Fig. 13 under the assumption that

t= 'Ta/rb= Tb/Ta) (»)
where u, b, and c identify a particular sequence of
scattering times. Making the two ratios equal is a way
of saying that there is a smooth variation of r over the
three types of faces. The curves in Fig. 13 correspond to
the three possible ways of substituting the scattering
times into Eq. (21).

Figure 13 shows that r is more sensitive to some kinds
of scattering anisotropy than to others. It also shows
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that all three kinds of anisotropy can cause t' to drop
below its value for isotropic scattering (i.e., its value due
to shape anisotropy alone), but in each case, r rises
Rgain wlicn thc scattering Rnlsotropy becomes too
strong.

6. INTERPRETING THE BEHAVIOR OF r

A. Effect of Shape Anisotroyy

For isotropic scattering, all of the PFES models con-
sidered in this paper make r&1. When a surface is
distorted, the "n-typeness" is strengthened at some
points and weakened at others. The latter CRect
outweighs the former, and r decreases.

The ultimate case of weakness is r=0, a completely
neutral surface. This limit is attained in the infinitely
oblate multivalley model of Fig. 5. In this limit, the
edges (the only place where the m-typeness asserts
itself) have receded to infinity, and their effect becomes
negligib1e. Another case of r=0 occurred for the cube
with v-anisotropy in the limit of infinite discrimination
against the edges (i.e., the edges vanish). Again, the
surface has become completely neutral.

The factor r is not less than one for all models with
a distorted Fermi surface and isotropic scattering. The
Cooper Rnd Ralmcs model predicts f'Q 1 and t'Q 1 from
shape anisotropy alone, and the calculation' based on
Cohen's nonclHpsoidal, nonparabolic modclv leads to
r& 1 for certain ranges of the shape parameters. But the
variety of shapes considered in this paper does suggest
that the usual CReet of shape anisotropy alone is to
make r(1.

The values we have obtained suggest that r will most
likely lie between ~~ and 1 for reasonably shaped Fermi
surfaces (we exclude band-filling effects from the presen. t
discussion). Many actual materials, both solid and
liquid, do have r values in this range. We d.id find r & ~~

in some cases, but these surfaces are usually very dis-
torted, and are probably the least realistic models.

Sometimes the formula

(22)

is used to compute a nominal, or effective, carrier
density. This number seems rather misleading when
x~1 is due mainly to shape anisotropy, since e~ in-
creases when R fixed carrier density takes on a less
strongly e-type configuration.

When dealing with the evolution of a surface from n
to p type, it seems more useful to regard the weak-6eld
Hall eoeAieient as the product of a charge-density factor
and a "strength" factor. The characterization of a
Fermi surface as strongly e type, weakly n type,
neutral, weakly p type, and strongly p type would then
correspond to a continuous change in the value of r
from approximately +1 to approximately —1 (as-
suming r is computed relative to the density of holes in
the p-type range). The corresponding variation of m*

does not seem as meaningful.

B.EGect of Scattering Anisotroyy

One of the earliest computations of r was Inade by
Gans."He assumed a spherical, parabolic band, classical
statistics, and a constant mean-free path, and obtained
r = 3~/8= 1.18. In his model, r& 1 solely because r was
a function of energy. The result for this kind of v mixing
may be written in the more general form

r—v2 72 (23)

where the angular brackets indicate a certain type of
average over energy. It is well known that r&1 in such
a case.

We have not located any corresponding expression for
the general case of a metallic model with a spherical
Fermi surface and anisotropic scattering. Cooper and
Raimes, ~ who used a particular kind of scattering
anisotropy, did show that r) 1 when the Fermi surface
was spherical.

This behavior seems reasonable since the effect of a
variation in w is to focus attention on less than the total
number of carriers present. Fewer carriers means R

larger Hall eodFicient, and hence r should increase.
From this point of view, the use of an eRective carrier
density n ~ seems much more appropriate for scattering-
time anisotropy than for shape anisotropy.

C. Combined Effect of Shaye and
Scattering-Time Anisotroyies

A distorted Fermi surface has some regions which are
more, and others which are less, strongly e type. If we
introduce the kind of scattering anisotropy which
emphasizes the weaker e-type regions, then the over-all
e-typeness will be weakened, and r should decrease
below the value characteristic of the shape anisotropy
alone. But if the scattering anisotropy becomes too
strong, the model begins to behave as though fewer
carriers are present, and r rises again. This is just the
result found in all three curves of Fig. 13.However, if v

anisotropy should emphasize a p-type region on an
otherwise e-type Fermi surface, r could ultimately
become zero and change sign.

It is also possible to understand the diRerences among
the three curves of Fig. 13, but first we must determine
the nature of the curved Fermi surface to which the
PFES of Fig. 4(c) is an approximation. We note that
the relative distances of the {111},{110},and {100}
faces from the origin are 1.16, 1.06, and 1.00 for this
PFES. We conclude therefore that the true surface will

be most sharply curved and most nearly Oat near the
(111) and (100) directions, respectively. We also note
that the {110}distance is closer to the {100}than to the
{111},and that the area of the {110}faces is relatively
large. Thus the curvature of the true surface near the
(110) directions will be nearly as weak as that in the
(100) directions.

"R.Gans, Ann. Physi 20, 293 (1906).
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Consequently, the most effective way of changing r
would be to make v»& the largest, and 7 F00 the smallest
scattering time, or vice versa. It would be slightly less
effective to interchange the ~'s corresponding to the two
weakest n-type regions. The least effective way of
changing r would be to emphasize one of the weaker
e-type regions while de-emphasizing the other, i.e;, to
assign an intermediate value to rqn. Because the (110)
regions are slightly more n type than the (100), the net
effect of emphasizing T'yyo and de-emphasizing v F00

should be to increase r slightly. All of these predictions
are confirmed by the curves of Fig. 13.

D. Are Mass and Scattering Anisotropies
Equivalent EBects?

The value of r for an ellipsoidal multivalley model
may be written in terms of the diagonal components of
the effective-mass tensor. Herring and Vogt" pointed
out that if both m* and v. are diagonal tensors in the
same coordinate system the only effect is to replace m;;
by nz; „/r;; in the expressions for r and other transport
coefficients. Hence any given value of r can be obtained
from mass or scattering anisotropy alone, and the two
effects are completely equivalent.

Davis' and Cooper and Raimes' discussed the "one-
way-only" equivalence of m* and 7- in their model. The
results showed that a distorted Fermi surface with
isotropic scattering can have r & 1 and r & 1, while r& 1

for anisotropic scattering on a spherical energy surface.
Thus it appeared that a suitably anisotropic shape could
reproduce the effect of any given scattering anisotropy
but not vice versa.

In contrast to these earlier results, we find that shape
distortion alone usually makes r & 1 while scattering
anisotropy makes r&1. Thus for most of the cases we
considered, the two effects do not appear to be
equivalent.

The ellipsoidal multivalley model is a very special
model. As we noted in the introduction, there is no
mixing of Hall angles on a single ellipsoidal surface.
This means that the response of all carriers in a valley to
the applied forces may be expressed in terms of a
mobility tensor. Clearly, this remains true if both m*
and 7- are diagonal tensors in the same coordinate sys-
tem, and 7. and m* must therefore be equivalent.

A still simpler case of equivalence is the isotropic
metallic two-band model. Here the response of the
carriers in each band may be described by a scalar
mobility, and a given result depends only on the
quotient r/m in each band.

The Davis-Cooper-Raimes model was restricted to
slightly anisotropic surfaces and scattering, and the
one-way equivalence is meaningful only for r= 1. In all
probability, r in their model would drop below unity
when the Fermi surface became more strongly distorted.

Because of the special nature of these earlier models,

'6 C. Herring and E. Vogt, Phys. Rev. 101, 944 (1956)."L.Davis, Phys. Rev. 56, 93 (1939).

the conclusions regarding the equivalence of v and m*
anisotropies may not be extended to other models, and
we believe that our conclusion that the two kinds of
anisotropy usually produce opposite, nonequivalent
effects is of more general validity.

E. Why Does a Hall CoefFicient Change Sign'P

The textbook explanation for a p-type Hall coefficient
is usually accompanied by a figure showing an s-shaped
energy-momentum curve. The p-type region is identified
with the negative second-derivative portion of the
curve, i.e., with a negative effective mass. By contrast,
we derived expressions for r in Sec. 5 D which changed
sign as the band was filled, and the results were inde-
pendent of the energy-momentum relation.

To clarify the distinction between these two ap-
proaches, we discuss the simple case in which the same
dispersion relation applies in all directions. The constant
energy surfaces will then be spheres. The spheres will

enclose filled states or empty states according to
whether the family of dispersion curves has a common
point at their bottom or top ends. Then r will be pre-
cisely + 1 or —1 for all Fermi levels within the band.

The shape of the one-dimensional energy-momentum
curve specifies the derivative 8'h/Bpg; the Hall coeffi-
cient, however, is determined by the curvature of the
Fermi surface, i.e., by the values of the cross derivatives
8'h/Bp;Bp;

Of course constant-energy surfaces in real bands
collapse to a point, or to a finite set of points, at the top
of the band, and their energy-momentum curves do
acquire negative second derivatives near the band
maxima. Unfortunately, the textbook explanations for
the p-type Hall coefficient behavior emphasize this
second characteristic, and this can be misleading,
since only the first characteristic is essential to the
phenomenon.

'7. SOME APPLICATIONS

The models worked out in this paper were chosen
because they illustrated the potentialities of the PFES
approach, and because they answered questions con-
cerning the general behavior of r. We would like to pre-
sent a few brief examples showing how these ideas about
r can be put to use.

A. "Lead-Pipe" Models

The free-electron model for the third zone in lead
consists of an array of interconnected tubes lying along
all the edges of the fcc Brillouin zone. ' The empty
states in the heavy-mass d-band of Pd also form a
cubically symmetric array of connected tubes. "

We suggested in Sec. 5 D that the value of r in such an
array will be nearly the same as that found in a strongly
prolate multivalley model. Consequently, r should be

'8 J. R. Anderson and A. V. Gold, Phys. Rev. 139, A1459
(1965)."J.J. Vuilleman, Phys. Rev. 144, 396 (1966).



about 4 of the cross-section factor of the tubes, and the
latter is more likely to be nearer to unity (circular) than
to -', (square cross section).

We would expect therefore that r for lead-pipe models
would often have values in the range between ~~ and 43,

so long as the tubes do not become too short and thick,
and so long as scattering anisotropy does not emphasize
the p-like connecting regions too strongly.

B. Application of the Cooper-Raimes Model
to the Noble Metals

Cooper and Raimes' Inade the Fermi surface and the
scattering time anisotropic by incorporating fourth-
order, cubically symmetric surface harmonics into the
functions describing the surface and the scattering.
Their most general result included the eRects of
alloying; for the pure metal, it became

r= (1+(4/21)L9A' —182 (C 8) (C——8)—']} ', (24)

to second order in A, 8, and C. The parameters 2 and 8
specify the shape, and C the scattering-time anisotropies
(zero values correspond to spherical energy surfaces and
isotropic scattering).

Cooper and Raimes wanted to apply their model to
silver, so they chose negative values for 3 and 8, which
corresponded to the kind of (111) bulges that were
thought then to be present in silver. This by itself re-
duces r to 0,92. A positive value for the scattering
parameter C was required to bring r down to the experi-
mental value of 0.81, and this makes the scattering time
longest in the (100), and shortest in the (111)directions,
opposite to present-day views on the scattering anisot-
ropies in the noble metals. "

We see that Cooper and Raimes needed a scattering
anisotropy which emphasized the least e-type part of
their Fermi surface, so that r would be less than the
value associated with shape alone. In a general sense,
their Fermi surface resembles the actual Fermi surface
of silver, but the bulges in the model do not have the
necks of the real surface. Hence the model surface is
most sirorlgly e type in the (111) directions, while the
partially concave necks in the real surface make those
directions the most meekly I type.

It is this interchange of the locations of the strongest
and weakest e-type regions of the Fermi surface which
causes the Cooper and Raimes model to predict the
wrong kind of scattering anisotropy.

C. Further Comment on r in the Noble Metals

The Fermi surface now known to be appropriate for
the noble metals, combined with scattering anisotropy
which emphasizes the neck regions, actually is most
useful for explaining the very low values of r (as low as
~3) which occur in concentrated alloys of the noble
metals at low temperatures. But do we have to invoke
scattering anisotropy to explain the room-temperature

20 V. Heine, Phil. Mag. 12, 55 (1965).

values of r in the pure noble metals, 2' which lie between
0.66 and 0.802 ZimaD. 's computed values of r, using his
eight-cone model with isotropic scattering, " lie be-
tween 0.49 and 0.63. Hence his model overemphasizes
thc importance of thc necks.

The cross section of the necks constitutes only a few

percent of the total area of the Fermi surface. Thermal
scattering is not expected to be strongly anisotropic in
the noble metals, 2' and therefore the partially p-type
nature of the neck regions can only have a very minor
CAect on the value of r. We believe that a more im-

portant effect of the necks is to distort the main body of
the Fermi surface in a way that makes it resemble the
dodecahedral bcc Brillouin zone. This can be seen rather
clearly from Figs. !and 8 of Burdick's band calculation
on copper. "The dodecahedron was treated in Sec. 5 A;
it is a particular case (s= 2) of Eq. (10) and I'ig. 4(d).
The result was r= 4, and hence it appears that we can
obtain semiquantitative agreement with room-temper-
ature experimental values in the pure noble metals
without taking into account the nature of the necks
themselves, and without having to introduce scattering
anisotropy.

8. CONCLUSIONS

We have described an approximate method for com-
puting thc mlxlng factor r in the weak-held Hall
coeKcient, and presented results for a wide variety of
models.

Ke discussed the procedure in detail only for the
simple case of a cube, but none of the results obtained
required a long or complicated computation. Only a few
terms had to be evaluated, no complicated functions
appeared, and no integration over the constant-energy
surface was required. These simplihcations were possible
because we used planar-faced constant-energy surfaces
with only a few kinds of nonequivalent faces.

Another advantage of the PFES approach is that
anisotropic scattering can be incorporated into any
given Inodel without introducing any complications.
New factors may appear in the result for r, but there are
no new terms to compute.

Using a PFES makes it possible to demonstrate band-
611ing eRects in a simple, direct way. This occurs because
a PFES, placed in a Brillouin zone, can "turn itself
inside out" without losing its mathematically simple
representation.

We want to make it clear that we have not developed
a new theory for solving transport problems. The
method is just a pictorial approach to the solving of the
conventional Boltzmann equation. But the approach
puts the emphasis ~here it belongs —on geometry —and
makes it practical to obtain answers for complicated
Fermi surfaces.

Having done this for a variety of models, it became
posslblc to cxplaln why f bchavcs the way lt docs. Kc

2~ J. M. Ziman, Advan. Phys. 1Q, 1 (1961}.
22 J. M. Ziman, Phys. Rcv. 121, 1320 (1961)."Q. A. Surdick, Phys. Rcv. 129, 138 (1963).
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were able to discuss how shape and scattering-time
anisotropies affect r, separately and together, and we
were able to apply these ideas to obtain a clearer
understanding of previously published results.

We have discussed in some detail how the mixing
factor r is affected by shape and scattering-time
anisotropies. If information about one of these charac-
teristics is available, the weak-6eld Hall coefFicient
might be used to deduce the nature of the other. But
efforts to do this have rarely succeeded because of the
mathematical complexities which have always ac-
companied the introduction of nonsimple Fermi surfaces.

There have been discussions about the appropriate
procedure for computing transport in alloys and in
liquids. But how can one argue about the point beyond
which conventional transport theories must be replaced
by alternative approaches, when the potentialities of
conventional theories have never been evaluated prop-
erly because of mathematical complexities?

The method described in this paper gets around this
mathematical roadblock, at least as far as the weak-field
Hall coefficient is concerned. We believe that therein lies
its greatest potential usefulness.

1Vote added in proof Professor . R. G. Chambers has
pointed out that the change in i is Smear in JI for a
PFES. Miyazawa" has also noted the "unphysical"
nature of higher-order corrections to the weak-field
Hall coeKcient.

ACKNOWLEDGMENTS

The simple method for treating the cube, upon which
the present generalization was based, was worked out at
the Cavendish Laboratory of Cambridge University.
My stay there during the 1965—66 academic year was
made possible by the hospitality of Professor Sir Nevill
Mott and by the financial support of the U. S. Naval
Ordnance Laboratory. I am indebted to T. Reglein who
checked the computations for me, and found what I
hope is the only error. I also want to express my grati-
tude to Stanley Rogers and Betty Jew for the excellent
illustrations which they prepared, and which are a very
important part of this paper.

APPENDIX A: EXTENSION TO
CLASSICAL STATISTICS

We must specify the dispersion relation, so we assume

parabolic bands: 8=pP/2m normal to each face of the
cube. Then

p 'fop. ' (p.—eE l(e)l —dp'
, Eh'J E 88m / km

The edge crossing volume at energy h is dV=dAdP,
=(2p)~p„dp„where ~p„is the same as in the metallic
case. Therefore

2 e—H7-

p.
&&

— eEr l(e) ——dp, . (A2)
aSm ) m

The relation which introduces the total carrier concen-
tration becomes

2
n= —(24p') fpdp.

0 h'
(A3)

APPENDIX B: EXTENSION TO CURVED
FERMI SURFACES

We treat the case of a right circular cylinder in
orientation (c) (i.e., with E and H perpendicular to and

parallel to the cylinder axis, respectively).
Let the cylindrical Fermi surfacehavea radius p, and

length p'. Consider the element of surface area dA

=p,d8dpt lying at an angle 8 with respect to the p,
direction. The projected area dA, =dA cos8, and e,
= v cos0. Hence

v/2

(P'P~eEr)(ee) cosP8dg.

/2 h'

For classical statistics, fp ae PI "r——We wor. k out the
familiar case 7.=bS '/'. Carrying out the integration,
using p, =p„, and substituting the results into Eq. (2)
for the Hall coefIicient gives

Rp ~p(3n/8)(1/. ne). (A4)

In other words, the factor r is simply the classical r-
mixing factor 3m/8 times the shape factor 2.

We treat thecubeasanexample. The volume element The change in o„at 0rs e cos0AO, where AO=e»r/p~

d U at the top of a cube at energy h no longer the Fermi
7 +f2 4ienergy, is composed of the area A=4p'and length dp„ —l(p,eEr)(eoHr)(eo) cos'8d8. (&2)

which is not related to Ap, =eEr. .„hP)
The contribution to i from the volume element is

(hn)eo, (8). We have The total carrier concentration is given by

Bfp BS BP,
an/(2/h') =Afdv=l — —,dv

ahap, at

Bfp 88
eEv dU.

ahap. /
(A1)

n=(2/h')( p'p') (83)

Combining the equations in the usual fashion leads to

agreeing with Ziman's calculation, "


