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In a magnetic medium in which the nuclei carry a magnetic moment, there exists a spectrum of nuclear
spin waves in addition to the usual electronic spin waves, provided the temperature is suSciently low. The
possibility is investigated of joint excitation of nuclear and electronic magnons by parallel pumping; this
process is analogous to "exchange pumping" of acoustic and exchange magnons in a ferrimagnet. First a
simple ferromagnet is considered, then the ferrimagnet manganese ferrite, and finally the cubic antiferro-
magnet RbMnF3. It is suggested that the process should be feasible, and that it should be possible thereby
to excite nuclear spin waves of arbitrary k. {In ordinary NMR only k=0 is excited. ) The threshold pump
Geld in a typical material is estimated to be of order 36 Oe in magnitude, but it can be smaller in carefully
prepared samples.

I. INTRODUCTION

T has been shown by de Gennes et al.' that, because
. . of hyperfine interaction, a simple ferromagnet in
which the magnetic ions also carry a nuclear moment
has two spin-wave branches at sufficiently low tem-
peratures. The upper branch relates essentially to the
electronic system and deviates slightly from the "usual"
electronic spin-wave spectrum. The lower branch re-
lates essentially to the nuclear system but devi. ates to
a relatively greater extent from the "usual" NMR
frequency. These branches will be referred to as elec-
tronic and nuclear spin-wave branches, respectively.

In the same paper, DPHW' also considered the
possibility of parallel pumping the nuclear spin waves,
i.e., excitation by application of an oscillating magnetic
Geld parallel to the direction of magn. etization. The
process envisaged, was the absorption of one photon
and the consequent creation of two nlclear masons.
They came to the conclusion that the condition for
instability of the nuclear system would be dificult to
satisfy. This, however, does not rule out parallel pump-
ing, for there still remains the possibility of simulta-
neous excitation of nuclear and electronic spin waves:
each photon would give rise to one elcleer and ore
electrorIic magnon. This process is analogous to "ex-
change pumping" in the two sublattice ferrimagnet
with unequal g factors. ' '

We Grst consider a simple ferromagnet and present
an elementary analysis of the k=O cs,se (Sec. II).
Then the nuclear and electronic spectra will be derived
using the method of Holstein and Primakoff, 4 and the
threshold field worked out for parallel pumping insta-
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3 F. R. Morgenthaler, J. Appl. Phys. 36, 3102 (1968}.
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bility using the method of transition probabilities
outlined by Callen. ' In the present treatment, dipole-
dipole interactions are ignored. This will mean that,
with the pumping Geld on, the total angular momentum
along the Geld is a constant of the motion. Thus if
magnons are to be excited jointly from the nuclear
and electronic branches, in such a way that their
numbers increase exponentially with time, the nuclear
and electronic spins will have to point in opposite
directions, so that any gain in angular momentum by
one mode is exactly balanced by loss in the other. %e
are therefore restricted to hyperfine interactions
Ag;I; 8; in which A is positive. In most magnetic
materials, however, A is negative.

In Sec. III, we outline a corresponding theory for
manganese ferrite. Its unit cell consists of four Fe'+
ions and two Mn'+ ions, each with electron spin S=~~,

but with all Fe'+ pointing in opposite direction6 to the
Mn'+. In addition, NMR data by Heeger and Houston~
show that the nuclear angular momentum of the Mn,
which also has I=~, is parallel to its electronic spin.
Thus A(0. However, any change in the angular
momentum of the electron and nuclear spina of the
Mn can be offset by a change in the Fe'+ electronic
angular momentum, so that angular momentum is
conserved. Of the eight spin-wave branches present
here, two are nuclear branches of which only one is
appreciably depressed by the hyperGne interaction. It
will be shown that, as far as the pumping Geld is con-
cerned, two of the branches can be ignored, while the
other six can be divided into two equal lots—not
connected by the rf Geld—with each containing a
nuclear mode. The calculation shows that joint excita-
tion of nuclear and electronic magnons within each of
these two lots is theoretically possible.

Finally in Sec. IV, we consider RbMnF3, which is a
cubic antiferromagnetic. This has low anisotropy, so
that the electronic frequencies (in the absence of a

' H. Callen, in Iiluctuation, Relaxation and Resonance in Mag-
netic Systems, edited by D. ter Haar (Oliver and Boyd I td. ,
Edinburgh, 1962) .

6 J.M. Hastings and L. M. Corliss, Phys. Rev. 104, 328 (1956).' A. J.Heeger snd T.W. Houston, Phys. Rev. 185, A661 (1964).
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6eld) are comparatively low —a condition favorable to
the pumping process. '

II. FERROMAGNET

A. Simple Derivation, R=O Modes

We consider a system with Hamiltonian

R= —QJoS,'S;

The Hamiltonian (2) gives rise to the equations of
motion

dM, /dt =y.M.X(Hr", (A—V/NA'v. v )M 7, (4a)

dM„/dt=y„M„X[HI —(A V/MPy. y )M.7, (4b)

with i a unit vector along the positive s axis.
These equations may be written in the form

M, +=wig,
y,5H—QS,' y„hH—gI;*+API,' S;, (1)

i

where the terms, in order, represent the exchange
energy between electronic spins, the electronic and the
nuclear Zeeman energies, and the electron-nucleus
hyperfine coupling. The magnetic field II is in the
direction of the positive s axis, and y, is the (intrinsi-
cally negative) electronic magnetogyric ratio. In general
the nuclear magnetogyric ratio p„and the hyperfine
coupling constant A may each be either positive or
negative; but as mentioned earlier and as explicit
calculation shows, A must be positive for parallel
pumping to be feasible. This is discussed in Appendix D
using the formalism of Sec. II 8 below.

For the present case the k=0 modes may be ob-
tained from the two sublattice approximation

X$31,+H (A V/M—Py.y ) (M +M '—M *M +) 7

(Sa)
3f„+=~iy„

X[M +H —(AU/NfP~ ~ )(M +M z M zM +)7

(Sb)
M*= (y —y,) (A V/Nfl, 7„)(i/2)

X (M,+M„—M, M„+). (Sc)

Here M+=M ~iM&, and M' is the total magnetization
along positive s, i.e., M,*+M„'.For small oscillations,
both M, ' and JI/I ' will not change very much and we

may, to a first approximation, consider these quantities
constant when solving the equations in M+. This is
the linearisation approximation, discussed below. We
thus set, in Eqs. (Sa) and (Sb),

(X/V) ) M M HM ' HM '——'

M '=y 5(N/V) (I*). (6)where
+ (A V/NPy, y„)M, M„, (2)

M.'=q.h, (N/V) &S');

M, =&.a PS;/V, M„=y„%+I,/V

are the magnetizations, respectively, of the electronic
and nuclear sublattices, ) is a molecular-field parameter,
and E is the number of electronic or nuclear spins. The
step from (1) to (2) involves the assumption that all

I; and 8; are independent of i, and that therefore the
spin systems are translationally invariant. This cor-
rectly yields the k=0 modes.

It is precisely the variation of 3f', however, which
permits parallel pumping. Therefore it is assumed that
this variation is both small enough not measurably to
eGect the M+ equations of motion, and yet large
enough to allow a 2:-directed rf field to couple to the
system.

With the above assumption, and with M,+ and M„+
taken proportional to exp(i'd), the secular equation
becomes

~+7.LH —(A/&v. ) &I')7

(»./f v.) &I')

(Av./f v-) &S')

or+y„LH —(A/Sy„) (S')7
=0

If the off-diagonal elements are treated as perturba- where
tions, the eigenfrequencies are

(A'/fP) (I') (S*)
~&Oa =~e+

su, = y,H+ (A/5) &I'), —

co„=—y„H+ (A/fi) &S*),

(1o)

(11)

I Such pumping in RbMnF& in the spin-Bopped state has recently
been observed experimentally by L. W. Hinderks and P-. M.
Richards, J. Appl. Phys. {to be published).

are the unperturbed electronic and nuclear frequencies,
respectively. In comparing these equations with the
more general ones of the next section it is helpful to
note that there (S*) is taken as —S, and that the
energy cop is equal to —Loop.

The above approximation is valid provided, of course,
that the perturbation is small compared to ) ~,—co
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np, E(S+——(S*)), (13)

"s=~«I )-&I (.) n, (14)

where (I'(e)) is the expectation value of Ip when

happ =e; and where mp and happ are the number of k=0
spin waves present in the electronic (n) and nuclear (P)
spin-wave branches, respectively. The state from which
spin waves are generated, i.e., the nonresonating state,
is taken to have complete electronic alignment —ES
but only partial nuclear polarization 1V(I').

From Eqs. (13) and (14) one 6nds

(S~)'= (2S/X) eo L1—(eo,/2SX) j, (15)

(I~)'= (2(I*)Ã)mopl 1—(Nop/2 (I*)E)] (16)

and hence

M* (2A/V) ((I')S)"(y, y„)(mo, cps—)M' sin(«.
' —«p) t.

(17)

If now a rf field of magnitude h and frequency

l
ar, —co„

l
is set into oscillation along s, the maximum

steady power which can be delivered to the spin system
(power factor = 1) is, per unit volume,

I;.=(bA/V) ((I )S)"
l 7,—y„ l (mp nos)'". (18)

The total decay rates of electronic and nuclear' k=0
spin waves from all processes (spin-spin and spin-
lattice) are taken as Fo, and Fop, respectively. The
power-out of the k=0 systems is then, per unit volume,

I'out= (I'o /V)eo fuvo +(Fop/V)eop5 l «p l (19)

Instability sets in, that is, power may be absorbed
from parallel pumping, when h is suKciently large so
that (18) exceeds (19). Just before instability, no and

happ are very small, and np and npp are zero. The power-in
creates np and nos at equal rates Z (otherwise angular
momentum is not conserved), and

np =E—Fp mp =0,

ripp
——R—I'ppepp =0.

(20a)

(20b)

Under these conditions, the resonance (8) comprises a
relatively small amplitude precession of the nuclear
sublattice superposed onto a much larger amplitude
precession of the electronic sublattice, whereas in the
resonance (9) the nuclear sublattice has the larger
amplitude of precession. In either resonance, as seen
from inspection of Eq. (5c), M* is zero.

If, however, both modes of resonance are simultane-
ously present, a nonzero value of 3II' is achieved. In
this case M, is essentially proportional to exp(&i«, i)
and M„+ is essentially proportional to exp(&i«st) and

M'= Pl/V)A(y, —y„) (S )(I ) sin(«, —&o p)t. (12)

Here (S~) and (I&) are average components normal to
the s direction and represent the precessional ampli-
tudes.

The conversion to spin-wave language is achieved by

H

S I" SA I ll Sa s" z' s

A sites S ~Itea A sublot tice I sublattice

(0) (b) (c)
Fzo. 1, (a) Ferromagnetic case with a positive hyperfine inter-

action. {b) Ferrimagnetic case with a negative hyperfine inter-
action, Note that the orientation of I with respect to the external
and hyperfine fields is the same as in (a), resulting in the same
"unperturbed" NMR frequency. (c) Antiferromagnetic case with
negative hyperfine interaction.

(24)

Hence, at the instability point,

np /npp =Fop/F p, . (21)

On combining Eqs. (18), (19), and (21), one 6nds
that the power-in exceeds the power-out when Ig,

exceeds a critical 6eld h, given by

b, = . 22)
(1'o-1'os) "'&(«-+ 1«s I)

lv, —~„l ~(&I )S)~~2
'

This is a, special case of exchange pump-ing, for which
the general formula has been given by Morgenthaler. '
His Eq. (35) yields the above h, with the substitutions

l ~~ l~ —a V/Xa2~, ~„, (23a)

+2I i (23b)

In the present case, the hyperhne coupling between
electronic and nuclear sublattices plays the role of an
exchange field.

The above derivation yields a simple physical picture
of exchange pumping, and in particular makes it clear
why the two magnetogyric factors must diQer. If p, =y„,
then the exchange torques on the two sublattices, as
given by Eqs. (5a) and (Sb), are balanced; and it is
possible for nuclear and electronic sublattices to precess
without Qexing against one another. Kith y, /7„, how-
ever, Aexing takes place; and this gives rise to nonzero
total M'.

The simple physical derivation is inadequate to
handle complicated ferrimagnetic-nuclear and anti-
ferromagnetic nuclear systems, with their many modes.
We now turn to the more powerful operator technique,
erst making application to the ferromagnet.

B. Normal Modes, A11 k

The normal modes for (1) at very low temperatures
have been obtained by DPHW' from the equations of
motion, by replacing S' by S and I',by its average
(I*).We proceed instead, by using conventional spin-
wave theory' through the substitutions LFig. 1(a)j:

S,+—(2S)1/2g, t

S, =(2S)'12g.

S *=—S+a 'ta

I+=(2(I*))'"b
I; = (2(I'))"'b;t,
I,*=(I') b,~b;, —
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where (a,, a,t]=Lb;, b,t]=1 for all i, all other pairs of
creation and annihilation operators commuting.

The linearization implied by the above use of (I*)
has been justified in detail by DPHW, ' and it is here
that the requirement of very low temperatures comes in.
Inserting (24') in (1) and dropping quartic terms gives

X=C++2SJ;,(a,ta; —a;ta;)

+PL(A (I')—y SH) a;ta;

+ (A S+y„SH)b;~b, +A ((I*)S) '"(a,b,+a;~b, t) ],

C= —Sk~@—(y (I') y,S)AH—N A(I') S—N,

so that
ek. Ak F'—(Ak+8),

~kp-8 F'/—(Ak+8)

Thus, referring to (27), it is seen that n and t3 are,
respectively, the electronic and nuclear spin-wave
branches. The corresponding frequencies of course
agree with those obtained from DPHW, ' when the
appropriate signs for S, A, (I*), and H are taken.

C. Parallel Pumying

We now apply a pumping field h since( along the s
axis and treat the corresponding interaction

V(t) = Ah sincAQ
—(y.S,'+y I )

and 1V is the number of unit cells in the crystal.
Transforming now by

ak ——N-'t'P exp( i—lr R;)a;

bk N '12+——ex-p(ik R;)b;

and setting

(25)

as a perturbation on X. After transforming to the
normal modes n, P by inserting successively (24), (25),
and (28), and ignoring terms diagonal in the n, P
representation (since these cause no transitions), one
gets

V(t) =x~(y —y,)kh sinartg sinh28k(uktpk+uktpkt). (31)

Jk ——2SQJ@expLik (R,—R;)7,

where k belongs to the first Brillouin zone, we get

3'=c+p(Akaktak+Bbk'bk+F (akbk+ak'bk') 7, (26)

The perturbation therefore excites and de-excites
magnon pairs; one magnon from each branch. By
ordinary time-dependent perturbation theory, the
growth rate of occupation numbers is given by

rik nkp ,'vr(——y, y——„—)'b'si—nh'28k(nk +nkp+1)

where where
Xb(~ ~k~+~kp),

Ak —— q.fr+A (I—')+&0 Jk-
8=y„ME+AS,

F~A ((I*)S)"'.

AcokP =—
SIC. (32)~km =&@aj

K may then be diagonalized by the canonical trans-
formation

ak =nk cosh8k+Pkt sinh8k,

bk =nkvd sinh8k+Pk cosh8k,

tanh28k —— 2F/(A k+8)—
(28)

where
(29)

rik, Tkkr(y, y„)'h——' sinh'2—8k(nk. +nkp+1)

Following Ca,lien, magnon relaxation is then intro-
duced phenomenologically by the addition of dissipa-
tive terms —(nk, nk ) rk, wher—e nk, is an equilibrium
occupation number, together with the replacement
8(x)—&~~r/Lm. (x'+~~r')]. Here —,r is the decay factor
for the amplitude of the pair-magnon state and equals
—', (rk.yrkp) .

The net rate of change of occupation numbers then
becomes

and we assume that
) 2F/(Ak+8)

~
& 1.There results

K=C—
2 Q(Ak+8)+ Q(ek nktnk+pkppktpk),

where

pk =~t (Ak —8)+(Ak+8)/cosh28k],

ekp=-,'P —(Ak —8) +(Ak+8)/cosh28k] (30).
Since in fact

~
2F/(Ak+8) [ ((1,one has

(cosh28k)

= (1—tanh'28k) 't'~~1 ——,'tanh'28k 1 2F'/(A——k+8)'—

X
rk +rkp

(~—&Aa+~kP) +k (rk~+rkP)'
—(nk —nk, )rk., (a =~, p).

This coupled system of equations will have a solution
that increases exponentially with time when the rf field
satisfies

h2&
16rkdkp L(~ ~ka+&Ap) +k(rka+rkp)

(rk +rkp)' (y,—y„)' sinh'28k

Therefore, denoting the right-hand side by h,&, the first
mode to go unstable will be when h exceeds a critical
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Geld given by k, = min k,& where the minimum is to be
sought over all k.

To estimate this expression, assume Fy, I'I,p are
independent of k. Then since by (29), (30), and (32),

Mp~ —
Myp = —2P/(5 slIlh28g),

the minimum occurs for coj, —coj,p co,

This formula is very similar to that obtained in the
exchange pumping of a two-sublattice ferrimagnet. ' ' '
It may be noted that if the hyperhne interaction is
anisotropic

ArI'S'+Ag(I'S +I&S&),

A in Eq. (33) gets replaced by the transverse com-
ponent A~.

If one takes the values for MnFep04 (for which
admittedly A is large as well as negative), one has at
liquid helium temperatures, I' ~10' sec '," Fp 10'
sec ' A~10 ' ergs, r and say (I*) 2&&10 giving
h,~36 Oe at co=10" sec '. To achieve a pump fre-

quency cv this small it may be necessary to take ad-
vantage of the effect of the demagnetizing field of a
disk-shaped sample on the magnitude of cd, .

In arriving at the above estimate for I'I,p we have
approximated I'~p I'pp and taken I'pp (2/Tp), where

T2 is the nucIear spin-spin relaxation time. The lifetime
of a nucIear spin wave is thus assumed to be governed
by the dephasing of the nuclear spins; this is reasonable
because the major portion of the nuclear spin system
is unpolarized. Suhl" has estimated (2/Tp) from the
square root of the second moment of the nuclear
resonance absorption, obtaining"

I pp~2/Tp

—LI(I+1)/24s S'j"'(cp '/cp. '"cp '").

Here co, is a measure of the exchange coupling between
electronic spins. Vhth co, ~3&(10",co~6X 10', +„3X
10, S=I=2, one obtains T2 f0 ~ sec. This is in agree-
ment with a measurement by spin-echo techniques. "

In Table I are listed the values of h, for a number of
different processes. It is seen that, even in a powder
sample, provided

(dpp&0) =esca +Icp&2Mpa

' F. Eever, IIundbuck der Physik (Springer-Verlag, Berlin,
1966), Vol. 18/2.' J. F. Dillon, Jr., S. Geschwind, and V. Jaccarino, Phys. Rev.
100, 750 (1955). This is most probably an upper limit to the
actual decay constant.

"H. Suhl, Phys. Rev. 109, 606 (1958).
"This formula is incorrectly reproduced in DPHW (Ref. 1).

Their equation (3.13) should be multiplied by. (1/4m') on the
right-hand side. This correction improves their estimate of the
validity of the linearixation procedure, and allows reasonable
de6nition of the nuclear spin-wave spectrum at temperatures as
high aa 4'K.

~3 H. Yasuoka, H. Abe, M. Matsuura, and A. Hirai, J. Phys.
Soc. Japan 18, 1554 (1963).
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the instability envisioned in this paper should be the the numbers in parentheses being the components with
6rst to go. respect to some rectangular coordinate system. Here

a' is four times the volume of the primitive unit cell.
III. MANGANESE FERRITE MODEL

ai ——-', a(1, 1, 0), a2=-',-a(0, 1, 1), as ———',a(1, 0, 1)

(34)
together with the basis

gg =-0

yP=-', a(1, 5, 1),

ea'=ka(3, 7, 1),

p~" ——-', a(1, 1, 1),
~@=-',a(3 5, 3),
pP=-,'a(1, 7, 3), (35)

Manganese ferrite (MnFe204) has the spinel crystal
structure with 80% of the Mn'+ ions on the tetrahedral
(A) sites and 90% of the Fe'+ ions on the octahedral
(B) sites. ' The Mn'+ ions have electronic spin S=~
and the nuclear spin 5=2 directed parallel to the elec-
tronic spin~; the nuclear gyromagnetic ratio is p„7P
10' (sec G) '. The Fe'+ have S=-,' and, except for Fe",
which is of low abundance, I=O. Hence for the present
purposes, we assume all the Mn'+ are on A sites and
all the Fe'+ on 8 sites, and further that only the Mn
nuclei carry a magnetic moment. MnFe204 is ferri-
magnetic with the Mn'+ and Fe'+ electronic spins
oppositely directed.

A detailed analysis of the electronic spin-wave modes
of a normal spinel was first given by Kaplan. '4 It will
be convenient in what follows to use some of his
notation. The spinel structure may be defined (follow-
ing Kaplan), by the primitive translation vectors

A. Hamiltonian

The Hamiltonian for the nuclear e1ectronic system
is taken to be

K=2JQ Si, S p p,fiH,—QSi " y,hHg—
remap

&&QS p"—A+I, Si,—y„fiHQIi„". (36)
la

Here l, m label the unit cell; 0.=1, 2 labels the A sites
and P=1, 2, 3, 4 the B sites in a unit cell. The terms,
in order, are: antiferromagnetic exchange between 2
and B spins (J)0); combined electronic Zeeman and
anisotropy energy for A spins and for 8 spins; hyperfine
interaction between A electronic and A nuclear spins";
nuclear Zeeman energy. The external 6eld H is along
an easy direction s' and we have written H =H —II&,
H&=H+Hp where Hz, Hp are effective anisotropy
fields on the A and 8 sublattices, respectively. The
summation over exchange terms will be taken only
over nearest A-8 pairs. From the paper of Heeger and
Houston cited earlierg J/k~22. 7'K. Also, as may be
seen from Eq. (49) below, their effective ferromagnetic
anisotropy field H& must be identified with our (2H&
H~). This is about 800 Oe. at liquid-helium tempera-
tures.

Following standard spin-wave theory, we first set

Si += (2S)'"ai

S„p+= (2S) '~'b„pt,

+—(2 (Iz)) 1l2C

Si = (25)'i'a, t

S„p (2S)'i'b p,
——

Ii (2(I*))'"ci.t, ——

Sla' =S ~la ~lap

S p"= —5+b ptb„p,

Ii (I ) ci~ cimp (37)

where Lag. , ag t]=[b„p, b„pt]=Leg., cg.t]=1 (all 1, m,
a, P), all other pairs of creation and annihilation
operators commuting. The above choice of operators
is in accordance with the data given earlier as to
orientation of the spins LFig. 1(b)]. Substitution of
Eq. (37) into Eq. (36), with neglect of quartic terms,
followed by the canonical transformations

yields

K= constant +hP fA+ai tai~+Bgb~p "bop
k a '

p

+v+D -p( k) a~-b~p+—1-p(k) a~-tbsp']
ap

FP (ai.tcg.+—ai,.ci,.') +agcy,.tcI,.I, (39)

ai =N '~'P exp( ik —R~ )a~
l

and

bkp=N "'P exp(ik R(p)bip,
l

c~ N "'g exp(ik. Ri——) c~-,
l

(38)

where X is the number of unit cells in the crystal,

where k runs over the first Brillouin zone, and

fiA =A (I') y.hH, +24SJ, —
FiB= y.f'iK+ 125J, —

5y =2SJ,
fiF =A (5(I')) '",
fiD =y„fiH+A S,

1 p(k) =P expLik (R„p—R, )], (4o)

'4 T. A. Kaplan, Phys. Rev. 109, 782 (1988).
"The hyperfine constant has been taken to be -A, so that A &0

in Eq. (36}.
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the last sum being over zzs for which zzsP is nearest
neighbor to ln R. z,&s& is the position vector of A(B)
site o.(p) in the unit cell /.

From Eqs. (34) and (35), one may verify that

4 (&) =&ss( —lr). (41)

5e =Q (i'g') ',

It will be convenient to let i s', f se be, respectively,
the real and imaginary parts of f„s, and to introduce
the quantities

4=2''rs')' 3'= Pf'y'f rpo (42)
p=] p=l p=l

8-A"

B. Normal Modes

To diagonalize 3'., it suKces to solve the equation of
motion'6

s(dX/dt) =MX,

wllel'e X 1s tile tl'allspose of (zrkl zsks &kl ek2 kkt 42
fks", fk4t) and

Vill Vf 19 mls Vf14

Vf 21 Vf ss Vf ss Vf 24

P 0 DO 0 0 0 0

. (44)
V/11 —0 0 B0 0 —0

—Vf'zs 0 0 0 B0 0—
—

Vasss Vers 0 —0 . 0 0 B0-
Vfs4 ——Vf'14 o

Equation (41) has been used to ensure that in M all

f have argument k. In Appendix A, it is shown that
the eigenvalues of M are given by

{2-fold),

and by the roots of the two cubics

(~—D) I (~—A) (~+B)+V'Q—F'( +B)=0 (46)

where

The roots referring to the + sign will be labeled &or, ozs,

and cps, those to the —sign cd, cd, and ~6. We also set
Mt=ms=

Since F =As(I' )S is small, for orientation, we may
neglect it in (46) . This gives

M~D j
-', (A —B)a I:,'-(A —B)'+ (AB—V!g)]'Is. (48)

'6 A more extensive discussion of the diagonalhation procedure,
relevant to Eqs. (43), (52), (53), and (54), vriH be found in R. M.
%hite, M. Sparks, and. I. Ortenburger, Phys. Rev. 139, A450
(1965).

FIG. 2. Spectrum of manganese ferrite for branches 1-6near k =0.
The other two modes have [ coz j =( cps (

8=
Thus each cubic has a nuclear frequency D. I.et the
exact values be ~~ and cd.

Next, using in Eq. (48) the de6nitions (40) with
the data given earlier for MnI'e204, shows that each
cubic has a negative root. Let these be A&3 and ou6. The
roots ~ and co5, ~ ~ ., ~& are of order 10'4 cps and are of
no interest for the present purposes. In Appendix 8,
it is shown that for the nuclear branches

fioz1,4~A S+v~SB

$.=36—33k'u'/16, )I 0,

5—t.+Is+ I 4 5e I =2k.=&2—33k'a'/8 —in
=2&o=ksas/8 in F04. (51)

Thus of the two nuclear branches 1 and 4, only ~~ is
depressed appreciably near k=0. Further,

I
&vs I, which

is the electronic acoustic mode, is depressed by the
same amount as coq, and is of the order of 10M cps near
k=0. The branches are sketched in Fig. 2.

The normal modes of the system will be given by

(~kr, ~ks, rrks', ~k4, ~ks, ~ks', ~kz', rrks') '= SX, {52)
where T means transpose, and where 8 is to be chosen
so that

SM8—'= diag (zeb ~ ~ ~ &g,) (53)

A' S(I')
(49)AS—V.a(a.+2e,)+24SJL1—~(lr)/n j '

and for small ka,

fi(II +2IIk) +A (Iz)+24SJP1 5(k) //23—
A'8{I')

As —V.h (H,+2IIk) +24SJL1—f(k) /721
(50)

From Eqs. (34), (35), and (40)-(42), it follows that
to order ks "

s=k'us/16,
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and

S diag(1, 1, 1, 1, —1, —1, —1, —1)S*

= diag(1, 1, —1, 1, 1, —1, —1, —1). (54)

Equations (52) and (53) decouple the equations of
motion, while Eq. (54) ensures the n's satisfy the Bose
commutation rules. '6 The notation * means Hermitian
conjugate.

ln terms of the eigenvalues,

—FT1X1 —FX1 7 21X1 T22X1 T23X1 T24X1

~1 D ~1 8+~1 8+~1 8+"1 8+~1

FT1X2 FA 2 T21~2 T22X2 T23X2 T24X2
T1X2 P 2 D—(ag D—(u2 8+&u2 8+a)2 8+(am 8+(o2

FT1X3 FX3 T21X3 T22~3 T23X3 T~X3
T153 X3

D Mg D——cd' 8+073 8+(op 8+(op 8+My

FT1X4 —FP 4 T31~4 7 32X4 T33X4 T34X4S= —T1X4
D M4 D (04 8+&4 8+F4 8+&4 8+%4

FT1XS FA.S T31XS T324 T33XS T34XS—T1XS
D (do D G)g 8+615 —8+(d5 8+%5 8+N5

FT14 F~6 T31~6 T32~6 T33Ã6 T34X6

D (oo D coo
—8+(oo —8+a)o 8+(ao 8+(oo

where

0 0 0

0 0 0

~ = (S ~. »Y)I-[(~. &.) '+-4P] "
122

N13 N14

(m=1, 2).

(n, n'=1, 2)

~.p=vff'p+(-1). t»(~.-». »~')i[(t.--~.)'+40] "I,
4 4

QN~p N(g~p b(g&g~i Qi'~p N~~p gi gyp N(g&p Op

and

(56)

where on the left, the + goes with j=1, 2, 3 and the —with j=4, 5, 6; and on the right the + goes with j=
2, 4, 5 and the —with j=3, 6.

C. Parallel Pumping

With a pumping field h sin~t along Os', the interaction is

V(t) =—Ith sinootfy'ZSta"+yap&~p'+ to+Iia' ].
lot mP le

If we now make the approximation (37) and apply successively the transformations (38) and (52), using (55)
and (42), we get

O Wu"' +'is'"'

V(t) =Ah sin(otQ ' [aug', ng2, u~g] W—gg"' 0 W„(»

g7 (k) gl (k) 0 ,
,'(~ tJ

gr (k) gr (k)

+[~k4', ~As', —~Is] 0 Ws6(»

Hi 64( ) Itlt 6S( ) J -~so'
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in which terms diagonal in the 0. s have been ignored, and where, omitting the index k,

~ P2
w, ;=w, ,*=+,x,*I ~,+ ~'}t.+h~[(4—4)'+40]'"} I,8 (o; 8 o); j (58)

where + is for (ij) =(12), (13), (23) and —for (ij) =(45), (46), (56).
Thus the perturbation does not mix difierent k s, nor does it mix any of 1, 2, 3 with any of 4, 5, 6 (or 7, 8);

but it does contain a term a»tn»t which indicates the possibility of simultaneous pumping in the 1 and 3 branches.
It is apparent since branches 1. and 3 are well removed from the remainder, that if the pumping frequency is in
the neighborhood of a&i—coa (note: co&&0), we need only consider transitions of the 1 and 3 branches. Then, as in
the case of a ferromagnet, the rate equations with damping are

rkl+ rk3
nag ——.a I

w„i'&
I (eg,+ma,+1), —(ea;—ng,")r„

i0—&Ai &is 4 re+res ( j=1,3),

where F», I'» are linewidths appropriate to the 1, 3 branches, respectively. The threshold for instability of the
1-3 system is therefore

min k

4r~ir~a[(~ —~ai+~~s) '+ 4 (ra+ res) '] "'
(r-+r. ) I

w""' I'
(59)

It will now be shown that as long as
I cv& I

«8~12SJ/fi and ku&(1, the above critical field is essentially the same
as for the ferromagnetic case. This is not surprising, since it is known that low-frequency modes in the acoustic
branch generally are "unaware" of the crystal structure. First, from Kqs. (56) and (58),

([v F'/(D —~i) (D—~3) 7+v.Ib'k/(8+ ) (8+ ) 7—1})'
I1+LF'/(D- )'7-[~'t/(8+ )'7}I[A/(8+ )')-LF'/(D- )']-1}

Next, from Eq. (I14), and the fact that 8~~5 8[Eq. (40) ]—, it follows that

(60)

BF' F'

D(Z 8)+EB y'$— D+[—(JB y'$)/(5 8—)]—
the last step coming from Eqs. (B4) and (86). Hence

F'/(o)i cv—3), —

F'/(D —o)i) (D—(eg) ((oi—a)3) /(D —(oa) 1

F'/(D —Mi)' (&ui —&og) '/~)1.
Also, assuming

I ~~ I &&8~12SJ/fi, we have by Eqs. (40) and (41),

y'$/8'~~2 11k'a'/96. —

Hence to a good approximation,

Iy„—y,[(y'(/ 8)
—1]}' y,2F'[1 (11k'a'/96) 7 yP P'—

Iw }2~
(~i—~8)'/F'[(v%/8') —1] (~i—~3)' (~i—~3)' ' (62)

the k variation being determined essentially by the denominator. Introducing Kq. (62) into Eq. (59) then gives

4riiri3(&Ai —&As) [(~—0%i+ides) +~(rai+rus) ]
v.2F'(rii+ ri a)

' 7
min k

fud (riI'3) 'i'

,A((I' )S)'" ' (63)
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where ed=4021+
~

40k2
~

and we assume 1'ki, Fkk are inde-
pendent of k. This field is the same as in Kq. (33) for
the ferromagnetic case.

In the same way, the presence of a term n~tn»~ in
Kq. (57), suggests the possibility of simultaneous

pumping in the 4 and 5 branches. It is likely however,
that the high frequency of the 5 branch (~10'4 cps)
would require high pump powers, But it should be
noted that in the conventional NMR experiment, in
which the static and rf fields are perpendicular to each
other, it is the depressed nuclear mode co~ which is
excited: Coupling to the other nuclear mode cd is
negligible, essentially because the two nuclear moments
in a unit cell precess 180' out of phase (at k=0). Thus
in principle, parallel pumping is a means of exciting
the A&4 branch.

IV. ANTIFERROMAGNET WITH APPLICATION
TO RbMnF3

Ke now consider the cubic antiferromagnet and
specialize to RbMnF3. RbMnF3 is a cubic antiferro-
magnet with very low anisotropy, the magnetic ions

being Mn'+. As in the case of MnFe204, it will be
assumed that for a given Mn ion, the nuclear and
electronic spins point in the same direction.

A. Hamiltonia. n

An appropriate Hamiltonian is

3'.=2IQS Sp+V,fk(HA —H)
ap

XgS * V,fbi(H—A+H) QSpz+y„SH
CC p

XLZI-'+ZIp'7 —~LE@ S-+Z4 Sp7 (64)
a p n p

where c2 and p refer to the A and 8 sublattices, respec-
tively. The terms in order are: antiferromagnetic ex-

change (I)0); combined electronic Zeeman and anisot-

ropy energy for the 3 sublattice and for the 8
sublattice; nuclear Zeeman energy; hyper6ne interac-
tion (A) 0). The external 6eld is along an easy direc-
tion 2 (and is assumed to be less than the critical Qop
field). The summation over exchange terms will be
taken only over nearest A-8 pairs.

By the usual spin-wave theory, we first set

S += (2S) 1/2a

S+= (2S)'/'b 2

I += (2(IAz)) 1/2c

Ip+=(2 ( (IB') ()'/'dpt

S = (2S)'/242 2

Sp = (2S) '"bp

I==(2(I *))"'-'

S '=S—a ~a,

Sp'= S+bp'bp—

I '= (IA*) c tc, —

Ip (2
~
(IB') ~) "dp Ip'= (IBz)+dptdp, (65)

bk=lV '/2+ exp( ik Rp)bp-,
p

exp(ik R,)c,

dk=I2' '/2+ exP( ik —Rp) d. p
p

(66)

where E is the number of unit cells in the crystal,
yields

where $42, a t7=gbp, bpt7=gc, c 27=t dp, dpt7=1 (all
n, P), all other pairs of creation and annihilation opera-
tors commuting. The choice of operators is in accord-
ance with Fig. 1(c). (IA'), (IB') are the average
nuclear angular momenta of the A and 8 sublattices,
respectively.

Substitution of Eq. (65) in Eq. (64), with neglect
of quartic terms, followed by the canonical trans-
formations

ak ——E '/2+ exp(ik R )a,

Di /d„+y„H, ——

D2 =Mg, 7~II~

FA ( 7/4/ H A)1/2

FB= ( Ye40eeH eeB) ",— '

k/, =2SBI/fi,

yk=s —'g exp(ik R),

0/„= AS/5,

(68)

the last sum being over the 2 nearest neighbors of a
given site. For RbMnF3, it will be assumed that
(IA*)=

~

(IB')
~

=(I*), which is adequate providing
the external Geld is small compared to hyperhne field
on the nuclei (~600 koe). Then

H„=H„=H„= A(I*)/(Y.r ), ——

Here

3=k/, „y,(HA H+II„A)—, H„A =—A(IA')/(y. f4—),

v.(H +H+H- )—, H. = —~
I (I ') I/(~ &)

BC= const FA=FB=F= (—y k/ H )'/'— (69)

+Ikpf~//k /2k+Dick ci FA(/2k ck+/2kck )++bk bk—

+D2dk'dk FB(bk'dk+bkdk')+—~,Vk(/2kbk+/2k'bk') j

(67)

For later reference, we list some data obtained from

' D. T. Teaney, M. J. Freiser, and R. W. H. Stevenson, Phys.
Rev. Letters 9, 212 (1962};M. J. Freiser, P. E.Seiden, and D. T.
Teaney, ibid. 10, 293 (1963};H. Montgomery, D. T. Teaney and
%. M. Walsh, Jr., Phys. Rev. 128, 80 (1962).
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the papers in Ref. 17. For RbMnF3 at 4.2'K,

IJg =4.5 Oe; = 1.6X10"cps;

co„=4.3X10' cps; B„=2.2 Oe.

'Qex PB

It B D2

The eigenvalues of M are given by

L (A —k1) (B+4A) tk 44.*'—]
X (D1—ro) (D2+co) FA2(B+(o)—(D2+a))

FB2 (A o&) (D—1 40) +—FA—'FB' =0.

With FA=FB=O, Eq. (73) has the roots

B. Normal Modes

From Eq. (67) we get the equations of motion

i (deaf/dt) =Mx,

where X is the transpose of (ak, ck, bkt, dkt) and

PI ex

(70)

(71)

(&kl~ &k2) &kk l 42k4 )

where S is chosen so that"

(78)

For RbMnF2, from Eq. (70)

D~ D2 4.3X10' cps,

xk~=AB —a&ex2'rk2=3. 9)&10"cPs at t'4=0, (76)

and we also have x~ x2.
Suppose with FA and FBWO, the roots (74) 'go over

into &ok, &u2, "2, s&4, respectively. The corrections (401 x1),
(&v2

—D1), etc., for the general case are given approxi-
mately in Appendix C.

For RbMnF3, we may simplify further to obtain

"1 Xl—te"n+n(X1 +4eexk1n) /X1 q

"2=D1—a nL1 —(1+2peHna&ex/xkx2) 't ],
M2—A+ "te~n+n (X2 +4Aex~n) /X2 yl

"4~ D2+(On—[1 (1+2'—eHn&0ex/xkx2) '"]. (77)

Inserting the values in Eq. (70) it is seen that the
fractional increase in the electronic frequencies (&ok and
a&2) is small (~7X10 ') but the fractional decrease in
the nuclear frequencies (402 and A&4) is substantial
(~0.18) .

The normal modes of the system will be given by

where
M =X]~ D]~ x2~ D2~ (74) SMS = diag(401& Cdk& 4dk, 404) l

x1=[4(A B)'+A-B —k4 'Vk ]"'+—'(2 B)-—
x —Lk(A B)2+AB ~ 2r 2]1/2 2 (A B) (75)

with x~ and ~ the unperturbed electronic frequencies.

S diag(1, 1, —1, —1)S*= diag(1, 1, —1, —1), (79)

(* denotes Hermitian conjugate). In terms of the
eigenvalues,

tk&ex(D1 &1)t'1 tk&exFAt"1

(~ 441) (D1 k11) FA (A 441) (D1 401) FA

~XP2

Dy —M2

~ap3

Dg —o)3

~BPX

D2+k41

'Y~ex (D2+ &2) t'2 'YkexFBP2

(B+~2) (D2+~2) FB (B+&2) (D2+4e2) FB

VkMex(D2+ "2)t'2 'Q&ex~BP 3
(80)

(8+(ak) (D2+&ok) FB2 (B+4ek) (—D2+4e2) FB—
7k~ex (D1 &4)P4- '7a&exPag4

(A —o)4) (D1—(o4) FA' (A —(o4) (D1—(o4—) FA—
where the p, 's satisfy

Vk'".*'L(D2+~1) '+FB']
(D1—~ )' L(B+~t) (D2+~1) —FB']'

yk2(g 2L(D1 (g.)2+FA2] p
L(A —~~) (D1—k1~)

—FA']' (D2+~~)'

C. Parallel Pumping

With a pumping field h since( along Oz, the interaction is

v(t) = —'M sink1tLZ(v. ~ *+v I-*)+Z(v.~s*+v~lB') ]

j—2

j=3

j=4

~BP4

D2+k44
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By successive use of Eqs. (65), (66), (78), and (79), an expression of the form

V(t) = —Sh sineitg(~s», csk2, Ak3 q css4 ) fWi 7(&» ) cs» ) csk8& css4)

is obtained where terms diagonal in the a s are omitted. Only the coeKcients of 0.»~n1,4t and n»~0»t are of interest,
corresponding to the joint excitation of nuclear and electronic magnons. Omitting the index k, one finds, for
ij=14 or 23,

I
—v.I:1—(~.*v"G'~~/P-'Pi) 7+~-E(~.*v"P*'/PA') (~P/—K&') 7}'

s~ 2(G 2+P 2)/E, 27 (P,2/+ 2) 1}I 1+(P,2/+ 2)
I
~ 2~„2(G 2+P,2)/+.2]}

where
E1,4= (@ &1,4) (Di &1,4)

+s,s= (++ccs,s) (Ds+eis, s) pB p

61,4= D1 &1,4j

Hi 4—=Ds+eii, 4,

F1=F3=—F~;

Gs,s= Ds+&2, sp

&2,3—=D1—~2,3,

F2—=F4—=Fg.

As for the ferromagnetic case, with a& &ui+ I ei4 I, we excite magnons in branches 1 and 4, and the rate equations
are'8

(i=» 4)
(P»+ 1'»)

it» = 'h'
I

Wi4 I'-(&»+&»+1) , —(~„—n„)r„,
ei ei»+eit4 —+& 1»+ls4)

where I'» is the "linewidth" of branch j; and the critical field is given by

h, = 4r„r„L(~—~»+~,4) +-', (r»+r, 4) 7 'i'

(&»+&~4)'
I

wi4'" I' min k

With the data for RbMnFs Lcf. (70)7 as well as Eq. (77), I Wi4 Is can be simpli6ed somewhat to

I wi4 I'~ v't (1 vs') v" I—(~» +~—~4)/~.*7}'

I 2vs'(~»/~, ) —(1—vs') 7 f (1—ass)+ fP'/(De+~~4)'7}
(81)

which is not as simple in its k dependence as the
corresponding expression for the ferromagnet.

For a rough order of magnitude to h„we have

By slight rearrangement, the characteristic equation
of Imay be written

h, (I'iF4)'"/ IWi4&si I. (82)
=0 (A1)

Taking I1 5)&10' sec ', F4 10' sec—', and from Kq.
(81),

I
Wi4 N

I
~4X10' (G sec) ', we find h,~25 Oe.

All of the numerical values of h, given in this paper
can be made smaller by reduction of the magnitude of
the decay rate of the electronic magnon, a reduction
which can be achieved by increase of sample perfection.
In very good single crystals of yttrium iron garnet this
decay rate approaches (as h—+0) the value" 1.5X10~
sec '. Use of this value would reduce our estimates of
h, to 50e.

Even the larger critical fields, however, can readily
be achieved with use of pulsing techniques. Provided
the pulse time exceeds T2, critical absorption should
be observed; and it should thus be possible to excite
nuclear magnons with fairly substantial values of k.

APPENDIX A

where

2—ei 0 0 P

0 F

F 0 0

A. = (3+ei) I,
fli t ls mls f 14

$21 f 22 023 f24

0 0 0 0

0 0 0 0

We derive here the cubics I Eq. (46)7 satisfied by
the eigenvalues of M.

'8 With RbMnF3, branches 2, 3 may probably also be excited
because cubi+ I ~14—- I ~s I +~a"T. Kasuya and R. C. LeCravr, Phys. Rev. Letters 6, 223
(i96i).

and T means transpose. It is an exercise in Ref. 20,
p. 102, that from the nature of the above matrices,
Eq. (A1) gives"

det(I'A —(P) =0, (A2)
0 P. R. Halmos, Finite-D&nensional Vector Spaces (D. Van

Nostrand Company, Princeton, Near Jersey, 1958), 2nd ed.
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provided cvW —B. After performing the matrix multiplications, using definitions (42), Eq. (A2) becomes

v—'(6 4—+»5')

(~—~) (~+8)—v'(4+&) y'($ b 2' )

F(co+8) (D ca) (—u&+8)

F(co+8)

F((v+8) 0 0 (D ra) (a—)+8)
In turn this may be partitioned into 2&2 matrices and, by use of the same device as above, reduced to a 2)&2
determinant from which we get

(D—~)L(~—~) (~+8)—~'(4+6) j—F'(~+8) =+~'(D—~)D4—b)'+4P3'",
hence Eq. (46) . The remaining two roots must be co =—B.

APPEHDXX 3
%e estimate the two nuclear frequencies for Mnpe204, as well as the electronic frequency cate near 4=0.
It is convenient to write

and

(~—~) (~+8)+v'= (~—») (~—*2),

,'(5 8)+ P -(5 —8)'+JB——y'g7'~',

»=k(& 8)+—h(~ 8)s+—&8 v2k ju—2 (31)
Setting a&=D+g in Eq. (46), we find that g satisfies

g'Lg+2D —xg—x,j+gt {D—x,) {D—x,) —F'j—(D+8)F =0,
so that

—P(D—*,)(D—*,)—Fmj ~ 4(~+2D—*,—x,)(D+8)F»2
(32)2(g+2D—xg —xm) 5 ((D—») (D—x2) F'j'—

As long as
~ g ~

&&J—8 12SJ/5, it can be neglected on the right-hand side. Now, using the fact that the
greatest value of $ is 72, we have

4(xx+x2 2D) (D+8)F—' 4(J 8 2D) (D+8—)F'— 4J3F'

t (xx—D) (D x2)+F'Q' —tt D'+D(2 8—)+JB 72—p'g' Q —8)QD+ (JB—72'—2)/(g —8)$2
'

Substitution of Eq. (40) in Eq. (33) and use of the data given earlier for MnFe204, together with (I*)~2)&10-'
and (H,+2Hq) ~10' Oe. , shows that

The square root in Eq. (32) may therefore be expanded, giving the two solutions

(D+8)F' (D—xg) (D—x2) F' (D+—8)F'
(D—xg) (D—xg) F' 2D—xg——xg (D—xg) (D—xg) F''—

and hence, on further neglecting small terms and using (81),
~=D BF2/(Z(~ 8)+JB -~2g-

BF2

D(S 8)+38—

+F2,' (J 8)—D(5—8)—'+Z.—B—y'Q'~'+ (85)D(J—8)+JB
The first solution (84) represents the nuclear modes and is certainly consistent with the assumption g((J—B.
The second solution (85) need not be. It will however be consistent if P~/2 in which case (JB—y'$) &&(5—8)'
and co will be small. The usual approximation for the square root is then possible:

JB + (36)
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This solution is negative. Since $(k =0) =72 for the + sign in Eq. (4'I), the frequency (86) is identified with iou,

and the approximation will be valid for small k. On substituting Eq. (40) in Eqs. (84) and (85) and neglecting
small terms, we get Eqs. (49) and (50).

APPENDIX C

Ke estimate the electronic and nuclear frequencies for an antiferromagnet.
To obtain cui, we put co=xi+un in Eq. ('D). Then

ni'fbi'+ (xi—Di) (*i+Du)+ (2xi—Di+Du) (*i+*1)—(F~'+FB')j
+giggP(»I+ xu —Di+ Du)+ (*I—Di) (xi+Du) (xi+ xu) —Fgu(2XI+ 8+Du) —FBu(2xi —5—Di) j
—P'~u(»+&) (*i+Du)+PB'(xi—&) (xi—Di) —FguFBu] =0.

If we assume un &10' and neglect small terms in Eq. (C1), we get

gi P(XI D,) (x,+D,)+(2x,—D,+D,) (x,+x,))
+'gl(xl Dl) (X1+Du) (X1+xu) [PrP(XI+8) (xi+Du)+PB (X1 J) (xi Dl) j=0.

Hence
—(xi—Di) (xi—Du) (xi+xu)

2L(XI—Di) (xi+Du) + (2xi—Di+Du) (xi+xu) 7

X 1+ 1+ 4L(»—Di) (xi+Du)+ (2XI—Di+D,) («+*u) jLF&u(XI+&) (»+D,)+PB'(»—&}(»—D, ) 1 '-"

f(xi—Di) (xi+Du) (xi+xu) j'
and one must usually take only the —sign to be consistent with uji &10u. This yields ~I=xi+pi.

In the same way, putting Id=DI+gu, i0= —xu+gu, and M = Du+g4 in E—q. (73), yields cou, iou, and co4, where

—(o„(DI—xi) (Di+ xu) 25(DI—») (DI+xu)+2~„(2DI—x,+x,) jF„'(D,+&) '
'92= 1— 1+

L (DI—xi) (DI+xu) +2'„(2DI—xi+ xu) ] a)„(DI—»}'(Di+xu) '

(xu+ Di) (xu —Du) (xi+xu)

2t (xu+Di) (xu —Du) + (2xu+Di —Du) (xi+xu) j
X 1— 1+ 4L(xu+Di) (xu —Du) + (2xu+Di —Du) (xi+ xu) ]C Fg'(xu —8) (xu Du) +PB'(xu —A) (xi+Di) ]-

((xu+DI) (*u—Du) (*i+*u)g'

a„(Du+XI) (Du —xu) 2L(Du+XI) (Du xu)+2xe(2Du+xi xu) jPB (++D )u
g4— 1— 1+

(Du+xi) (Du xu) +2~@(2Du+» *u) a)„(Du+xi}'(Du—xu) '

APPENDIX D

In Sec. II, it was assumed that y„&0 and that the
hyper6ne coupling constant A was large and positive.
It is of interest to look at some other possibilities:

(a) y„)0 and A "small", i.e., y„AH))
~

A
~
)0.

(b} y„)0 and A large and negative Lwritten —A,
with A)07.

(c) y &0, A 1RI'gc, positive.
(d) 7„&0,A large, negative.
(e} y &0, A "small. "

In all cases we suppose there exists partial nuclear
polarization as in Sec. IIS and that a linearization

procedure is permissible. However, the spin-wave
approximation (of the type Eq. (24)] will have to be
consistent with the equilibrium orientation of the elec-
tronic and nuclear spins as determined by (a)—(e) . In
any case, with H along the positive Z axis, the elec-
tronic spins will point down. Hence in (b), (d},and (e}
thc RvcI'Rgc Illlclcal' splI1 Rlso poillts down, Rnd ill (R)
and (c} it points up.

Case (u}. The large external field means that in the
Hamiltonian equation (1},we still use the substitution
of Eq. (24). Proceeding then as in Sec. IIB, one finds
that all the results in that section hoM except that now
A may be positive or negative.

Case (b). The Hamiltonian is the same as Eq. (1)
with A replaced by —A. The appropriate spin-wave
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substitution ls

S,+= (2S) '~a, t

S, =(2S)'~'a;,

Sp = —S+a,ta;;

I,+= I2(I & Pmb;t,

I;-= I2(I ) I~&kb, ,

I,*=(I*)+b,tb;;

yielding

~=c+Z2s~v(o~'o~ —o o,)+(A I {I') I
—vAII)

Xgu;ta, +(AS y„fiII)—Pb;tb, —A
I
(I')S I"'

~k. = 2 {Ak+B+ [(Ak —B)'+4F']'" j,

~kp = 2 {Ak+B L(A—k B)—'+4F']").

With F/(Ak —B)((1, these become

pk Ak+F'/(Ak B), —

ekp Bk—F'/(Ak —B),

so that n and P are, respectively, the electronic and
nuclear spin-wave branches.

If we now apply R pump 6eld k sine/ Rlong the Z Rxls

and proceed as in Sec. IIC we get the analog of Kq.
(31):

V(t) =b(y„—7,) 5 b slI1(dig s11128k(ktpk+Akpkt).

where

Xg(a;b;t+a, tb;),
Hence by the perturbation theory

rik. = —rikp~-', x (y,—y„)'h' sin'28k (nkp nk )—

Xb {~+~k ~kp),

c=—s'QJ —(~ (I ) ~s)am+Ax(I )s

and we retain only quadratic terms.
Applying next the Fourier transformations

ak ——7 '"P'exp( ik R—;)a;;-

bk=X '~'g exp( ik—R )b

gives

~=c+Q[Ako"ok+Bbk'bk F(okbk'+oktbk—)],

A, = —~,ha+A
I {I) I +J,—A,

8=AS—y„M,

F=A
I
(I')S I'~'

X may then be diagonalized by the canonical trans-
formation

ak nk cos8,+Pk——sin8k,

bk = —Kk slI18k+pk COS8k,

where tan28k=2F/(Ak —B), and n and P are com-
muting Bose operators.

Finally, there results

&=C+Q (~k ~kt~k+kkppktPk),

where lkMk» = —ek ', f1Mkp = —
pkp [to preserve analogy

with Eq. (32)].With the modi6cation for hnewldth
and dissipation, these become

rik ——xmas(y. —y ) 'b' sin'28k{ekp —nk. )

&km+ &kp
X

& & &
(Nka nkn) 1 key

(~+~k-—~kp)'+k (&k +1'kp)'

nkp ——Tkp(y. —7 )'b' sin'28k(ek. nkp)—

&k +&kP
X . . . (~kp ri—kp) 1"kp,—

(~+~,.—~„)ky-', (r,.+ r.p)
2

which are of the form

d (n.) tt'-a-r. u ) ('e.) (n.l'.)
dgl I

=
I II I +"E.p) & ~ —.-lp) E p) E pl'p)

where u is positive. For the square matrix on the right,
the product of the eigenvalues is (a+1' )(o+1'p) —a') 0,
and the sum is (—2a —I' —I'p)(0. The eigenvalues
are negative and there are no unstable solutions. In
fact the solutions decay exponentially with time,
attaining equilibrium values n, np given by

('+'-
E pj &

— +&p) E p&p)

One can see from the Eqs. (Di) that there is a kind of
positive feedback: if e~„ increases, then epp must de-
crease and the result is to reduce the rate of increase
of rsk . This effect is due exclusively (if one ignores
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damping) to conservation of angular momentum, and
the assumption of the initial orientation of the nuclear
spins. The presence of dissipation only makes it "more
impossible" to obtain an instability.

Further because the solutions decay, there is no
average power absorption.

Case (c) This goes through exactly as the problem
considered in Sec. II, with the same conclusion.

Cases (d) arid (el: These go through exactly as
Case (h) and with the same conclusion.

Thus summarizing, pumping is possible for A large
and positive, regardless of the sign of y„, or for

~

A
~

small and y„)0."

"We are indebted to Dr. E. Schlomann for pointing out this
possibility (private communication) .

:errata

Channeling in Diamond-Type and Zinc-Blende
Lattices: Comparative Effects in Channeling of
Protons and Deuterons in Ge, GaAs, and Si, A. R.
SATTLER AND G. DEARNALEY LPhys. Rev. 161, 244
(1967)].The equation in Fig. 12 is incorrect. C should
be replaced by C'=C/A. Table IV contains a tabula-
tion of C' values (not C values).

Dynamical Spin Correlations in Many-Spin Systems.
I. The Ferromagnetic Case, RAzx A. TAHAR-KHEr. r

)Phys. Rev. 159, 439(1967)]. In Kq. (C5) the first
term on the left side of the second equality should be
k'Sk&'& rather than k'Sk&'&. The second RPA(II) ex-
pressions for the longitudinal Green's function, and
consequently those of the longitudinal correlation func-
tion, should be reinterpreted as being the principal-
value limits obtained when in the Green's function
((S+(1)S (1')S*(3))) the time ri approaches the time
v.~' from below and from above. In other words, Kq.
(81) should read

Mki'&(&)Z = lim (—1/2PÃ) g' Q J+ p(X, k—2)
«=iP&,h~o p

Xfexp(+iZ, k)+exp( —iZ,e) jLZ„+E k
—Ekj i

X f2&k"&(&)PGk k(P —v) Jo+(k, k —X)

—G (~)~w-(k, &) j+Gk(~) —G -k(P —~) f

Similarly, Eq. (86) should read

Lildk (&)7kinematieal aum rulc

lim (—I/2'') +' Q G k,d" (n —n, n)
S=l/2, «=i', 6=+0

X(exp(+iZ, r) —exp( iZ,e)—]
These prescriptions lead to the following unique results

P~k (&') jdynamical aum rule —Ak(&)/Bk (&) q

Ph"'(~) 7kincmatical aum rule ek(~)/h (k~),

where Ak(p) and ek(n) are the same as given in Eqs.
(83) and (87b) and where Bk'(v) is obtained from
(84a) by the relation

Similarly, hk'(v) is obtained from Kqs. (87c) and
(Bgb) by the relation

hk'(&) =-', Lhk'+&(»)+hk&-&(v) j


