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In a magnetic medium in which the nuclei carry a magnetic moment, there exists a spectrum of nuclear
spin waves in addition to the usual electronic spin waves, provided the temperature is sufficiently low. The
possibility is investigated of joint excitation of nuclear and electronic magnons by parallel pumping; this
process is analogous to “exchange pumping” of acoustic and exchange magnons in a ferrimagnet. First a
simple ferromagnet is considered, then the ferrimagnet manganese ferrite, and finally the cubic antiferro-
magnet RbMnFs;. It is suggested that the process should be feasible, and that it should be possible thereby
to excite nuclear spin waves of arbitrary k. (In ordinary NMR only 2=0 is excited.) The threshold pump
field in a typical material is estimated to be of order 36 Oe in magnitude, but it can be smaller in carefully

prepared samples.

I. INTRODUCTION

T has been shown by de Gennes ef al.! that, because
of hyperfine interaction, a simple ferromagnet in
which the magnetic ions also carry a nuclear moment
has two spin-wave branches at sufficiently low tem-
peratures. The upper branch relates essentially to the
electronic system and deviates slightly from the ‘“usual”
electronic spin-wave spectrum. The lower branch re-
lates essentially to the nuclear system but deviates to
a relatively greater extent from the ‘“usual” NMR
frequency. These branches will be referred to as elec-
tronic and nuclear spin-wave branches, respectively.

In the same paper, DPHW! also considered the
possibility of parallel pumping the nuclear spin waves,
i.e., excitation by application of an oscillating magnetic
field parallel to the direction of magnetization. The
process envisaged was the absorption of one photon
and the consequent creation of two nuclear magnons.
They came to the conclusion that the condition for
instability of the nuclear system would be difficult to
satisfy. This, however, does not rule out parallel pump-
ing, for there still remains the possibility of simulta-
neous excitation of nuclear and electronic spin waves:
each photon would give rise to one nuclear and one
electronic magnon. This process is analogous to ‘“‘ex-
change pumping” in the two sublattice ferrimagnet
with unequal g factors.2?

We first consider a simple ferromagnet and present
an elementary analysis of the 2=0 case (Sec. II).
Then the nuclear and electronic spectra will be derived
using the method of Holstein and Primakoff,* and the
threshold field worked out for parallel pumping insta-
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bility using the method of transition probabilities
outlined by Callen.® In the present treatment, dipole~
dipole interactions are ignored. This will mean that,
with the pumping field on, the total angular momentum
along the field is a constant of the motion. Thus if
magnons are to be excited jointly from the nuclear
and electronic branches, in such a way that their
numbers increase exponentially with time, the nuclear
and electronic spins will have to point in opposite
directions, so that any gain in angular momentum by
one mode is exactly balanced by loss in the other. We
are therefore restricted to hyperfine interactions
A" I:+S; in which 4 is positive. In most magnetic
materials, however, 4 is negative.

In Sec. III, we outline a corresponding theory for
manganese ferrite. Its unit cell consists of four Fedt
ions and two Mn?** ions, each with electron spin S=$%,
but with all Fe3* pointing in opposite direction® to the
Mn?*, In addition, NMR data by Heeger and Houston’
show that the nuclear angular momentum of the Mn,
which also has I'=3$, is parallel to its electronic spin.
Thus 4<0. However, any change in the angular
momentum of the electron and nuclear spins of the
Mn can be offset by a change in the Fel* electronic
angular momentum, so that angular momentum is
conserved. Of the eight spin-wave branches present
here, two are nuclear branches of which only one is
appreciably depressed by the hyperfine interaction. It
will be shown that, as far as the pumping field is con-
cerned, two of the branches can be ignored, while the
other six can be divided into two equal lots—not
connected by the rf field—with each containing a
nuclear mode. The calculation shows that joint excita-
tion of nuclear and electronic magnons within each of
these two lots is theoretically possible.

Finally in Sec. IV, we consider RbMnF;, which is a
cubic antiferromagnetic. This has low anisotropy, so
that the electronic frequencies (in the absence of a

5 H. Callen, in Fluctuation, Relaxation and Resonance in Mag-
netic Systems, edited by D. ter Haar (Oliver and Boyd Ltd.,
Edinburgh, 1962). .

6 J. M. Hastings and L. M. Corliss, Phys. Rev. 104, 328 (1956).

7A. J. Heeger and T. W. Houston, Phys. Rev. 135, A661 (1964).
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field) are comparatively low—a condition favorable to
the pumping process.®

II. FERROMAGNET
A. Simple Derivation, k=0 Modes
We consider a system with Hamiltonian
H=— ZJUS@‘ Sj
i,
—v hH Y S~y hH D T24+AD 1S, (1)

where the terms, in order, represent the exchange
energy between electronic spins, the electronic and the
nuclear Zeeman energies, and the electron-nucleus
hyperfine coupling. The magnetic field H is in the
direction of the positive z axis, and v, is the (intrinsi-
cally negative) electronic magnetogyric ratio. In general
the nuclear magnetogyric ratio v, and the hyperfine
coupling constant 4 may each be either positive or
negative; but as mentioned earlier and as explicit
calculation shows, 4 must be positive for parallel
pumping to be feasible. This is discussed in Appendix D
using the formalism of Sec. IT B below.

For the present case the k=0 modes may be ob-
tained from the two sublattice approximation

(5¢/V )M, -M,—HM *—HM ,*

+(A V/Nh27e7n)Me'Mn; (2)
where

Me=’YeﬁZSi/V; (3)
are the magnetizations, respectively, of the electronic
and nuclear sublattices, N is a molecular-field parameter,
and NV is the number of electronic or nuclear spins. The
step from (1) to (2) involves the assumption that all
I, and S; are independent of 7, and that therefore the
spin systems are translationally invariant. This cor-
rectly yields the k=0 modes.

Mn "_"Ynh ZL/V
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The Hamiltonian (2) gives rise to the equations of
motion

dM.,/dt=" M, X[HE— (AV/Nt*vey.)M,], (4a)
dM, /di=~,M, X[H:— (AV/Nhtvev.)M,], (4b)
with 2 a unit vector along the positive z axis.
These equations may be written in the form

M. E=Fiy,

X[MAH—(AV/Ni*veyn) (M EM —M M) ],

. (5a)
M E=TFiy,

X [Mnd:H_ (A V/Nﬁ2727n) (MniMez'—anMei)]r

(5b)

= (Ya—7e) (AV/NE¥ev2) (i/2)
XMFAM,~—M,M,*). (5¢)

Here M+=M>4iM?, and M= is the total magnetization
along positive z, i.e., M*+M,* For small oscillations,
both M,* and M,* will not change very much and we
may, to a first approximation, consider these quantities
constant when solving the equations in M#*. This is
the linearization approximation, discussed below. We
thus set, in Egs. (5a) and (5b),

Me=vh(N/V)(S%); M =vh(N/V)(I?). (6)

It is precisely the variation of M2, however, which
permits parallel pumping. Therefore it is assumed that
this variation is both small enough not measurably to
effect the M* equations of motion, and yet large
enough to allow a z-directed rf field to couple to the
system.

With the above assumption, and with M,* and M+
taken proportional to exp(iwt), the secular equation
becomes

w+'Ye[H'— (A/rye) <Iz>] (Ae/Tirvn) (Sz> )
(Arva/Trve) (I%) wtya[H— (4/Fva) (S%)]

If the off-diagonal elements are treated as perturba- where
tions, the eigenfrequencies are wo=—YH~+(4/h) (I?), (10)
_ o (4w I5)(S%) wn=—"aH+(4/)(S?), (11)

WP it LA AR ®)

Wo™n are the unperturbed electronic and nuclear frequencies,
(42/52) {I=)(S?) respectively. In comparing these equations with the
wp=wpt ———————, (9)  more general ones of the next section it is helpful to
n e note that there (S¢) is taken as —.JS, and that the

8 Such pumping in RbMnF; in the spin-flopped state has recently
been observed experimentally: by L. W. Hinderks and P. M.
Richards, J. Appl. Phys. (to be published).

energy e is equal to — fiwes.
The above approximation is valid provided, of course,
that the perturbation is small compared to | we—wy |.
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Under these conditions, the resonance (8) comprises a
relatively small amplitude precession of the nuclear
sublattice superposed onto a much larger amplitude
precession of the electronic sublattice, whereas in the
resonance (9) the nuclear sublattice has the larger
amplitude of precession. In either resonance, as seen
from inspection of Eq. (5c), M= is zero.

If, however, both modes of resonance are simultane-
ously present, a nonzero value of M* is achieved. In
this case M, * is essentially proportional to exp(=iwoat)
and M,* is essentially proportional to exp(==iwgf) and

Mo=(N/V)A(ve—rn) (S+Y{T +) sin(woa—wos)t. (12)

Here (S+) and (I+) are average components normal to
the z direction and represent the precessional ampli-
tudes.

The conversion to spin-wave language is achieved by

noa=N(S+(5)), (13)
nog=N[(I*)—(I*(n))], (14)

where (I7(n)) is the expectation value of I;# when
nog=n; and where 7y, and #gs are the number of k=0
spin waves present in the electronic (a) and nuclear (8)
spin-wave branches, respectively. The state from which
spin waves are generated, i.e., the nonresonating state,
is taken to have complete electronic alignment —N.S
but only partial nuclear polarization N (I?).
From Egs. (13) and (14) one finds

(S+)=(28/N)moa[ 1 — (10a/2SN) ],
(I+ )= (2(I*)N) nog[1— (0s/2(I*)N) ],

and hence
M4/ V) ({I2)S)2(Ye—Vu) (toatt0s)"/* Sin (co0a—wos)?.
(17)

If now a rf field of magnitude % and frequency
| we—w, | is set into oscillation along z, the maximum
steady power which can be delivered to the spin system
(power factor =1) is, per unit volume,

P (hA/V) (I7)S)V2 | Yo—vn | (10ar108) Y2 (18)

The total decay rates of electronic and nuclear k=0
spin waves from all processes (spin-spin and spin-
lattice) are taken as T, and Tos, respectively. The
power-out of the k=0 systems is then, per unit volume,

Pouwy=(Toa/ V) ntoatiwoa(Tos/ V) mogh | wos |. (19)

Instability sets in, that is, power may be absorbed
from parallel pumping, when % is sufficiently large so
that (18) exceeds (19). Just before instability, 7o, and
g are very small, and 7y, and 7igg are zero. The power-in
creates #o, and 7qs at equal rates R (otherwise angular
momentum is not conserved), and

(15)
(16)

7o =R —Toattoe= 0, (203.)

’ftoﬂ =R— ropno,g =0. (ZOb)
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(a) (b) (c)

Fic. 1. (a) Ferromagnetic case with a positive hyperfine inter-
action. (b) Ferrimagnetic case with a negative hyperfine inter-
action. Note that the orientation of J with respect to the external
and hyperfine fields is the same as in (a), resulting in the same
“unperturbed” NMR frequency. (c) Antiferromagnetic case with
negative hyperfine interaction.

14 11 1)

A sites B sites A sublattice B sublottice

Hence, at the instability point,
#10a/108=Tog/ Tva (21)

On combining Egs. (18), (19), and (21), one finds
that the power-in exceeds the power-out when #%
exceeds a critical field %, given by

hoe (ToaT'0s) V2 (woat | wos |)
e | A(I2)S)

This is a special case of exchange-pumping, for which
the general formula has been given by Morgenthaler.?
His Eq. (35) yields the above %, with the substitutions

| wig | >—AV/N#>yeyn, (23a)
a3l (23b)

In the present case, the hyperfine coupling between
electronic and nuclear sublattices plays the role of an
exchange field.

The above derivation yields a simple physical picture
of exchange pumping, and in particular makes it clear
why the two magnetogyric factors must differ. If v, =1a,
then the exchange torques on the two sublattices, as
given by Egs. (5a) and (Sb), are balanced; and it is
possible for nuclear and electronic sublattices to precess
without flexing against one another. With v,7v,, how-
ever, flexing takes place; and this gives rise to nonzero
total M=

The simple physical derivation is inadequate to
handle complicated ferrimagnetic-nuclear and anti-
ferromagnetic nuclear systems, with their many modes.
We now turn to the more powerful operator technique,
first making application to the ferromagnet.

B. Normal Modes, All k

The normal modes for (1) at very low temperatures
have been obtained by DPHW! from the equations of
motion, by replacing S by S and I? by its average
(I7). We proceed instead, by using conventional spin-
wave theory* through the substitutions [Fig. 1(a) ]:

Sit=(25)"2q,",
Sr=(25)"a;,
Si#=—S+aila,
Iit=(2(I%))"b,,
Ii=(2(I%))"7bit,
#F=(I7)—b:"b,,

(22)

(24)
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where [a;, a;t]=[b;, b;"]=1 for all 4, all other pairs of
creation and annihilation operators commuting.

The linearization implied by the above use of (I2)
has been justified in detail by DPHW,! and it is here
that the requirement of very low temperatures comes in.
Inserting (24) in (1) and dropping quartic terms gives

L= C+ ZZSJi, (a,-*a,-—- aiTaj)
ij
+ Z[(A (I2)—v il )ata;
+ (A SHvhH)bitbAA((I7)S) P (aibita:tdt) ],

where
C=—8D Jii— (Ya{l*)—7eS) RHN — A{I*)SN,

ij
and N is the number of unit cells in the crystal.
Transforming now by

a=N-12) exp(—ik-R;)a;,
J

br=N"12Y_ exp(ik-R;)b; (25)
-

and setting
Jr= ZSZJW eXp['I:k' (Rz’_RJ) ]7
i

where k belongs to the first Brillouin zone, we get

B=C+ E[A w@ ax+ B top+F (arbit-aitort) ], (26)
P
where
Ay=—yAH+AI)+To— T,
B=v,fiH+AS,

and

F=A({I*)S)2 @27

3¢ may then be diagonalized by the canonical trans-

formation
Ay =y cosh0k+,8k’f sinhﬂk,

by, =ak'f Sinhﬁk-l—ﬁk COShOk, (28)

where
(29)

tanh20,= —2F/ (4;+B)
and we assume that | 2F/(A4x+B) | <1. There results
3 =C—%; (Ax+B)+ Zkl (eraotrTar+exsBe'Be)
where
€ka =3[ (Ax—B) + (Ax+B) /cosh26; ],
e5=3[— (4x—B) + (A+B) /cosh26,].
Since in fact | 2F/(4x+B) | <1, one has

(cosh26;)1
= (1— tanh?26;)Y21—% tanh?20;,=1—2F?/(4,+B)?

(30)
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so that
ekaNAk—-Im(Ak-l-B) ,

ekBNB—~F2/ (Ak+B) .

Thus, referring to (27), it is seen that « and 8 are,
respectively, the electronic and nuclear spin-wave
branches. The corresponding frequencies of course
agree with those obtained from DPHW,! when the
appropriate signs for S, 4, {I*), and H are taken.

C. Parallel Pumping

We now apply a pumping field % sinwt along the 2z
axis and treat the corresponding interaction

V(1) = =ik sinet 3 (veSi#+ynl )

as a perturbation on JC. After transforming to the
normal modes «, 8 by inserting successively (24), (25),
and (28), and ignoring terms diagonal in the «, B
representation (since these cause no transitions), one

gets
V(1) =L (yn—".) ik sinwt Y, sinh26; (oxBe+oi'Bit). (31)
k

The perturbation therefore excites and de-excites
magnon pairs: one magnon from each branch. By
ordinary time-dependent perturbation theory, the
growth rate of occupation numbers is given by
Tika =g =57 (Ye—"Ya) 22 sInh220, (11 +n15+1)

X (w—wratwis),
where
(32)

Fioka = €xa; Tung= —exp.

Following Callen,’ magnon relaxation is then intro-
duced phenomenologically by the addition of dissipa-
tive terms — (%% —7ixs) I'ie Where 7ix, is an equilibrium
occupation number, together with the replacement
8(x)—3T/[w(a2+4T2)]. Here 3T is the decay factor
for the amplitude of the pair-magnon state and equals

3(TratTus) .
The net rate of change of occupation numbers then

becomes
Tine =15 (Ye—Yn) 2h? sinh?20, (o +115+1)
> Tha+Trs
(0—wratowig)* 4% (TratTip)?
(e=a, ).

This coupled system of equations will have a solution
that increases exponentially with time when the rf field

satisfies
16Tl [(0—owrat-wis)®+3 (ThatTis) 2]
(Tha+Trs)? (Ye—"Yx)? sinh?26;

Therefore, denoting the right-hand side by A, the first
mode to go unstable will be when % exceeds a critical

- (n]w—ﬁka) Pkd,

>
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d

field given by k.= min /e where the minimum is to be
sought over all .

. . . s88¢g
To estimate this expression, assume I'i., T'rg are égg ElL L L L - =
independent of %. Then since by (29), (30), and (32), asss | ™ T - - =

Wka — Wk = -—ZF/(h sinh20k) y
the minimum occurs for wi, —wig>w,
he=Tiw(Tal'g) /| ve—va | A(I7)S) 2 (33)

This formula is very similar to that obtained in the
exchange pumping of a two-sublattice ferrimagnet.?3:9
It may be noted that if the hyperfine interaction is

parallel pump of a nuclear

anisotropic

A J*S*HA4,(I°S*+1vSY),
A in Eq. (33) gets replaced by the transverse com-
ponent A4..

If one takes the values for MnFeyO; (for which
admittedly 4 is large as well as negative), one has at
liquid helium temperatures, I'n\~10% sec™,0 T'g~105
secl, A~~10"8 ergs’ and say (I#)~2X1072, giving
ho~36 Oe at w=10" sec™’. To achieve a pump fre-
quency o this small it may be necessary to take ad-
vantage of the effect of the demagnetizing field of a
disk-shaped sample on the magnitude of wa.

In arriving at the above estimate for I'ys we have

plus an electronic magnon for same value of

(T1/Tra) Y2 (we/weten) ({I2)/ S)H2
(Fka'/rkﬁ)llz( I Ye—Vn i / l Ye—Ye’' l ) (‘”ﬂ/‘-”ex) ((]z)/S’)IIZ

(Tk/ Ta) M2 (we/weteon) ({I7)/ S)H2
(Tap/Tra) 2( L ve | / 1 4n | ) (we/em) (S/ (1))

Approximate ratio of % to that of
(Tka/Tip) 2 (wn/wse) ({I2)/ SHV

1

Lis 1/ T; where T is the nuclear spin-lattice relaxation time. The formula for the fifth liste
der from DeGennes et al. (Ref. 1).

ed in usual order of magnitude for same pump frequency w. Note, however, that certain processes will require in general higher values of w.

approximated Tyg~Tos and taken T~ (2/T5), where =
T is the nuclear spin-spin relaxation time. The lifetime g = o &
of a nuclear spin wave is thus assumed to be governed 2 a 5 3
by the dephasing of the nuclear spins; this is reasonable ;‘ - = = i
because the major portion of the nuclear spin system g8 < § = 3
is unpolarized. Suhl® has estimated (2/7:) from the 5 8 w = = a
square root of the second moment of the nuclear ;:3 2| - f“: SN
resonance absorption, obtaining'? ilﬁ‘g g T2 " lg <
— = —_— —_
1‘0522 / Tz A rg > E E §:§ 3 E
¥ & 5 s = & =
T (I41) /247w S ]2 (wn?/wex*wl!4) . fey] = 3 = s a3
E=1 P 5 S g g
. . 5= EN £ 3 3 08
Here wex is a measure of the exchange coupling between 58 ) ERE N S
electronic spins. With we~3X10%, 0~6X10°, o, ~3X ¥ o &
10°, S=I=3%, one obtains T5~1075 sec. This is in agree- = . N
ment with a measurement by spin-echo techniques.® o2 §'§ s § 3
In Table I are listed the values of 4, for a number of =g g& a 13 s & l& 2
different processes. It is seen that, even in a powder S &S 3 8 3«
sample, provided 53 8
8.4 a -
wop <0 = o —wig < 2w0a 5'2% 0 £5 g g g
—_— v O ua L s~ 8 s go
, . . >0 o 8 g
®F. Keffer, Handbuch der Physik (Springer-Verlag, Berlin, %'E‘og 8 5,3 < E o g
1966), Vol. 18/2. weo g &8 & § 2 4
1 J, F. Dillon, Jr., S. Geschwind, and V. Jaccarino, Phys. Rev. '8 «:’5“ -2 =g ° g o g
100, 750 (1955). This is most probably an upper limit to the = 3§ ?| 8 g E’; 8 8 e
actual decay constant. 59 & § 8 © 3 =8 ° ° &
1 H, Subl, Phys. Rev. 109, 606 (1958). 24 & S8, 28 oF 28 Eg ¢
12 This formula is incorrectly reproduced in DPHW (Ref. 1). 233 g8g 288 gg c5 = go S
Their equation (3.13) should be multiplied by (1/4x%) on the & 4% 58 °&5 afg o_g Sy ©
right-hand side. This correction improves their estimate of the =5 E = g‘g g s= E‘.E E*E g'
validity of the linearization procedure, and allows reasonable — gw"‘ 2= 5¢6a B3 3% 58 §
s 2 . 0 =5 A3e B8 23 AgE A
definition of the nuclear spin-wave spectrum at temperatures as .57 2 o 9 B S8 o e =B
high as 4°K. A 3 §8 35c gy I8 T8 =
M. Vasuoka, H. Abe, M. Matsuura, and A. Hirai, J. Phys. o< S S8 Fmd £E £a B F
s ys = <] s RE90 Ha HB BT H
Soc. Japan 18, 1554 (1963). R Z, I a & & &
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the instability envisioned in this paper should be the
first to go.

III. MANGANESE FERRITE MODEL

Manganese ferrite (MnFeyO4) has the spinel crystal
structure with 809, of the Mn?* ions on the tetrahedral
(A) sites and 909, of the Fet ions on the octahedral
(B) sites.® The Mn?t ions have electronic spin S=%
and the nuclear spin /=% directed parallel to the elec-
tronic spin’; the nuclear gyromagnetic ratio is y,~27X
10® (sec G)7L The Fe** have S=$% and, except for Fe¥,
which is of low abundance, 7=0. Hence for the present
purposes, we assume all the Mn** are on 4 sites and
all the Fe*t on B sites, and further that only the Mn
nuclei carry a magnetic moment. MnFe)O, is ferri-
magnetic with the Mn%*" and Fe®*+ electronic spins
oppositely directed.

A detailed analysis of the electronic spin-wave modes
of a normal spinel was first given by Kaplan.* It will
be convenient in what follows to use some of his
notation. The spinel structure may be defined (follow-
ing Kaplan), by the primitive translation vectors

m=%a(1,1,0), ®»=%a(0,1,1), a;=%a(1,0,1)
(34)
together with the basis
or' =0, et=1a(1,1,1),
of=%a(1,5,1), @F=3a(35,3),
0sf=%a(3,7,1), ofF=%a(1,7,3), (35)

Sza+= (ZS) 1/2ala,
Smﬁ+= (ZS) 1/2bmﬂ1"
It = (2{I7)) Vc1a,

where [, G1a’]=[Oms, bng' ]=[Cta, cia’1=1 (all I, m,
a, B), all other pairs of creation and annihilation
operators commuting. The above choice of operators
is in accordance with the data given earlier as to
orientation of the spins [Fig. 1(b)]. Substitution of
Eq. (37) into Eq. (36), with neglect of quartic terms,
followed by the canonical transformations

Tra = N*1/22 EXP( —ike erx) Qa,
i

big=N"123 exp(ik-Rig) bsg,
l

and

Cra=N"12)" exp(ik-Ria) Cra (38)
i

where N is the number of unit cells in the crystal,

4T, A. Kaplan, Phys. Rev. 109, 782 (1958).
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the numbers in parentheses being the components with
respect to some rectangular coordinate system. Here
@ is four times the volume of the primitive unit cell.

A. Hamiltonian

The Hamiltonian for the nuclear electronic system
is taken to be

30=2J_ Sia*Sus—vHH, D S1a® —vHH,

Ilmaof la

XD Smg” —AD L Sta—vaiH D I1”.  (36)
mfB la la

Here I, m label the unit cell; =1, 2 labels the 4 sites
and B=1, 2, 3, 4 the B sites in a unit cell. The terms,
in order, are: antiferromagnetic exchange between A
and B spins (J>0); combined electronic Zeeman and
anisotropy energy for A spins and for B spins; hyperfine
interaction between 4 electronic and A nuclear spins®;
nuclear Zeeman energy. The external field H is along
an easy direction 2’ and we have written H,=H—H,,
Hy=H+Hgp where H4, Hp are effective anisotropy
fields on the 4 and B sublattices, respectively. The
summation over exchange terms will be taken only
over nearest A-B pairs. From the paper of Heeger and
Houston cited earlier,” J/k=22.7°K. Also, as may be
seen from Eq. (49) below, their effective ferromagnetic
anisotropy field Hs must be identified with our (2Hp-
H,). This is about 800 Oe. at liquid-helium tempera-
tures.
Following standard spin-wave theory, we first set

Slaz, = S_ alaTalay
Sng?’ = — S+ b bmg,

Ilaz,= (Iz>—clafcla7 (37)

yields
Je= constant 7% {A D e @B bisbis
k a B

+v %[5‘ o8 (—K) @rabigt$ap(K) GraOig' ]
-—FE (dkaTCka‘l—akaCkaT) +chkatcka}’ (39)

where k runs over the first Brillouin zone, and
hA =AI?)—yhH, 2457,
hB=—vyAH,+ 1257,
fiy=2S5J,
RE =A(S(I))*",
hWD=v,hH+AS,

¢as(k) =D exp[ik: (Rms—Ru) ], (40)

15 The hyperfine constant has been taken to be -4, so that 4>0
in Eq. (36).



165

the last sum being over m for which mB is nearest
neighbor to la. R is the position vector of A4 (B)
site a(8) in the unit cell 7.

From Egs. (34) and (35), one may verify that

$18(k) =¢p(— k). (41)

It will be convenient to let {4 (o’ be, respectively,
the real and imaginary parts of {.s, and to introduce
the quantities

4 4 4
=2 ()% h=2 ()% E=D feh (42)
B=1 g=1 f=1

B. Normal Modes

To diagonalize 3¢, it suffices to solve the equation of
motion'®

i(dX/dt) =MX, (43)

where X is the transpose of (ak1, Aoy Ck1y Cr2, bk1T, bkgf,
bist, bie™) and

A 0 F O vu ¥We v vu
0 A 0 F v ¥m s ¥
F 0 D 0 0O 0 o0 0
0 F 0D 0 O O O
M= . (44)
¥ —¥fu 0 0 —B 0 0 O
—¥f2 —¥2 0 O 0 —-B 0 O
—¥¢s —¥¢13 0 0 0 0 —-B 0
—vfs —¥¢ 0 O 0 0 O0 -B

Equation (41) has been used to ensure that in M all
¢ have argument k. In Appendix A, it is shown that
the eigenvalues of M are given by

(2-old),
and by the roots of the two cubics
(0—=D)[(w—4) (w+B) +7%]~F(w+B) =0, (46)

where

w=—2B8

(45)

E=tttot [ (E—F) 248712 (47)

The roots referring to the 4 sign will be labeled wy, ws,
and ws; those to the — sign ws, ws, and ws. We also set
wr=ws=—B.
Since F2=A2(I#)S is small, for orientation, we may
neglect it in (46). This gives
wxD;
w3 (A~B) [ (A~ B)*+(AB—v¥) 12 (48)
18 A more extensive discussion of the diagonalization procedure,
relevant to Eqgs. (43), (52), (53), and (54), will be found in R. M.

W()Vhite, M. Sparks, and I. Ortenburger, Phys. Rev. 139, A450
1965).
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F16. 2. Spectrum of manganese ferrite for branches 1-6 near £=0.
The other two modes have | w7 |=| ws |=B.

Thus each cubic has a nuclear frequency & D. Let the
exact values be w; and ws.

Next, using in Eq. (48) the definitions (40) with
the data given earlier for MnFe;O,, shows that each
cubic has a negative root. Let these be w; and wg. The
roots wy and ws, * -, ws are of order 10" cps and are of
no interest for the present purposes. In Appendix B,
it is shown that for the nuclear branches

fion A S+y.hH
A28(I%)
T AS—yA(H,2H,) +24SI[1—£(k)/72]
and for small ke,
— T — Y (Ho+-2Hy) +A (I#)+24ST[1—£ (k) /72]
A28(I%)
T AS—yA(H,2H,) +24SI[1—(k)/72]°

From Egs. (34), (35), and (40)-(42), it follows that
to order k214

(49)

(50)

fo=Fk?/16,  £=36—33k0%/16, £ =0;
hence
E=ttbok | E—b | =26,=72—33k%0%/8 in wiws
=2¢=k0?/8 in w. (51)

Thus of the two nuclear branches 1 and 4, only w; is
depressed appreciably near £=0. Further, | ws |, which
is the electronic acoustic mode, is depressed by the
same amount as wi, and is of the order of 10® cps near
k=0. The branches are sketched in Fig. 2.

The normal modes of the system will be given by

(52)

where 7" means transpose, and where S is to be chosen
so that

(a1, cue, cust, otna,y o, g™, ity cus™) T =8X,

SMS—1= diag(wi, **+, ws) (53)
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Equations (52) and (53) decouple the equations of

and
motion, while Eq. (54) ensures the o’s satisfy the Bose
S diag(1,1,1,1, —1, —1, —1, —1)S* commutation rules.’® The notation * means Hermitian
conjugate.
= diag(1,1, —1,1,1, —1, —1, —1). (54) In terms of the eigenvalues,
N —Friv —FN 1aM TN TN TN
M D D—w Btw B4w B+w Bt
Y —Frde —Fh  7ade  Tals  Tuhs  Tuhe
T2 2 D—wz D—‘wz B+w2 B+w2 B+w2 B+w2
N A —Fr\s —F\  7ads  Tals Tl Tus
s 8 D‘“wa D—w3 B—I—w3 B+w3 B—I‘wa B+wa
F TiNg —F A4 7'31)\4 T32)\4 7'33)\4 7'34)\4
S=(—7m\ A
MM D ws D—wy Btws Btw Btws Bt (55)
VDY Frivs  —Fhs  7ads Tahs  Tahs Tahs
T
o s D—w5 D—w5 B+w5 B—{-—w;; B-I—w;, B+w5
—rhe ) Frive  —Fhs  Tae  Taohe  Tahe  Tahe
Y6 % D—ws D—w, B+ws B+ws B+ws B+ws
0 0 0 0 uu* u12* ul:s* M14*
0 0 0 0 or* oo™ U™ Ua®
where
r=(&—&—2i¢") /[ (&— &) *+4£"]2,
Tag=Y{$os+ (— 1) %ip(b—o—2i") /[ (£—£0)2H4£7T2),  (a=1,2).
4 4 4
Z”aﬁ*”a'ﬁ=5aa’: Zg-aﬂeua’ﬂ= Zfrxﬂoua‘ﬁ =0, (e, a'=1,2)
6=1 g=1 f=1
and
21 (14— T etk [ (64D ) =1 (56)
’ (D=w)?  (Bta): ’

where on the left, the 4 goes with j=1, 2, 3 and the — with j=4, 5, 6; and on the right the 4 goes with j=
1,2, 4,5 and the — with j=3, 6.
C. Parallel Pumping

With a pumping field 7 sinwt along Oz, the interaction is
V(t) = —Hik sinot[7. 2 Sta”’+Ye 2 Sms” +¥n 2 L1a”]:
la mB la
If we now make the approximation (37) and apply successively the transformations (38) and (52), using (55)

and (42), we get _ _
[~ 0 Wu® Wu® [ an

V(t) =hh sinwtz [aklf, asz, ‘—OIIca:l Wzl(k) 0 W%(k) Qg2
k

_W31U°) Wa® 0 _] __""ak3f.J
[~ 0 Wi® W™ ] B okt |

F Lo, s’y —ong ]| Wsa® 0 Wie® Qs (57)

| Wes®  Wes® 0 _|L—ous_|
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in which terms diagonal in the o’s have been ignored, and where, omitting the index £,

'Yan _ Ye
(D—wi) (D—w;)  (B+w) (B+w;)

Wi =W ji* = 2NN (’Ye+ Vit bk (E—£0) 487177} ) , (58)

where + is for (35) =(12), (13), (23) and — for (ij) =(45), (46), (56).

Thus the perturbation does not mix different %’s, nor does it mix any of 1, 2, 3 with any of 4, 5, 6 (or 7, 8);
but it does contain a term ay;fous’ which indicates the possibility of simultaneous pumping in the 1 and 3 branches.
It is apparent since branches 1 and 3 are well removed from the remainder, that if the pumping frequency is in
the neighborhood of w;—ws (note: w3<0), we need only consider transitions of the 1 and 3 branches. Then, as in
the case of a ferromagnet, the rate equations with damping are

Ti+Ths

s 179 ® |2
=30 | Wi® [P (natmigt-1) (w—owu+towis)*+1 (Tt Tis)

—(mi—mu)) Ty (5=1,3),

where I'zy, I'is are linewidths appropriate to the 1, 3 branches, respectively. The threshold for instability of the
1-3 system is therefore

ho= {4Pk1rk3[(w— it wrs) 243 (Tra+Ths) 2]}1/2 50

(TratTus)? | Wis® |2

.
min k

It will now be shown that as long as | ws | KB~12SJ /% and ka1, the above critical field is essentially the same
as for the ferromagnetic case. This is not surprising, since it is known that low-frequency modes in the acoustic
branch generally are “unaware” of the crystal structure. First, from Eqgs. (56) and (58),

([vF?/ (D—wy) (D—ws) 14 {[v%/ (B4w) (B+ws) ]—1})?

W 2= . 60
o = TR/ (D) T Lt/ (B0 ) ([0 (B+an) 1 [ (D)1= 1) (0
Next, from Eq. (B4), and the fact that B~~A— B [Eq. (40) 7], it follows that
D BF? ~ F?
wi— = ~— -~
' D(A—-B)+AB—~% D+[(AB—v%)/(A—-B)]
N—-F"’/(wl—m) , (61)
the last step coming from Egs. (B4) and (B6). Hence
Fz/(D"wl) (D—ws)w(wl—wa)/(D—ws)Nl
and
FZ/(D—w1)2N(w1~w3)2/F2>>1.
Also, assuming | w3 | <KB~12S7 /%, we have by Egs. (40) and (41),
it/ Brr2 — 11k2a/96.
Hence to a good approximation,
g B WL/ 0 P (1e/96)] v @
B (o wn) Y PL(vE/ B —1] (w1—ws)? T (or—w)?’

the k variation being determined essentially by the denominator. Introducing Eq. (62) into Eq. (59) then gives

H

e { 4T3 T (o — wr3) 2[ (w— wmatns) 2+ 1 (TratTrs) 2]}1/ 2
¢ Y F? (T4 Tg)?

mink

_ fiw (T T3) 12
= AT (63)
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where w=wi+ | wrs | and we assume T, T'ks are inde-
pendent of k. This field is the same as in Eq. (33) for
the ferromagnetic case.

In the same way, the presence of a term apsfous™ in
Eq. (57), suggests the possibility of simultaneous
pumping in the 4 and 5 branches. It is likely however,
that the high frequency of the 5 branch (~10% cps)
would require high pump powers. But it should be
noted that in the conventional NMR experiment, in
which the static and rf fields are perpendicular to each
other, it is the depressed nuclear mode w; which is
excited: Coupling to the other nuclear mode ws is
negligible, essentially because the two nuclear moments
in a unit cell precess 180° out of phase (at £=0). Thus
in principle, parallel pumping is a means of exciting
the w, branch.

IV. ANTIFERROMAGNET WITH APPLICATION
TO RbMnF;

We now consider the cubic antiferromagnet and
specialize to RbMnF;. RbMnF; is a cubic antiferro-
magnet with very low anisotropy, the magnetic ions

Set=(25)"a,,

F. NINIO AND F

Sa=(25)"a,",
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being Mn?+. As in the case of MnFeyO,, it will be
assumed that for a given Mn ion, the nuclear and
electronic spins point in the same direction.

A. Hamiltonian

An appropriate Hamiltonian is
3e=2J Y Su+Spg+v.hi(Hs—H)
af

XD Set—yh(Ha+H) D Sg*+yhH
a 8
xEZIaZJr;IazJ—AEZL-Sa+;1,s-sﬂ]. (64)

where o and 8 refer to the 4 and B sublattices, respec-
tively. The terms in order are: antiferromagnetic ex-
change (J>0) ; combined electronic Zeeman and anisot-
ropy energy for the A sublattice and for the B
sublattice; nuclear Zeeman energy; hyperfine interac-
tion (4>0). The external field is along an easy direc-
tion z (and is assumed to be less than the critical flop
field). The summation over exchange terms will be
taken only over nearest 4-B pairs.
By the usual spin-wave theory, we first set

Sat=S—a,1a,,

Sgt=(25)12p,", Sg=(2.5) by, Sgz=—S=bsbg,

It= (2<IA5>) 1/2500
Igt= (2| (Ip*) |)"ds",

where [@a, @a"]=[05, bs"]=[ca, ca”]=[ds, ds"]=1 (all
a, ), all other pairs of creation and annihilation opera-
tors commuting. The choice of operators is in accord-
ance with Fig. 1(c). (I4*), (Ig*) are the average
nuclear angular momenta of the 4 and B sublattices,

respectively.
Substitution of Eq. (65) in Eq. (64), with neglect
of quartic terms, followed by the canonical trans-

formations
a=N"12)" exp(ik-Ry) t,
bk=N~1/ZZBj exp(—ik-Rg)bs,
ce=N-123" exp(ik-R,)ca,
dk=N‘Wzﬂ: exp(—ik-Rg)ds, (66)

where N is the number of unit cells in the crystal,
yields
3C= const
+4Y {Aatas+Diciton—Fa(atcit-acit) +Bbi b
k

+ Dyditdi— F 5 (it di+badic ") +wexvi (arbet-ai ™) } .
(67)

Ia~= (2<IAZ>) IIZCQT’
I = (2| {I*) |)"%dg,

ot= <IA2>_ CaTCm

Iy = (Ip*)+dgtds, (65)

Here
A =wo—o(Ha—H+Hya), Hoa=—Aa?)/(vH),
B=wex—Yo(Ha+H~+H,p), Huz=—A|(I5*)|/(vh),
Di=w,~+v,H, w,=AS/H,

Dy=w,~—7v.H,

Fa=(—Yenlna)"?,

Fp=(—vanHnp)"?,

wox =252 /1,
ve=272_ exp(ik-R),

the last sum being over the z nearest neighbors of a
given site. For RbMnFs, it will be assumed that
(I4?)= | (Iz*) | =(I?), which is adequate providing
the external field is small compared to hyperfine field
on the nuclei (~600 kOe). Then

HnA=HnB=HnE —'A <Iz>/(76ﬁ);

(68)

and

FA‘—‘FB:FE(""YeO)an)lﬂ- (69)

For later reference, we list some data obtained from

17D, T. Teaney, M. J. Freiser, and R. W. H. Stevenson, Phys.
Rev. Letters 9, 212 (1962) ; M. J. Freiser, P. E. Seiden, and D. T.
Teaney, ibid. 10, 293 (1963) ; H. Montgomery, D. T. Teaney and
W. M. Walsh, Jr., Phys. Rev. 128, 80 (1962).
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the papers in Ref. 17. For RbMnF; at 4.2°K,

H;=4.5 Oe; wex =1.6X 108 cps;
0w, =4.3X10° cps; H,=2.2 Oe. (70)
B. Normal Modes
From Eq. (67) we get the equations of motion
i(dX/dt) =MX, (71)
where X is the transpose of (ax, cx, bif, di') and
A —F4 vwex O
—F, Dy 0 0
M= (72)
—Yiwsex O —B Fp
0 0 Fg —D,
The eigenvalues of M are given by
[(A~) (B+w) —vidwa?]
X (D1—w) (De+w) —F 42(B+w) (Dytw)
—Fp(A —w) (Dy—w) +F42F2=0. (73)
With F4=Fz=0, Eq. (73) has the roots
w=211, D1, —%s, — D, (74)
where
#1=[}(A—B)+AB—wav?]*+3(A—-B),
w=[1(A—B)+AB—wud It~} (A—B), (75)

with x; and %, the unperturbed electronic frequencies.
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For RbMnFs;, from Eq. (70)
Dy>~Dy~4.3X10° cps,
%= A B—we2yi223.9X10% cps  at k=0, (76)

and we also have x1=Jx».

Suppose with F4 and Fps=0, the roots (74) go over
into wy, ws, ws, ws, respectively. The corrections (wi—x1),
(w2—Dy), etc., for the general case are given approxi-
mately in Appendix C.

For RbMnF;, we may simplify further to obtain

@ — Y won Hi (412 +wexwn) /%1%,

Dy —w,[ 1— (14 2y H yoex/ %12) 12,

i~ Xy o Ho (22 wexton) /5,

02— Dytw,[ 1— (142 Hwex /x122) Y2]. (77)

Inserting the values in Eq. (70) it is seen that the
fractional increase in the electronic frequencies (w; and
ws) 1s small (~7X10™%) but the fractional decrease in
the nuclear frequencies (w» and «,) is substantial
(~0.18). .

The normal modes of the system will be given by

(otk1, curs, s, ™) 7= SX, (78)
where S is chosen so that!6
SMS—1= diag(wi, ws, ws, 1),
and
S diag(1,1, —1, —1)S*= diag(1, 1, —1, —1), (79)

(* denotes Hermitian conjugate). In terms of the
eigenvalues,

YiWex ( D,— w1) M1 ’chwexF Al F BM1
(A—wy) (Dy—w) —F42 (A—w) (Di—ow)—F4? - Dy+-en
__F_g_li Yiwex ( Datws) ps YrwexF Bla
- Di—w, (B+w2) (Detwn) —F5? (B+aws) (Doton) — Fi?
S= _Fz_iﬁ:a‘_ Yiwex (Datws) us YrwexF B3 , (80)
K Di—o (B+ws) (Dytws) —Fp?  (B+ws) (Dotws) —Fp?
Yiwex (D1— og) VioxF apia Fpuy
(A=) (Di—wi) —Fs2  (A—wy) (Dy—wy) —F 42 K Daiton
where the u’s satisfy
’ i |2 {1_’_ F4? _ 'Yk2wex2[(D2+wj>2+F32:] } =41 ]-=2
(Di—w)?  [(B+w;) (Drtw;) —Fs* ’
=—1, j=3
» |2{ ’Ykiwex2[(D1"wj)2+FA2] . FF } " i=1
L(A—w;) (Di—w;) —Fa* ] (Dytw;)? ’
=—1, j=4

C. Parallel Pumping

With a pumping field % sinwt along Oz, the interaction is
V(t> =—"Hh Sinwi[Z(’YeSaz"*"YnIaz) + Z('Yesﬂz"l"‘/nlﬁz) :]
a . 8
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By successive use of Egs. (65), (66), (78), and (79), an expression of the form

V(l) = ﬁh sinwtz (qu, gy, — aksf, —a“f) [Wij(k)]((xmf, asz, — g3, — ozk,;) T
k

is obtained where terms diagonal in the o’s are omitted. Only the coefficients of aui'ars’ and aus’aus® are of interest,
corresponding to the joint excitation of nuclear and electronic magnons. Omitting the index %, one finds, for

ij=14 or 23,

{ - 'Ye[l - (wex7k2GiGj/ EiEj) J+7n[ (wex'Yk2F 52/ E,-Ej) - (F :‘2/ H:H f) ]}2

| Wi 2=

where

{[wetvi2(G2+F2) /EX]— (F2/H2) — 1} {14 (F/HR) — [wevi?(GA+F2) /EF]}
By = (g—wu) (D1—wn,4) —F 42,

Ej 3= (B+uws3) (Dotwss) — Fi?,

Gra=D1—w 45
H,4=Dy+w14;
F1—=—F3§ FA;

Go5=Dytws 3,
H2,3ED1—¢02,3,
FgEF4E FB.

As for the ferromagnetic case, with w™w+ | w4 |, we excite magnons in branches 1 and 4, and the rate equations

arels

(TratTes)

(j=1’ 4)

— (mrj— i) Thjy

ﬁkj=lh2 I Wi lz('ﬂkl"‘nm"' 1)

(0—wrt-wra) 21 (Trat-Tra) 2

where T}; is the “linewidth” of branch 7; and the critical field is given by

D= {4FklI‘k4[(w‘—wk1+wk4)2+%(P ot Ti) 2]} )
¢ (TratTra)? | Wea® |2

min &

With the data for RbMnF; [cf. (70)] as well as Eq. (77), | W [? can be simplified somewhat to

792{ ( 1 - 'Ykz) - 'Yk2[ (wkl+wk4) /wex] } 2

(81)

l I/V14 [2~

which is not as simple in its k dependence as the
corresponding expression for the ferromagnet.
For a rough order of magnitude to 4., we have

he~ (T1Tg) 2/ [W4y@ |. (82)

Taking I''~5X10® sec™?, T'y~10° sec™, and from Eq.
(81), | W@ | ~4X10° (G sec)™, we find #~25 Oe.

All of the numerical values of %. given in this paper
can be made smaller by reduction of the magnitude of
the decay rate of the electronic magnon, a reduction
which can be achieved by increase of sample perfection.
In very good single crystals of yttrium iron garnet this
decay rate approaches (as #—0) the value® 1.5X107
secl. Use of this value would reduce our estimates of
he to ~5 Oe.

Even the larger critical fields, however, can readily
be achieved with use of pulsing techniques. Provided
the pulse time exceeds T, critical absorption should
be observed; and it should thus be possible to excite
nuclear magnons with fairly substantial values of .

APPENDIX A

We derive here the cubics [Eq. (46)] satisfied by
the eigenvalues of M.

18 With RbMnF;, branches 2, 3 may probably also be excited

because w1+ | w | 42| wa | +ws.
19T, Kasuya and R. C. LeCraw, Phys. Rev. Letters 6, 223

(1961).

T 27 (wr1/wex) — (1—=72) J{ (1—%2) +[F?/ (Dytone) * 1}

By slight rearrangement, the characteristic equation
of M may be written

r ¢
=0, (A1)
T A
where
0 A—w F 0
A—w 0 0 F
r= ,
0 F D—w 0
F 0 0 D—w
A=(B+4w)l,

fu f i {u
$oa1 $o2 $o (o
0O 0 0 O

0 0 0 O

and T means transpose. It is an exercise in Ref. 20,

p. 102, that from the nature of the above matrices,
Eq. (A1) gives®

det(TA—{LT) =0, (A2)

20 P, R. Halmos, Finite-Dimensional Vector Spaces (D. Van

Nostrand Company, Princeton, New Jersey, 1958), 2nd ed.
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provided ws<—B. After performing the matrix multiplications, using definitions (42), Eq. (A2) becomes

— (8ot 2i8) (A—w) (0+B)—=2*(t4E)  F(ot+B) 0
(A—0) (0FB) —y*(£+£0) — (kb0 2i¢) 0 F(w+B) i
0 F(w+B) (D—w) (w+B) 0
F(w+B) 0 0 (D—w) (0+B)

In turn this may be partitioned into 2X2 matrices and, by use of the same device as above, reduced to a 2X2
determinant from which we get

(D—0)[(A~0) (04B) =¥ (ko) ]— F* (w4 B) = £ (D—0) [ (5.~ &) 24-4£2]2,
hence Eq. (46). The remaining two roots must be w=—B.
APPENDIX B

We estimate the two nuclear frequencies for MnFe;O4, as well as the electronic frequency w; near £=0.
It is convenient to write

(0—4) (0+B)+72= (0—1) (0—12),
x1=3(A—B)+[3(A—B)*+AB— £,

where

and

1=3(A—B)+[3(A— B+ AB— 7] (B1)
Setting w=D-n in Eq. (46), we find that » satisfies

P[9+2D—x1— %2 |+ (D— %) (D—x2) — F¥]— (D+B) F2=0,
so that

_ —[(D—x) (D—2)—F*] [li (1 42D ——3) <D+B>F2)m] 2

T T 2 2D—m— ) [(D—w) (D—m)—F2F
As long as | 7| «A—B~125J/%, it can be neglected on the right-hand side. Now, using the fact that the
greatest value of £ is 72, we have
4(xy+a,—2D) (D+B) F? 4(A-B-2D)(D+B)F* 4BF?
[(i—D) (D—w)+FF ~ [—D+D(A—B)+AB—12] " (A—B)[D+(AB—12v")/(A-B) T}’
Substitution of Eq. (40) in Eq. (B3) and use of the data given earlier for MnFe;O,, together with (I?)~2X 102
and (H,+2H,)~10® Oe., shows that

(B3)

4425(I%) «
[AD—~A(HA2H) P

The square root in Eq. (B2) may therefore be expanded, giving the two solutions

Eq. (B3)~

- (D+B)F? (D—x) (D—x2) — F? _ (D+B)F?
" D=%)(D=—%)—F’ 2D—m—m (D—#1) (D—ag) — 2’
and hence, on further neglecting small terms and using (B1),
wxYD— BF?/[D(A— B)+AB—~%] (B4)
or
BF?

w3 (A - B)~[1(A- B)*+AB—v%]"+ (BS)

D(A—B)+AB—%"

The first solution (B4) represents the nuclear modes and is certainly consistent with the assumption n<<4 — B.
The second solution (BS5) need not be. It will however be consistent if £x72 in which case (A B— %)< (4 —B)?
and o will be small. The usual approximation for the square root is then possible:
AB—% BF?
W — .
A-B ' DA-B)+AB—~%

(B6)
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This solution is negative. Since £(k=0) =72 for the -+ sign in Eq. (47), the frequency (B6) is identified with ws,
and the approximation will be valid for small k. On substituting Eq. (40) in Egs. (B4) and (BS5) and neglecting

small terms, we get Egs. (49) and (50).
APPENDIX C

We estimate the electronic and nuclear frequencies for an antiferromagnet.
To obtain w;, we put w=2x-+7 in Eq. (73). Then

[+ (a1— Dy) (wa+ Do) + (2251— Dit Dy) (a+2) — (Fa?+F5?) ]
+mln? 31+ 25— DitDs) + (10— Dy) (214 D) (w14 22) — Fa?(201+ B+Dy) — F? (25— A—Dy) ]
—[F4*(ar-+ B) (st Do) +F5* (11— A) (m— Dy) — Fa?F5*]=0. (C1)
If we assume #; $108 and neglect small terms in Eq. (C1), we get

1% (21— Dy) (214 Ds) + (201— Di+ Ds) (s1+22) ]
(a1~ D) (a1 Dy) (wi+22) — [Fa?(21+ B) (a+ Do) +Fg2(20:— A) (m— D1) ]=0.
Hence
_ — (xl_Dl) (xl—'Dz) (21 +22)
™= 2L (01— Dy) (st Do)+ (20— Dt Do) (- ) ]
% { [ A (13— Dy) (214 D2) + (221— Di+ Dy) (wr-+22) JTF 42 (%1+ B) (214 Dy) +F? (21— A) (21— Dy) ]]"?}
[ (w1— Dy) (14 D3) (14 2) P

and one must usually take only the — sign to be consistent with 5, 105, This yields wi=x1+mn1.
In the same way, putting w=Dy+nz, w=— x93, and w=—Dp+n4 in Eq. (73), yields ws, ws, and ws, where

- —wn(Di—m1) (Dit22) { - [1+ 2[ (D1~ 1) (Dy+%3) 420, (2D1— 1+22) ]FAz(Dl‘*‘B)]"'/?}
= [(Di= 1) (DiF2) + 20n(2D1— 11+2) ] wn(Di— 1) (DyF-2,) 2 ’

_ (22 D1) (02— Dy) (41+22)
" 20 (a4 D) (22— Dy) + (22054 Dy— D) (x1F2x2) ]

« { _ [ 4 (%3t D) (25— Dy) + (2w0+ Dy— Dy) (1+ %) LF 4%(22— B) (02— Do) +F? (22— A) (254 Dy) ]].,2}
[ (we=-D1) (25— Dy) (a1+22) 2 ,

— wn(D2+x1) (D2_x2) {1__ [1+ 2[(D2+x1) (DZ“-’)CZ)+2wn(2D2+x1—x2)]FB2(AV+D2)]U2}
m= (D2+x1) (Dg—xz) +2w,,(2D2+x1— xz) wn(D2+x1)2(D2_x2)2 ’

APPENDIX D procedure is permissible. However, the spin-wave

approximation [of the type Eq. (24)7] will have to be

In Sec. II, it was assumed that v,>0 and that the consistent with the equilibrium orientation of the elec-
hyperfine coupling constant A was large and positive. tronic and nuclear spins as determined by (a)-(e). In

It is of interest to look at some other possibilities: any case, with H along the positive Z axis, the elec-
tronic spins will point down. Hence in (b), (d), and (e)
(a) v.>0and 4 “small”, i.e., v.hH> | A | >O0. the average nuclear spin also points down, and in (a)

(b) v.>0 and A large and negative [written —4, and (c) it points up.
with 4>0]. Case (a). The large external field means that in the

(c) <0, A4 large, positive. Hamiltonian equation (1), we still use the substitution
(d) v»<0, 4 large, negative. of Eq. (24). Proceeding then as in Sec. IIB, one finds
(e) v.<0, 4 “small.” that all the results in that section hold except that now
A may be positive or negative.

In all cases we suppose there exists partial nuclear Case (b). The Hamiltonian is the same as Eq. (1)
polarization as in Sec. IIB and that a linearization with 4 replaced by —A. The appropriate spin-wave
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substitution is
Sit=(28)"at,
Si=(25)Y2q;,
S¢=—S+ata;
1= | 209 [ b,
1= | 219 [,

L= (I*)+b."b;;
yielding

ge=C+ 287 ;(afa;—aita;)+ (4 | (I?) | —vhH)

i
X 2 aitart(AS—yahH) D bi'bi— A4 | (I2)S [
X Z (a:dit+a:'b;),
where
C==52 i~ (va{l)—=7S) REN+AN(I%)S
i
and we retain only quadratic terms.

Applying next the Fourier transformations

= N_l/zz’fexp( —ik- Rz) 1233

bk=N‘1/2Z exp(—ik-R;)b;
gives
:fc=c+Zk[Akakfak+Bbk+bk—F(akbk*+ak*bk>],
where
Ar=—vhH+A | %) | +Jo—Ti,
B=AS—~,hH,
F=A4|{I%)S |

3¢ may then be diagonalized by the canonical trans-
formation

@y =qy, cosfy—0Bx sinby,
bk= — sin0k+;8k COSgk,

where tan26,=2F/(Ay—B), and a and B8 are com-
muting Bose operators.
Finally, there results

3e=C+ 2 (eraou o texsB:Bs)
k
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where
eta =% {Ax+B~+[ (4r—B)*+4F?]"2},
ap=3{As+B—[(Ade—B)*+4F* ]},
With F/(Ay— B)<1, these become
era~Ax+F%/(Ar—B),
ew~By—F*/(Ax—B),

so that « and B are, respectively, the electronic and
nuclear spin-wave branches.

If we now apply a pump field % sinw? along the Z axis
and proceed as in Sec. IIC we get the analog of Eq.
(31):

V(1) =% (Yn—"e) Fi h sinet ), sin26;(autBrtouBit) .
P

Hence by the perturbation theory
ke = —Toeg 257 (Ye—Yn) 2h? SIn*20 (#0128 — 1ka)
X8 (w+whe—wrs),

where fwre= —e€re; Tiworg= —erg [to preserve analogy
with Eq. (32)]. With the modification for linewidth
and dissipation, these become

Tika =15 (Yo—"Yn) i SIN*20% (11— 1ka)

v ThatThs
(0twra—wig) 2% (TratTis)?

- (nka_ﬁka) Fka;

Tig =16 (Yo—Yn) ? sin?20;, (o —1xp) (D1)

% Fka+rk3
(0+ora—wig) 2+ 5 (TratTis)?

which are of the form

d [ 7= —a—T, a Ne Nal'a
a\, )~ * !
ng a —a—Tg/ \mg nglg
where @ is positive. For the square matrix on the right,
the product of the eigenvalues is (¢-+T')(a+Tg)—a*>0,
and the sum is (—2e¢—T,—Tp) <0. The eigenvalues
are negative and there are no unstable solutions. In

fact the solutions decay exponentially with time,
attaining equilibrium values 7,, Ag given by

(ﬁa (a—}—I‘m —a \™! [Mals
Ag —a a+Tg gl
One can see from the Egs. (D1) that there is a kind of
positive feedback: if . increases, then #ig must de-

crease and the result is to reduce the rate of increase
of #re. This effect is due exclusively (if one ignores

— (1ms—7s) Trs,
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damping) to conservation of angular momentum, and
the assumption of the initial orientation of the nuclear
spins. The presence of dissipation only makes it “more
impossible” to obtain an instability.

Further because the solutions decay, there is no
average power absorption.

Case (¢) This goes through exactly as the problem
considered in Sec. IT, with the same conclusion.

F. NINIO AND F. KEFFER
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Cases (d) and (e): These go through exactly as
Case (b) and with the same conclusion.

Thus summarizing, pumping is possible for 4 large
and positive, regardless of the sign of 7., or for| 4 |
small and v,,>0.2

21 We are indebted to Dr. E. Schlomann for pointing out this
possibility (private communication).

Errata

Channeling in Diamond-Type and Zinc-Blende
Lattices: Comparative Effects in Channeling of
Protons and Deuterons in Ge, GaAs, and Si, A. R.
SATTLER AND G. DEARNALEY [Phys. Rev. 161, 244
(1967)]. The equation in Fig. 12 is incorrect. C should
be replaced by C’=C/A. Table IV contains a tabula-
tion of C’ values (not C values).

Dynamical Spin Correlations in Many-Spin Systems.
I. The Ferromagnetic Case, Raza A. Tanir-KHELI
[Phys. Rev. 159, 439(1967)]. In Eq. (C5) the first
term on the left side of the second equality should be
k2D, ® rather than kD ®. The second RPA(II) ex-
pressions for the longitudinal Green’s function, and
consequently those of the longitudinal correlation func-
tion, should be reinterpreted as being the principal-
value limits obtained when in the Green’s function
{({S*(1)S=(1")8#(3) )) the time 7, approaches the time
71’ from below and from above. In other words, Eq.
(B1) should read

M®p)Z,= lim (=1/28N) 22 20 T4 +(%, k—2)
e=—ifA,A=0 A P

X[exp(+iZ,e) +exp(—iZ,e) L Z,+ Exa— B
X {2M:P (v) [Grx(p—7) Jor. (k, K— )

~Gr(p)Jor (K, 2) J+Gr(p) — Grx(p—7) }-

Similarly, Eq. (B6) should read
[Mk(l) (V) :Ikinematical sum 1'u1e2nd RPA (ID

(=1/26M) 2./ > Geaa®(v—p, p)

= lim
8=1/2,e=—iBA,A=+0

X[exp(+iZ,e) —exp(—iZ,e) .
These prescriptions lead to the following unique results
[MD (v) Jaynamicat sum rute?™ #P4 D =4y (v) /B (v),
LMD (v) Jinematical sum rute™3 BPA ID =ey (v) /1 (v),
where Ax(v) and ex(v) are the same as given in Egs.

(B3) and (B7b) and where Bi(v) is obtained from
(B4a) by the relation

2
B () =% 20 B (v).
=

Similarly, &/(v) is obtained from Egs. (B7c) and
(B8b) by the relation

I (v) =3[P () + 2 () ]



