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The results of measurements of the a-axis and c-axis resistivity of a single crystal of the planar anti-
ferromagnet AuMn are reported for the temperature range 4.2—560'K. The resistivity of this material rises
rapidly with increasing temperature in the antiferromagnetic region, reaching a value of 61 pQ cm at the
Neel temperature of 500'K. Above this temperature, the resistivity increases linearly with temperature,
but with a smaller slope which is determined by the lattice resistivity. The single-crystal measurements
show a signi6cant anisotropy in the resistivity which is dependent on the state of the spin system. The
temperature dependence and the anisotropy of the resistivity are analyzed, taking into account the effects
of superzone boundaries associated with the spin ordering and also the presence of an anisotropic spin-
disorder contribution. The superzone boundaries introduce a relatively small anisotropy into the resistivity
( =8% at T=4.2'K) such that p, &p, while the spin-disorder resistivity contributes a much larger anisot-
ropy of the opposite sign in the temperature region 200—500'K. A simplified model of the AuMn magnetic
lattice is used to calculate the spin-wave contribution to the low-temperature resistivity using a one-band
model for the conduction electrons. This calculation is in good agreement with the magnitude and anisotropy
of the low-temperature resistivity. The spin-disorder resistivity is also treated using the quasielastic ap-
proximation with the effects of correlation in the spin fluctuations included. It is found that the magnitude
and form of the spin correlations can be directly related to the spin-disorder resistivity as a function of
crystallographic direction. The anisotropy of the spin-disorder resistivity observed in AuMn is discussed
in terms of anisotropic spin correlations for the temperature range 0.7 TN& T& T~.

I. INTRODUCTION

t iHE electrical resistivity of ferromagnetic and anti-..ferromagnetic metals has been the subject of a
number of experimental and theoretical investigations.
The resistivities of the ferromagnetic transition metals, '
of the heavy rare-earth metals, ' and of a variety of
intermetallic compounds' ' exhibiting magnetic tran-
sitions have been measured over the range of temper-
ature in which magnetic ordering takes place. In these
materials, one observes a signi6cant contribution to the
resistivity which is dependent on the magnetic state
of the system. However, the quantitative interpretation
of such resistivity data is often difhcult because of the
complicated electronic-band structures of these ma-
terials. In both the rare-earth and the 3-d transition
metals, there is a large contribution to the density of
states at the Fermi energy from electrons of predomi-
nantly d symmetry, so that s-d interband transitions
play an important role in determining the transport
properties. The interpretation of the spin-disorder re-
sistivity of the heavy rare-earth metals is further
complicated by their noncubic lattice symmetry and
complex spiral and helical magnetic structures. In this
paper, a detailed investigation is presented of the
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spin-disorder resistivity of the antiferromagnetic com-
pound AuMn. This compound is a particularly simple
one for study, because it has a two-sublattice anti-
ferromagnetic structure below 500'K, a lattice sym-
metry which is close to simple-cubic, and because the
contribution of d electrons to the density of states at
the Fermi energy is unusually small.

Several authors~' have investigated the spin-disorder
resistivity of magnetic metals using a spin-dependent
interaction of the form

EX = —2G8(R„—r) S„s.
Equation (1) describes the interaction between a con-
duction electron at r with spin s and a localized mag-
netic moment at R„with spin 8„. For a completely
disordered spin system, Eq. (1) leads to a spin-disorder
resistivity

p~ = (3~Em/25e') (G'jEF)S(S+1). (2)

The quantity E is the number of localized magnetic
spins per unit volume. Eq. (2) is satisled by the
heavy rare-earth metals in the disordered state using
values for G of the same order of magnitude as required
to explain the exchange interactions through the
Ruderman-Kittel-Kasuya- Yosida'~" RKKY mecha-
nism. The contribution to the resistivity arising from
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spin-wave —electron scattering has been calculated by
Kasuya' using a single-band approximation. In the case
of Gd, the single-band theory predicts a resistivity
which is two orders of magnitude too small in the
temperature region above 40'K for any reasonable
values of 6," Goodings" has extended the spin-wave
treatment to include the possibility of s-d interband
transitions. For the spin-disorder resistivity of Gd he
predicts a resistivity which has a predominantly linear
form above 40'K, and which is of the right order of
magnitude in comparison with experimental measure-
ments. A two-band theory is also required in the case
of the ferromagnetic 3-d transition metals. "'

A number of authors" have discussed the problem of
the localization of a magnetic state in a metal. For
dilute alloys of Mn with Cu, Ag, and Au, the localized
magnetic state has been described as a virtual bound
state within the host metal conduction band. The
transport cross section of such a state must be assumed
to contain both a spin-dependent and a spin-inde-
pendent part, both of which will contribute to the
resistivity in a dilute alloy. However, for the chemically
ordered AuMn alloy discussed here, the spin-inde-
pendent part of the conduction-electron —local-moment
interaction will not contribute to the spin-disorder
resistivity because of the Bloch theorem. We shall
assume here that the spin-dependent part of the inter-
action can be represented adequately by Eq. (1).Since
the localized magnetic state contributes a d-electron
density of states at the Fermi energy, one must consider
the inhuence of s-d interband transitions. In the analysis
of the results presented here, a one-band model will be
used. The justifications for the use of this simpli6ed
model are presented in Sec. II, along with a discussion
of the magnetic and electronic properties of the AuMn
lattice. We will find in Secs. IV and V that both the
magnitude of the low-temperature resistivity and the
anisotropy in the resistivity observed at higher temper-
ature can be accounted for semiquantitatively in terms
of a one-band free-electron model.

ometry (AuMn), the crystal transforms at about 500'K
to the two-sublattice antiferromagnetic structure shown
in Fig. I. This transformation is accompanied by a
martensitic transformation to a tetragonal lattice with
c/a=0. 97 (t& phase). For alloys with Au concentrations
of less than 51 at. %, a second transformation occurs
at a somewhat lower temperature to a diferent crystal-
lographic phase having a more complicated magnetic
structure. "This second transformation is inhibited for
bulk samples with Au concentrations in excess of
51 at.%. The single crystal discussed here was found
to be 51.5 at. % Au by chemical analysis, and showed
no evidence of a t~~t2 transformation over a period
in excess of two years.

The susceptibility" and electrical resistivity' of poly-
crystalline AuMn in the t& phase have been measured
over a broad range of temperature up to 1000'K.
The susceptibility has the usual form associated with
a simple two-sublattice antiferromagnet. From the
susceptibility in the paramagnetic region, one obtains
a paramagnetic Curie temperature 0~ of —280'K, and
a magnetic moment of 4.8 p~ per Mn ion/ Neutron-
diffraction measurements" give a magnetic moment of
between 4.0 and 4.2 p~ per Mn ion for this material,
which is in substantial disagreement with the above
estimate. These values were obtained without consider-
ing important contributions due to the spin-polarization
of conduction electrons in the vicinity of the magnetic
ion,"and thus should not be directly equated with the
magnetic moment associated with the manganese d
states. In the case of AuMn, a further complication is
involved. The interpretation of torsion measurements"
indicated that the sublattice magnetization was locally
pinned at random sites throughout the crystal. It is
possible that the magnetization may be pinned in
directions out of the aa plane at some of these pinning
sites. This kind of pinning would cause a reduction of
the intensity of the magnetic rejections observed in

II. MAGNETIC AND ELECTRONIC PROPERTIES
OF AuMn

The magnetic and crystallographic structure of the
AuMn compound has been investigated by neutron
diffraction" x-ray, " and torsion" studies. The alloy
crystallizes, in the simple cubic, ordered, CsCl structure
over a broad range of concentration around 50 at. % Au.
For concentrations within a few percent of ideal stoichi-
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FIG. 1. The magnetic structure of the t1 phase of AuMn,
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with the data of Fig. 2 at 500'K, and are plotted in
Fig. 2 along with the computed polycrystalline resis-
tivity for comparison. Also shown in Fig. 2 is an esti-
mate of the phonon contribution to the resistivity.
The absolute magnitude of these resistivity measure-
ments may be in error by as much as 10% because of
the difhculty in measuring sample size and probe
separation accurately. However, the relative magnitude
of the c-axis and a-axis resistivities is considered to be
accurate within 5% error since the two sets of data
were normalized to agree for T) T&, where the crystal
is cubic. The two samples used are considered to be
equivalent since they were cut from the same cross
section of a single crystal.

Analysis of Results

Assuming that the phonon contribution to the re-
sistivity is linear above 500'K, the linearity of the
resistivity-versus-temperature curve above 500'K indi-
cates that the spin-disorder resistivity is independent
of temperature in the paramagnetic region. Deviations
from a constant spin-disorder resistivity in the para-
magnetic region arising from temperature-dependent
spin correlations have been examined theoretically by
deGennes and FriedeP in terms of the parameter k~d,
where d is a nearest-neighbor distance. Their results
show that the deviations should be negligible for
k&d&4. The condition k&d&4 is satisfied by the AuMn
crystal for either singly or doubly valent Mn ion cores.

The phonon contribution to the resistivity shown in
Fig. 2 was estimated using the slope of the resistivity-
versus-temperature curve in the paramagnetic region,
and using the Gruneisen-Bloch formula for the lattice
resistivity. The Debye temperature chosen is that of
Au multiplied by the square root of the density ratio

p~„/p~„M . Subtracting the lattice and residual contri-
butions from the total resistivity above T=T&, we

obtain p~=47 pQ cm for the spin-disorder resistivity
in the paramagnetic region. Assuming Mn++Au+ ion
cores and S=—,', we find from Eq. (2) that G = 7.2 eV A'.
The parameter J(0) used by Yosida" is given by
J(0) =G/0=0. 44 eV, where 0 is the atomic volume.
The sign of the constant t" is not determined. The large
residual resistivity shown in Fig. 2 is to be expected
because of the disorder associated with the deviation
of 1.5 at. % from ideal stoichiometry.

Since the lattice is nearly cubic below 500'K, we

shall assume that the anisotropy of the resistivity
below 500'K may be attributed to the presence of the
planar magnetic ordering and the associated spin-wave
excitations. For a conduction-electron —local-moment
interaction of the form (1), the planar magnetic order-

ing of the Mn spins gives rise to a set of new band

gaps, ~ "of magnitude A~KG(S) 0 5eV at superzon. e
boundaries bisecting the vectors G&Q in reciprocal
space. The vector 6 is a reciprocal lattice vector, and
the wave vector Q = (0, 0, 1)s/c characterizes the spin
ordering. In the presence of these gaps, the cubic
symmetry of the Fermi surface is destroyed, resulting

in anisotropic transport properties. The quantitative
effect is expected to be small, however, unless the
superzone boundary is close to tangent to the original
Fermi surface, since it is only in this case that a large
reduction in Fermi-surface area occurs. The two types
of superzone boundaries which affect the AuMn Fermi
surface are shown in Fig. 3. This is a drawing of the
nearly free-electron Fermi surface for the case of
Mn++Au+ ion cores. The free-electron Fermi surface
for this case just touches the boundaries of the second
zone. The boundaries of the cubic erst B.Z. and the
associated band-gaps have been suppressed in the draw-
ing since the zone is full except for a small pocket of
holes in the (1, 1, 1) corners.

Assuming that the impurity scattering is isotropic,
we may attribute the anisotropy observed in the
residual resistivity to the distortion of the Fermi
surface resulting from the superzone boundaries. Thus
we conclude that the superzone boundaries introduce a
relatively small ( 8%) anisotropy in the resistivity
at T=O, and such that p, (0))p, (0). The large ani-
sotropy in the resistivity observed between 200 and
500'K, which has the opposite sign, will therefore be
attributed to the spin-disorder contribution p~. In order
to estimate the spin-disorder contribution we shall make
use of the results of Elliott and Wedgwood. " For a
single superzone boundary which cuts the Fermi surface
into two parts, and which bisects the vector G&Q = 21,
they And for the resistivity measured in the direction
of 1:

p(T) =Lp +p (T)+p~(T) j/L1 —h(T) j. (3)

Here p~, pz(T), and p~(T) are the residual, phonon,
and spin-disorder contributions to the resistivity in the
absence of the magnetic band gap, and b(T) =
(3z.l/4k~) (d,/Ep). For AuMn, we have 6/Er 0.07 at

MAGNETIC SUPERZONE

FIG. 3. ¹arly free-electron Fermi surface of AuMn in the
extended zone scheme, with representative magnetic superzone
boundaries included. The boundaries of the 6rst Brillouin zone
have been suppressed.
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T=0. Guided by the form of Eq. (3), we shall express
the resistivity in the form

In this section we shall analyze the spin-wave spec-
trum and the electron-magnon interaction of the AuMn
structure, and present the results of a calculation of the
contribution of magnon-electron scattering to the elec-
trical resistivity. To calculate the spin-wave spectrum
one should, ideally, have a theory which is capable of
predicting the exchange constants between ions at
arbitrarily large distances. However, estimates which
have been made' of the Neel temperature and para-
magnetic Curie temperature using RKKY'~" and vir-
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where pg (T) and pg (T) are the splI1-disorder re-
sistivities measured in the a and c directions. The
quantities 8 (T) and 8,(T) have the temperature de-
pendence of the sublattice magnetization. The measured
resistivity at T=4.2 K allows the unique determination
of only two of the unknown parameters 8 (0), b, (0),
and p . However~ wc can obtain thc correct sign foI'

the anisotropy p,~(T) p,~(T—) if we assume that
8,(0) =0 and evaluate 8, (0) and p" from the measured
resistivity at 7=4.2 K. Figure 4 shows the spin-
disorder resistivity computed by this procedure with

8g( T) 6tted to a Br1HoulIl function for S=g. Tlm
magnitudes of p,~(T) and p,~(T) shown in Iig. 4
should be considered only as rough approximations.
Figure 4 also contains the result of a spin-wave calcu-
lation which is discussed in Sec. EV.

tual state theories" do not give results accurate enough
to justify their use in determining the spin-wave
spectrum. The approach taken here is to use the sim-
plest model for the exchange interactions consistent
with the stability of the spin structure, and to evaluate
the exchange constants empirically using the measured
values for T~ and 8~. We shall see that all of the
important features of the spin-wave spectrum are prop-
erties of the symmetry of the system. Thus, since the
maximum spin-wave energy for a given Keel temper-
ature is relatively independent of the range of the
exchange interactions, we should obtain a reasonable
Grst approximation to the excitation spectrum.

We shall now adopt a model which includes only
first- and second-nearest-neighbor exchange. Ke shaB
also neglect the slight tetragonal distortion of the lattice
and assume that the exchange interactions have cubic
syQlnlctI'y. Thc deviation from cubic syIDIIlctry glvcn
by current theories'~" "of the indirect exchange inter-
action are small for the first few neighbor shells. The
stability of the AuMn spin structure requires that the
6rst-nearest-neighbor exchange J~ be ferromagnetic,
that the second-nearest-neighbor exchange J~ be anti-
ferromagnetic, and th«4

l A l& l Ji l.32»«oducing a
small anisotropy field H& to stabilize the array, the
Hamiltonian is

H = —Q Jg8; Sg+2psHgLQ Sp —Q S, ]. (6)

The quantity S~ denotes a spin which is a erst or
second neighbor to the spin 8;, and the f' direction is
de6ned as the axis of qu.antlzatlon, which ls an a axis.
The indices j and P denote sites on the up and down
sublattices, respectively. Adopting the convention that
Jy and J2 bc posltlvc then J g=Jy fol $= j.st-nearest
neighbors, and J;~———J2 for 6=2nd-nearest neighbors.
Using the Holstein —Primakoffs' transformation to the
spin-wave variables

a, = (SS) 'I' Q exp(iq R;) S;+,

b, = (S )S'"]T-exp( iq —Rs) Ss
P

and diagonalizing the Hamiltonian through the trans-
formation to normal-mode spin-wave variables

Pa =NA vaja ~

one obtains the following expression for the spin-wave
energy:
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A~ =2SL4Jp (1+c,c„)—2 J~ (c,+c„—l) 1+cup,

B~=2SL4J2 (cgc~+c~c,) —2Jycg1, (l0)
FIG. 4. The a-axis and c-axis spin-disorder resistivities of AuMn

versus temperature.
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and the spectrum is douMy degenerate. The qua, ntity
Mg ls glvcn by cog =2pgIIg, Rnd cg=cosg&c, ctc.

Within the 6rst magnetic Brillouin zone, which is
tetragonal with c/a=-', , the dispersion relation (9) has
relative minima at the points (0, 0, 0), &(1,0, 0)7r/g,
and & (0, 1, 0)~/a. In the limit as H~—i0, the spin-wave
energy bccorncs zcI'o Rt cRch of thcsc points. Thc
cxlstcncc of Irllnilrla in thc cnelgy Rt the latter two
points (we will denote these points by qo) on the faces
of thc ZOQc 18 R 1'csult, of thc assumption of cubic
symmetry for the exchange constant J;;, and is inde-
pendent of the range of thc cxchRQgc interactions. '0

Thc energy gRps at, thc points Q =0 Rnd q =qo RI'c glvcQ

by E(0) =LSS(4J&—Ji)co&7i", and E(qo) =L8SJ,u&7'~'.

In the vicinity of these points, the surfaces of constant
cQcr'gy form CHIpsolds. Using cxplcsslons for T~ RQd

B„derived from molecular-field theory, we find Ji/ks ——

1'S'K, and (4J2—Ji)/ks =33'K. The magnitude of
4J~—J» can also be related to the perpendicular suscepti-
bility, with the result xi=Eps'/2(4J2 —Ji) =2.8X 10 '.
This value for x~ is of the right order of magnitude
when compared with the measured susceptibility at the
Neel temperature, 2' x(T~) =2.5X10 ', and with the
susceptibility difference at room temperature, "

9.SX10 '. Tahir-Kheli, Callen, and Jarrett"
have computed T~ for the AuMn structure as a function
of J» and J2 using a Green'8 function "random-phase"
approximation. Their results predict exchange constants
approximately twice as large as the above estimates.
We shall assume here that Ji/ks = (4J2—Ji) /ks~30'K.
Thus the ellipsoidal energy surfaces are approxin1ated

by spheres, which is of little consequence since the
principal source of anisotropy in the resistivity is found
to be the geometry associated with umklapp processes.
Assuming an anisotropy 6eld of the order of j.9' Oe, '9

wc Gnd that the minimum excitation energy is given by
E„/ks~30'K. Since we are primarily interested in the
resistivity for temperatures above 30'K, we will simplify
further by IQRklng thc assumption that Hg=0. Then
the excitation spectrum in the vicinity of the point

q = (0, 0, 0) has the form

clcctl OD Hamlltonian:

H'=(S1V)'" g (I,+v, )

XGL(~a+Pa') Cj i'C» ~(& Ir' —q+—~)

+ (a~t+P~) Clr'( tCi, i8(lr —Ir'+q+~) 7. (12)

Terms describing the interaction between the con-
duction electrons and the long-range order of the mag-
netic system have been dropped, since this interaction
has already been accounted for in terms of the band
gaps discussed in Sec. IIL The vector z is a reciprocal
lattice vector associated with the magee6c symmetry.
The important feature of this equation is the wavc-
vector dependence coming from the transformation
coeKclcnts Ng Rnd Pt»~ So that thc probablhty of thc
transition k~k' will be proportional to the quantity
(N~+v(, )'=(A, —8,)/E(q), where lr —lr'=q+~. For
wave vectors near zero, this quantity is proportional
to q, resulting in a T~ contribution to the resistivity
from normal processes. ~ For wave vectors near qo, the
quantity (I~+v~)

' approaches the large constant value
(8SJi/or~)'i'. As a result, the thermally-excited mag-
nons with wave vectors near qo make the la,rgest contri-
bution to the low-temperature resistivity. Thus the
critical nature of the assumption of cubic symmetry
for the exchange constants is seen, since it is this
assumption which results in the zero in the energy at
thc polDts qo.

Spin-Disorder Resistivity

Using thc vRllRtlonRl Il1cthod ln thc fol'IIl dcscllbcd
by Ziman, '~ and assuming a spherical Fermi surface,
wc obtain the foBowing expression for the electrical
resistivity'0:

'"& d'E(K*X') '(A, —B,)
E(1—e ') (e*—1)

and

E(q) =4»ioz.

ID thc vlclnlty of thc polDts Qo, thc cxcltRtlon spectrum
ha, s the identical form when the variable q.'=q —qo is
substituted fol g. Thc llneRr depcndcDcc on wRvc vector
is a property of the two-sublattice structure, and thus
is independent of the particular model used for the
exchange interactions.

Vsing the second quantized form for the conduction
electron-localized spin intera, ction, and transforming
to ma, gnon variables using the inverse of Eqs. (7) and
(8), we obtain the following expression for the magnon-

This equation contains contributions from both normal
and umklapp processes, and is also capable of giving
anisotropy in the resistivity through the factor (K E) '.
For temperatures small compared to T~, the principal
contributions to the integral occur for values of q
lying within spheres of radius q„=ksT/4SJia, about
the points q=o and /=go. In K space, there are a
large number of such spheres centered about the points
~ and ~+q0. This is a result of the fact that there are a
large number of reciprocal lattice vectors g with magni-
tude less than 2k'. Thus umklapp processes play the
dominant role, since they are more heavily weighted
because of the large momentum. transfer K. Using the

"A. A. Serdyshev and I. ¹ Vlasov, Phys. Metals Metallog.
(USSR) ~0, &3a (~9t.o).



ANISOTROPIC SPIN-DISORDER RESISTIVITV OF Auln 731

approximation T&&X'~„ the contributions from both
normal and umklapp processes have been calculated
for the a and c directions, "and the result is shown in
Fig. 4. The normal and umklapp processes associated
with wave vectors near q=0 make contributions pro-
portional to T' and T4, respectively. The largest contri-
bution, proportional to T', comes from normal and
umklapp processes involving wave vectors near qo.

It should be noted that the magnitude of the spin-
disorder resistivity depends critically on the magnitude
of the exchange constan. ts J~ and 4J~—J~, as well as
on the magnitude of kp. Further, since we have ne-
glected the e6ect of a finite energy gap in the spin-wave
spectrum due to the presence of an anisotropy field, a
close- agreement between the experimental and theo-
retical temperature dependences should not be expected.
The anisotropy of the resistivity is, however, a property
of the geometry associated with umklapp scattering
processes, so that the qualitative result p,)p, would
be likely to remain in a more detailed calculation. We
can see from Fig. 4 that the predicted anisotropy of
the spin-disorder resistivity is in qualitative agreement
with the experimental measurements.

V. ANISOTROPY OF THE SPIN-DISORDER
RESISTIVITY, QUASIELASTIC THEORY

%e shall now examine the eGects on the resistivity of
temperature-dependent spin correlations, using the
quasie)astic approximation, in order to relate the ani-
sotropy of the resistivity observed just below T~ to
the anisotropy of the spin correlations. The validity of
the quasielastic approximation in the high-temperature
region has been examined by deoennes and Friedel. '
Their results indicate that the analysis presented here
should be qualitatively valid for temperatures 7"&0.7T&.

Using the interaction (1), and taking the ensemble
average over all states of the spin system, the square
of the matrix element for transitions between conduc-
tion electron states k and k' can be written in the form

nm

(14)

where K=k —k', and the ensemble average is denoted
by ( ~ ~ )r. Defining the pair correlation function g(R„)
by

g(R„) = (88p'88„)r = (Sp' S )r —(Sp)r (S„)r (15)

where 88„=S„—(8„)r, and Sp is a spin at R =0, we
can rewrite Eq. (14) in the form

)
(Ir' j H [

Ir)('=G'X g exp(iK R„)
n

XLg(R )+(8» ) ~ (S )r] (16)

The second term in the square brackets describes the
interaction between the conduction electrons and the
long-range order of the spin system. This interaction

has already been accounted for in terms of the band
gaps discussed in Sec. III. Thus the spin-disorder
resistivity is completely determined by the pair corre-
lation function g(R„), which is a measure of the corre-
lations between the Quctuations of the spins. We also
see from Eq. (15) that the function g(R„) is a measure
of the excess of short-range order over long-range order,
since for neighboring spins S; and S;, the short-range
order parameter is usually defined as (S; 8;)r.

Using the variational solution'~ for the electrical
resistivity in the presence of elastic scattering, the
following expression for the electrical resistivity is ob-
tained":

ps=G'EB g g(R„)fs(R„), (17)

where

'"i (K.E)' cos(K R„)O'K

E (18)

and 8=9/16Ae'vr, 'kp'. Denoting the average resistivity
by p =

p (p +p„+p,), and the anisotropy of the re-
sistivity by Ap=p —p„we find by performing the
integration (18)

p=A QL(x„)g(R„),

L(x) =p(1/x')( —x'cosx+2xsinx —2(1—cosx) j, (19)
and

~p=& g G(x )g(E„)icos'(8„ f) —cos'(B„k)j
G(x) = (1/x') I:—x'cosx+5x»nx —8(1—cosx)], (20)
where x„=2k'„. The quantity 3 is given by Q=
36prXG'/he'v p', and we note that L(0) =—,'„and
G(0) =0. In the absence of pair correlations, the ani-
sotropy is zero, and the expression for average re-
sistivity reduces to the standard result' pp= ~', A (65pp),
where (85p') =S(S+I) —(S)'.

The most significant feature of Eqs. (19) and (20)
is the property that highly anisotropic spin correlations
can cause a fractional anisotropy dp/pp which is con-
siderably larger than the fractional change in the aver-
age resistivity (p —pp)/pp. Considering nearest-neighbor
spin correlations in the AuMn lattice (kv =1.42v./a), we
find that anisotropic correlations can cause a fractional
anisotropy of up to 58% of the fractional spin corre-
lation ~(88p ~ 8Si)~/(8$p'), while the maximum possible
change in the average resistivity is about half this
amount. Thus it is possible to attribute the rapid
buildup of anisotropy in the resistivity (Fig. 4) as the
temperature is reduced below TN to the buildup of
anisotropic spin correlations associated with the planar
magnetic ordering.

In the presence of large numbers of spin-wave exci-
tations, the precise form of the correlation function may
be quite complex. Close to the Xeel temperature, how-
ever, large scale fluctuations occur in the spin system



W. BINDLOSS

with spin correlations extending over considerable dis-
tances and taking a form characteristic of the stable
magnetic structure. " Thus for temperatures close to
T~, a possible correlation function would be

g(R„) =y(E) cos(Q.R„), (21)

where Q has magnitude m/a and is directed along one
of the three axes, and y(R) is an envelope function
which becomes small for large E.. In the paramagnetic
region, the vector Q could be directed with equal
probability along any one of the three crystallographic
axes. At temperatures below T~, where a c axis is
de6ned, the spin correlations can be assumed to have
a tetragonal form which becomes increasingly pro-
nounced with decreasing temperature. The behavior
shown in Fig. 4 can be accounted for on this basis if
we assume that the polarization Q=(0, 0, 1)x/u be-
comes increasingly favorable with decreasing temper-
ature. This is equivalent to assuming that the short-
range order has the same planar form as the long-range
order. Using Eq. (21) with the substitution

Q= (0, 0, 1)s-/u,
we 6nd

ap ~(~S. ~S,),~
[(ss, ss,),)

ys, '), (ss,'),
Here Sj and 82 are spins in the erst- and second-neighbor
shells to the spin S~. The contribution to Eq. (22)
from correlations with spins in the third- and fourth-
neighbor shells is':zero, and the'contributions are rela-
tively small from correlations with spins beyond the
fourth-neighbor shell. The contributions of 6rst- and
second-neighbor correlations to the quantity (p —po)/po
are less than 10% of the fractional spin correlations.
Thus planar spin correlations have the eGect of raising
the transport cross section measured in the x direction
and lowering the transport cross section measured in
the s direction, leaving the resistivity averaged over
direction relatively unchanged. This is consistent with
the earlier conclusion that the spin-disorder resistivity
is approximately temperature-independent in the para-
magnetic region.

VI. DISCUSSION

The major approximation we have made in discussing
the spin-disorder resistivity of the AuMn compound
has been the use of a one-band, free-electron model in
which the effects of s-d interband transitions were
neglected. The justification for the use of this model
was based on the conclusion that the d-electron contri-
bution to the Fermi-level density of states is a relatively
small percentage of the total, and on the observation
that a good order of magnitude estimate of the lattice

'5 L. Van Hove, Phys. Rev. 95, 1374 (1954); M. J. Cooper and
R. Nathans, J. Appl. Phys. 37, 1041 (1966).

resistivity can be obtained using the same model. %'e
have found that the magnitude of the low-temperature
spin-disorder resistivity can be explained using spin-
wave theory, provided that the eBects of umklapp
processes and of low-energy spin-wave modes with
wave vectors near q =& (1, 0, 0)s/a and q =
~ (0, 1, 0)m/a are included. However, the magnitude of
the low-temperature resistivity calculated using spin-
wave theory was found to depend primarily on the
excitation of these large-q spin-wave modes, which
would only occur if the exchange constant J;, between
Mn spins had a symmetry close to cubic. We have
assumed here that the tetragonal distortion and the
presence of the planar magnetic ordering have a negli-
gible effect on the symmetry of the exchange constant,

We have treated the effects on the resistivity of spin
correlations using a quasielastic approximation, and
have found that the correlation of the spin Quctuations
is related in a very simple and direct way to the ani-
sotropy of the spin-disorder resistivity. The most im-
portant result of this theory is that strongly anisotropic
spin correlations can cause a signi6cant anisotropy in
the spin-disorder resistivity, while the effect on the
resistivity averaged over direction is usually less sig-
ni6cant. The anisotropy of the spin-disorder resistivity
of AuMn in the temperature range 0.7&T&T~ can
thus be qualitatively understood in terms of anisotropic
spin correlations, provided that the fractional spin corre-
lation

~
(ISO 8S„)~/(5502) is large for near-neighbor spins.

This calculation can also be used for interpreting the
resistivity in the paramagnetic regions of noncubic
metals such as the heavy rare earths, in which aniso-
tropic,

'

spin correlations could, persist to quite high
temperatures. The presence of anisotropic spin corre-
lations would provide a possible mechanism for ex-
plaining the large temperature dependeut frac-tional ani-
sotropy (p,—p,) /p observed in the paramagnetic regions
of the rare earths Tb, Dy, Ho, and Er."
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