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The results of measurements of the g-axis and c-axis resistivity of a single crystal of the planar anti-
ferromagnet AuMn are reported for the temperature range 4.2-560°K. The resistivity of this material rises
rapidly with increasing temperature in the antiferromagnetic region, reaching a value of 61 uQ cm at the
Néel temperature of 500°K. Above this temperature, the resistivity increases linearly with temperature,
but with a smaller slope which is determined by the lattice resistivity. The single-crystal measurements
show a significant anisotropy in the resistivity which is dependent on the state of the spin system. The
temperature dependence and the anisotropy of the resistivity are analyzed, taking into account the effects
of superzone boundaries associated with the spin ordering and also the presence of an anisotropic spin-
disorder contribution. The superzone boundaries introduce a relatively small anisotropy into the resistivity
(=~8% at T'=4.2°K) such that p,>pa, while the spin-disorder resistivity contributes a much larger anisot-
ropy of the opposite sign in the temperature region 200-500°K. A simplified model of the AuMn magnetic
lattice is used to calculate the spin-wave contribution to the low-temperature resistivity using a one-band
model for the conduction electrons. This calculation is in good agreement with the magnitude and anisotropy
of the low-temperature resistivity. The spin-disorder resistivity is also treated using the quasielastic ap-
proximation with the effects of correlation in the spin fluctuations included. It is found that the magnitude
and form of the spin correlations can be directly related to the spin-disorder resistivity as a function of
crystallographic direction. The anisotropy of the spin-disorder resistivity observed in AuMn is discussed
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in terms of anisotropic spin correlations for the temperature range 0.7Ty<T < Ty.

I. INTRODUCTION

HE electrical resistivity of ferromagnetic and anti-

ferromagnetic metals has been the subject of a
number of experimental and theoretical investigations.
The resistivities of the ferromagnetic transition metals,!
of the heavy rare-earth metals,> and of a variety of
intermetallic compounds®—5 exhibiting magnetic tran-
sitions have been measured over the range of temper-
ature in which magnetic ordering takes place. In these
materials, one observes a significant contribution to the
resistivity which is dependent on the magnetic state
of the system. However, the quantitative interpretation
of such resistivity data is often difficult because of the
complicated electronic-band structures of these ma-
terials. In both the rare-earth and the 3-d transition
metals, there is a large contribution to the density of
states at the Fermi energy from electrons of predomi-
nantly d symmetry, so that s-d interband transitions
play an important role in determining the transport
properties. The interpretation of the spin-disorder re-
sistivity of the heavy rare-earth metals is further
complicated by their noncubic lattice symmetry and
complex spiral and helical magnetic structures. In this
paper, a detailed investigation is presented of the
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spin-disorder resistivity of the antiferromagnetic com-
pound AuMn. This compound is a particularly simple
one for study, because it has a two-sublattice anti-
ferromagnetic structure below 500°K, a lattice sym-
metry which is close to simple-cubic, and because the
contribution of d electrons to the density of states at
the Fermi energy is unusually small.

Several authors® have investigated the spin-disorder
resistivity of magnetic metals using a spin-dependent
interaction of the form

H=—-2G5(R,—1)S,s. €))

Equation (1) describes the interaction between a con-
duction electron at r with spin s and a localized mag-
netic moment at R, with spin S,. For a completely
disordered spin system, Eq. (1) leads to a spin-disorder
resistivity

pM = (3w Nm/2he*) (G*/ Er) S(S+1). (2)

The quantity NV is the number of localized magnetic
spins per unit volume. Eq. (2) is satisfied by the
heavy rare-earth metals in the disordered state using
values for G of the same order of magnitude as required
to explain the exchange interactions through the
Ruderman-Kittel-Kasuya-Yosida®*? RKKY mecha-
nism. The contribution to the resistivity arising from
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spin-wave—electron scattering has been calculated by
Kasuya® using a single-band approximation. In the case
of Gd, the single-band theory predicts a resistivity
which is two orders of magnitude too small in the
temperature region above 40°K for any reasonable
values of G.»* Goodings' has extended the spin-wave
treatment to include the possibility of s-d interband
transitions. For the spin-disorder resistivity of Gd he
predicts a resistivity which has a predominantly linear
form above 40°K, and which is of the right order of

magnitude in comparison with experimental measure- -

ments. A two-band theory is also required in the case
of the ferromagnetic 3-d transition metals.14:15

A number of authors'® have discussed the problem of
the localization of a magnetic state in a metal. For
dilute alloys of Mn with Cu, Ag, and Au, the localized
magnetic state has been described as a virtual bound
state within the host metal conduction band. The
transport cross section of such a state must be assumed
to contain both a spin-dependent and a spin-inde-
pendent part, both of which will contribute to the
resistivity in a dilute alloy. However, for the chemically
ordered AuMn alloy discussed here, the spin-inde-
pendent part of the conduction-electron-local-moment
interaction will not contribute to the spin-disorder
resistivity because of the Bloch theorem. We shall
assume here that the spin-dependent part of the inter-
action can be represented adequately by Eq. (1). Since
the localized magnetic state contributes a d-electron
density of states at the Fermi energy, one must consider
the influence of s-d interband transitions. In the analysis
of the results presented here, a one-band model will be
used. The justifications for the use of this simplified
model are presented in Sec. II, along with a discussion
of the magnetic and electronic properties of the AuMn
lattice. We will find in Secs. IV and V that both the
magnitude of the low-temperature resistivity and the
anisotropy in the resistivity observed at higher temper-
ature can be accounted for semiquantitatively in terms
of a one-band free-electron model.

II. MAGNETIC AND ELECTRONIC PROPERTIES
OF AuMn

The magnetic and crystallographic structure of the
AuMn compound has been investigated by neutron
diffraction,!” x-ray,® and torsion® studies. The alloy
crystallizes in the simple cubic, ordered, CsCl structure
over a broad range of concentration around 50 at.%, Au.
For concentrations within a few percent of ideal stoichi-
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ometry (AuMn), the crystal transforms at about 500°K
to the two-sublattice antiferromagnetic structure shown
in Fig. 1. This transformation is accompanied by a
martensitic transformation to a tetragonal lattice with
¢/a=0.97 (4 phase). For alloys with Au concentrations
of less than 51 at.9, a second transformation occurs
at a somewhat lower temperature to a different crystal-
lographic phase having a more complicated magnetic
structure.”” This second transformation is inhibited for
bulk samples with Au concentrations in excess of
51 at.9,. The single crystal discussed here was found
to be 51.5 at.9, Au by chemical analysis, and showed
no evidence of a #—f, transformation over a period
in excess of two years.

The susceptibility? and electrical resistivity® of poly-
crystalline AuMn in the 4 phase have been measured
over a broad range of temperature up to 1000°K.
The susceptibility has the usual form associated with
a simple two-sublattice antiferromagnet. From the
susceptibility in the paramagnetic region, one obtains
a paramagnetic Curie temperature 0, of —280°K, and
a magnetic moment of 4.8 up per Mn ion.? Neutron-
diffraction measurements!” give a magnetic moment of
between 4.0 and 4.2 pg per Mn ion for this material,
which is in substantial disagreement with the above
estimate. These values were obtained without consider-
ing important contributions due to the spin-polarization
of conduction electrons in the vicinity of the magnetic
ion," and thus should not be directly equated with the
magnetic moment associated with the manganese d
states. In the case of AuMn, a further complication is
involved. The interpretation of torsion measurements®
indicated that the sublattice magnetization was locally
pinned at random sites throughout the crystal. It is
possible that the magnetization may be pinned in
directions out of the aa plane at some of these pinning
sites. This kind of pinning would cause a reduction of
the intensity of the magnetic reflections observed in

Mn

F16. 1. The magnetic structure of the # phase of AuMn.
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neutron-diffraction measurements, resulting in a low
estimate for the magnetic moment.

According to the usual description of a localized
magnetic state,'® a magnetic moment substantially less
than 5 up per Mn ion would result in a large d-electron
contribution to the density of states at the Fermi
energy. Measurements of the electronic specific heat?
of the AuMn compound give a density of states at
the Fermi energy of 0.445 el./eV atom. Comparing this
result with the values for ¥ Mn (3.9 el./eV atom),®
50 at.9, CuMn (/2.5 el./eV atom),* and the ferro-
magnetic 3-d transition metals (X2 to 3 el./eV atom),®
it is apparent that the large d-state contribution which
is usually observed is not present in the AuMn com-
pound. The value 0.445 el./eV atom is in fact only
499, larger than the free-electron value for the case
of Mn* tAut ions (1.5 el./atom). Since we can expect
an enhancement of the free-electron specific heat of
209, or more due to electron-phonon interactions, we
conclude that the d-electron contribution is a relatively
small percentage of the total Fermi-level density of
states. This result suggests that the magnetic moment
per Mn ion may be close to 5 ug. Thus, on the basis
of the specific-heat result, we shall assume a nearly
free-electron approximation based on Mn* +Au* ion
cores and a spin-§ state for the Mn*+ ion. The most
important consequence of this assumption is that the
effects on the spin-disorder resistivity of magnon-
induced s-d interband transitions are neglected. These
transitions result in an enhancement of the spin-disorder
resistivity at temperatures large enough to excite mag-
nons whose wave vectors span the distance between
s- and d-electron Fermi surfaces.* However, since the
d-electron-state density is small, the one-band model
is considered to be a reasonable first approximation for
this material.

The validity of a one-band model can also be ex-
amined in the light of the lattice resistivity, since
phonon-induced interband transitions enhance the lat-
tice resistivity in the same manner that magnon-
induced transitions enhance the spin-disorder resis-
tivity. Let us characterize the magnitude of the lattice
resistivity by the dimensionless parameter?

R=(4emk50p/m%52-150,,.T) pr,

which is approximately the ratio of the measured lattice
resistivity pz, to the theoretical lattice resistivity given
by the Bloch formula for a one-band, free-electron
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F1G. 2. The a-axis and c-axis resistivities of AuMn versus
temperature.

metal. One finds that for most of the nontransition
metals R varies between 1 and 4. On the other hand,
for the 3-d, 4-d, and 5-d transition metals R varies
between approximately 10 and 60, indicating that for
these materials a substantial enhancement is present.
Using the estimate of the lattice resistivity of AuMn
obtained in Sec. ITI, we find R~3.5. This value, by
comparison with those above, suggests that interband
transitions do not greatly enhance the phonon resis-
tivity of AuMn, and correspondingly that a reasonable
first approximation to the spin-disorder resistivity can
be obtained using a one-band model.

III. EXPERIMENTAL RESULTS

The procedure used in the growth of the single crystal,
and its analysis by x-ray and torsion studies has been
described in detail elsewhere.® Two resistivity samples,
with cross-section 1X1 mm and length 5 mm, were
spark-cut from a finely-twinned crystal containing
two twin orientations sharing a common ¢-axis. In the
a-axis sample, both twins share a common ¢ axis which
is directed along the length of the sample. In the c-axis
sample, the ¢ axis of the predominant twin is directed
along the length of the sample. The volume ratio of
the two twin orientations in the c-axis sample was
found to be 3:1 by torsion measurements.

Resistivity measurements were made using a four-
probe device with current and potential probes spring-
loaded against the sample. The potential probes, which
were separated by approximately 2 mm, were cemented
into a Bakelite block, and the entire block was spring-
loaded against the sample so that the probe separation
was reproducible. The temperature of the sample was
measured by a calibrated copper-constantan thermo-
couple which was glued directly to the surface of the
sample.

In Fig. 2, the measured ¢-axis and c-axis resistivities
are plotted versus temperature. The c-axis resistivity
was computed using the measured twin ratio of the
c-axis sample. The data of Gainsoldati and Linde* on
polycrystalline AuMn have been normalized to agree
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with the data of Fig. 2 at 500°K, and are plotted in
Fig. 2 along with the computed polycrystalline resis-
tivity for comparison. Also shown in Fig. 2 is an esti-
mate of the phonon contribution to the resistivity.
The absolute magnitude of these resistivity measure-
ments may be in error by as much as 109, because of
the difficulty in measuring sample size and probe
separation accurately. However, the relative magnitude
of the c-axis and e-axis resistivities is considered to be
accurate within 59, error since the two sets of data
were normalized to agree for 7> Ty, where the crystal
is cubic. The two samples used are considered to be
equivalent since they were cut from the same cross
section of a single crystal.

Analysis of Results

Assuming that the phonon contribution to the re-
sistivity is linear above 500°K, the linearity of the
resistivity-versus-temperature curve above 500°K indi-
cates that the spin-disorder resistivity is independent
of temperature in the paramagnetic region. Deviations
from a constant spin-disorder resistivity in the para-
magnetic region arising from temperature-dependent
spin correlations have been examined theoretically by
deGennes and Friedel® in terms of the parameter kpd,
where d is a nearest-neighbor distance. Their results
show that the deviations should be negligible for
krd>>4. The condition kpd>4 is satisfied by the AuMn
crystal for either singly or doubly valent Mn ion cores.

The phonon contribution to the resistivity shown in
Fig. 2 was estimated using the slope of the resistivity-
versus-temperature curve in the paramagnetic region,
and using the Griineisen-Bloch formula for the lattice
resistivity. The Debye temperature chosen is that of
Au multiplied by the square root of the density ratio
pau/Paunn. Subtracting the lattice and residual contri-
butions from the total resistivity above T'=Ty, we
obtain p# =47 uQ cm for the spin-disorder resistivity
in the paramagnetic region. Assuming Mn*+Au* ion
cores and S=3%, we find from Eq. (2) that G=7.2eV As,
The parameter J(0) used by Yosida® is given by
J(0) =G/Q2=0.44 eV, where Q is the atomic volume.
The sign of the constant G is not determined. The large
residual resistivity shown in Fig. 2 is to be expected
because of the disorder associated with the deviation
of 1.5 at.9, from ideal stoichiometry.

Since the lattice is nearly cubic below 500°K, we
shall assume that the anisotropy of the resistivity
below 500°K may be attributed to the presence of the
planar magnetic ordering and the associated spin-wave
excitations. For a conduction-electron-local-moment
interaction of the form (1), the planar magnetic order-
ing of the Mn spins gives rise to a set of new band
gaps,®® of magnitude ARKNG(S)=~0.5 eV at superzone
boundaries bisecting the vectors G==Q in reciprocal
space. The vector G is a reciprocal lattice vector, and
the wave vector Q = (0, 0, 1)m/c characterizes the spin
ordering. In the presence of these gaps, the cubic
symmetry of the Fermi surface is destroyed, resulting
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in anisotropic transport properties. The quantitative
effect is expected to be small, however, unless the
superzone boundary is close to tangent to the original
Fermi surface, since it is only in this case that a large
reduction in Fermi-surface area occurs. The two types
of superzone boundaries which affect the AuMn Fermi
surface are shown in Fig. 3. This is a drawing of the
nearly free-electron Fermi surface for the case of
Mn* +Au* ion cores. The free-electron Fermi surface
for this case just touches the boundaries of the second
zone. The boundaries of the cubic first B.Z. and the
associated band-gaps have been suppressed in the draw-
ing since the zone is full except for a small pocket of
holes in the (1,1, 1) corners.

Assuming that the impurity scattering is isotropic,
we may attribute the anisotropy observed in the
residual resistivity to the distortion of the Fermi
surface resulting from the superzone boundaries. Thus
we conclude that the superzone boundaries introduce a
relatively small (*¢89,) anisotropy in the resistivity
at T=0, and such that p,(0)>p,(0). The large ani-
sotropy in the resistivity observed between 200 and
500°K, which has the opposite sign, will therefore be
attributed to the spin-disorder contribution p*. In order
to estimate the spin-disorder contribution we shall make
use of the results of Elliott and Wedgwood.®? For a
single superzone boundary which cuts the Fermi surface
into two parts, and which bisects the vector G=Q =21,
they find for the resistivity measured in the direction

of I
p(T) =Lof~4p=(T)+p™(T)J/[1-6(T)]. (3)

Here p®, pZ(T), and pM(T) are the residual, phonon,
and spin-disorder contributions to the resistivity in the
absence of the magnetic band gap, and 6(7)=
(3wl/4kr) (A/Ep). For AuMn, we have A/Ep~0.07 at

MAGNETIC SUPERZONE
BOUNDARY

F1c. 3. Nearly free-electron Fermi surface of AuMn in the
extended zone scheme, with representative magnetic superzone
boundaries included. The boundaries of the first Brillouin zone

have been suppressed.
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T=0. Guided by the form of Eq. (3), we shall express
the resistivity in the form

pa(T) =[pf+p™(T) +pM(T) I/[1—0.(T) ], (4)
pe(T) =[p"+p"(T) +pM(T) I/[1—0:(T) ], (5)

where pM(T) and pM(T) are the spin-disorder re-
sistivities measured in the ¢ and ¢ directions. The
quantities §,(7") and §.(7T) have the temperature de-
pendence of the sublattice magnetization. The measured
resistivity at 7'=4.2°K allows the unique determination
of only two of the unknown parameters 8.(0), 8.(0),
and p®. However, we can obtain the correct sign for
the anisotropy p(T)—pM(T) if we assume that
8,(0) =0 and evaluate 6,(0) and p? from the measured
resistivity at T'=4.2°K. Figure 4 shows the spin-
disorder resistivity computed by this procedure with
8.(T) fitted to a Brillouin function for S=%§. The
magnitudes of pM(7T) and pM(T) shown in Fig. 4
should be considered only as rough approximations.
Figure 4 also contains the result of a spin-wave calcu-
lation which is discussed in Sec. IV.

and

IV. SPIN-WAVE THEORY

In this section we shall analyze the spin-wave spec-
trum and the electron-magnon interaction of the AuMn
structure, and present the results of a calculation of the
contribution of magnon-electron scattering to the elec-
trical resistivity. To calculate the spin-wave spectrum
one should, ideally, have a theory which is capable of
predicting the exchange constants between ions at
arbitrarily large distances. However, estimates which
have been made® of the Néel temperature and para-
magnetic Curie temperature using RKKY*!? and vir-
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tual state theories® do not give results accurate enough
to justify their use in determining the spin-wave
spectrum. The approach taken here is to use the sim-
plest model for the exchange interactions consistent
with the stability of the spin structure, and to evaluate
the exchange constants empirically using the measured
values for 7 and 6, We shall see that all of the
important features of the spin-wave spectrum are prop-
erties of the symmetry of the system. Thus, since the
maximum spin-wave energy for a given Néel temper-
ature is relatively independent of the range of the
exchange interactions, we should obtain a reasonable
first approximation to the excitation spectrum.

We shall now adopt a model which includes only
first- and second-nearest-neighbor exchange. We shall
also neglect the slight tetragonal distortion of the lattice
and assume that the exchange interactions have cubic
symmetry. The deviation from cubic symmetry given
by current theories'®%:% of the indirect exchange inter-
action are small for the first few neighbor shells. The
stability of the AuMn spin structure requires that the
first-nearest-neighbor exchange J; be ferromagnetic,
that the second-nearest-neighbor exchange J; be anti-
ferromagnetic, and that 4| J,|>]|J, |3 Introducing a
small anisotropy field H, to stabilize the array, the
Hamiltonian is

H= —Z JmS;'Sa-I-Z,uBHA[Z Sﬁg"—z Sjr]. (6)
2] 8 7

The quantity S; denotes a spin which is a first or
second neighbor to the spin S,, and the { direction is
defined as the axis of quantization, which is an @ axis.
The indices j and 8 denote sites on the up and down
sublattices, respectively. Adopting the convention that
J1 and J, be positive, then J;;=J; for §=1st-nearest
neighbors, and Ji;3=—J, for §=2nd-nearest neighbors.
Using the Holstein-Primakoff# transformation to the
spin-wave variables

aq=(NS)7 3 exp(iq-Ry) Si*,
J

(7

and diagonalizing the Hamiltonian through the trans-
formation to normal-mode spin-wave variables

ba=(NS)%2  exp(—iq-Ry) S5~
B8

0lq =Uq@q—Vqb,T,

(8

one obtains the following expression for the spin-wave
energy:

Ba="1tqbq—124a,",

E(q) =(44*—Bg)'", 9
where
Aq=25T4T2(1+c.0) =271 (cotcy—1) JHwa,
Bq=25[472(csc+cy05) —2J16.], (10)

3 B. Caroli and A. Blandin, J. Phys. Chem. Solids 27, 503 (1966) ;
B. Caroli, 7bid. 28, 1427 (1967).

2 R. A. Tahir-Kheli, H. B. Callen, and H. Jarrett, J. Phys.
Chem. Solids 27, 23 (1966).

% T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).



730

and the spectrum is doubly degenerate. The quantity
w4 is given by wa =2upH 4, and ¢,=cosg,a, etc.

Within the first magnetic Brillouin zone, which is
tetragonal with ¢/a=1%, the dispersion relation (9) has
relative minima at the points (0, 0, 0), +=(1, 0, 0)x/a,
and =+ (0, 1, 0)w/a. In the limit as H,—0, the spin-wave
energy becomes zero at each of these points. The
existence of minima in the energy at the latter two
points (we will denote these points by qo) on the faces
of the zone is a result of the assumption of cubic
symmetry for the exchange constant J;, and is inde-
pendent of the range of the exchange interactions.®
The energy gaps at the points ¢ =0 and q =g are given
by E(0) =[8S(4J:—J1)wa ]2, and E(qo) =[85Tiwa 2.
In the vicinity of these points, the surfaces of constant
energy form ellipsoids. Using expressions for 75 and
0, derived from molecular-field theory, we find J1/kp=
17°K, and (4J2—J1)/kp=33°K. The magnitude of
4J,—J, can also be related to the perpendicular suscepti-
bility, with the result x + =Nug*/2(4/s—J1) =2.8 X104
This value for x. is of the right order of magnitude
when compared with the measured susceptibility at the
Néel temperature,® x(7w) =2.5X107%, and with the
susceptibility ~difference at room temperature,?
X1—x)129.5X 1075 Tahir-Kheli, Callen, and Jarrett®
have computed 7T for the AuMn structure as a function
of J; and J, using a Green’s function “random-phase”
approximation. Their results predict exchange constants
approximately twice as large as the above estimates.
We shall assume here that J1/kp= (4/2:—J1) /ks=30°K.
Thus the ellipsoidal energy surfaces are approximated
by spheres, which is of little consequence since the
principal source of anisotropy in the resistivity is found
to be the geometry associated with umklapp processes.
Assuming an anisotropy field of the order of 10* Oe,?
we find that the minimum excitation energy is given by
E,/kp~30°K. Since we are primarily interested in the
resistivity for temperatures above 30°K, we will simplify
further by making the assumption that H4=0. Then
the excitation spectrum in the vicinity of the point
q=1(0, 0, 0) has the form

E(q) =4571aq. (11)

In the vicinity of the points qq, the excitation spectrum
has the identical form when the variable ¢'=q—qq is
substituted for q. The linear dependence on wave vector
is a property of the two-sublattice structure, and thus
is independent of the particular model used for the
exchange interactions.

Electron-Magnon Interaction

Using the second quantized form for the conduction
electron-localized spin interaction,® and transforming
to magnon variables using the inverse of Egs. (7) and
(8), we obtain the following expression for the magnon-
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electron Hamiltonian:

H'=(SN)'? Z (uq+1q)
k,k/,q

XG[(aq'thT) Ck’¢TCkf6(k_k,"'q+‘)
+ (0" +Bq) C'y 'Crid (k—Kk'+q+7) ] (12)

Terms describing the interaction between the con-
duction electrons and the long-range order of the mag-
netic system have been dropped, since this interaction
has already been accounted for in terms of the band
gaps discussed in Sec. III. The vector = is a reciprocal
lattice vector associated with the magnetic symmetry.
The important feature of this equation is the wave-
vector dependence coming from the transformation
coefficients #, and v, so that the probability of the
transition k—k’ will be proportional to the quantity
(tq+2vq)2=(Aq—By)/E(q), where k—k'=q-=. For
wave vectors near zero, this quantity is proportional
to g, resulting in a 7 contribution to the resistivity
from normal processes.? For wave vectors near qo, the
quantity (#q+v4)* approaches the large constant value
(8871/wa)'2. As a result, the thermally-excited mag-
nons with wave vectors near ¢, make the largest contri-
bution to the low-temperature resistivity. Thus the
critical nature of the assumption of cubic symmetry
for the exchange constants is seen, since it is this
assumption which results in the zero in the energy at
the points qo.

Spin-Disorder Resistivity

Using the variational method in the form described
by Ziman,” and assuming a spherical Fermi surface,
we obtain the following expression for the electrical
resistivity®:

%7 BK (K- B)2(Adq—By)
p=C [ : .
o K(—e=)(e—1)
where
K=k—k'=q+r, s=fw/ksT,
and

C=9N SG*/8e’k g TksTivg®.

This equation contains contributions from both normal
and umklapp processes, and is also capable of giving
anisotropy in the resistivity through the factor (K- £)2.
For temperatures small compared to T, the principal
contributions to the integral occur for values of q
lying within spheres of radius g,=£#zT/4S5]a, about
the points =0 and q=q,. In K space, there are a
large number of such spheres centered about the points
= and ©-+qo. This is a result of the fact that there are a
large number of reciprocal lattice vectors = with magni-
tude less than 2kr. Thus umklapp processes play the
dominant role, since they are more heavily weighted
because of the large momentum transfer K. Using the

# A. A. Berdyshev and I. N. Vlasov, Phys. Metals Metallog.
(USSR) 10, 132 (1960).
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approximation 7<Ty, the contributions from both
normal and umklapp processes have been calculated
for the a and ¢ directions,® and the result is shown in
Fig. 4. The normal and umklapp processes associated
with wave vectors near =0 make contributions pro-
portional to 7% and T, respectively. The largest contri-
bution, proportional to 72, comes from normal and
umklapp processes involving wave vectors near go.

It should be noted that the magnitude of the spin-
disorder resistivity depends critically on the magnitude
of the exchange constants J; and 4/,—J;, as well as
on the magnitude of kr. Further, since we have ne-
glected the effect of a finite energy gap in the spin-wave
spectrum due to the presence of an anisotropy field, a
close agreement between the experimental and theo-
retical temperature dependences should not be expected.
The anisotropy of the resistivity is, however, a property
of the geometry associated with umklapp scattering
processes, so that the qualitative result po>p, would
be likely to remain in a more detailed calculation. We
can see from Fig. 4 that the predicted anisotropy of
the spin-disorder resistivity is in qualitative agreement
with the experimental measurements.

V. ANISOTROPY OF THE SPIN-DISORDER
RESISTIVITY, QUASIELASTIC THEORY

We shall now examine the effects on the resistivity of
temperature-dependent spin correlations, using the
quasielastic approximation, in order to relate the ani-
sotropy of the resistivity observed just below Tx to
the anisotropy of the spin correlations. The validity of
the quasielastic approximation in the high-temperature
region has been examined by deGennes and Friedel.®
Their results indicate that the analysis presented here
should be qualitatively valid for temperatures 7> 0.7 Ty.

Using the interaction (1), and taking the ensemble
average over all states of the spin system, the square
of the matrix element for transitions between conduc-
tion electron states k and k’ can be written in the form

l(k, [ H I k>l2=62 Z eXp[’iK' (Rn—Rm)]<Sm'sn>Tﬁ
(14)

where K=k—k’, and the ensemble average is denoted
by {+++)r. Defining the pair correlation function g(R,)
by

§(R.) = (38038, )r = (S0 Sudr— (Sudr+ (Su)r,  (15)

where 6S,=S,—(S.)r, and S, is a spin at R=0, we
can rewrite Eq. (14) in the form

| (&' | H | k)P=GN 2 exp(iK-R,)
X[g(Ra)+(Su)+ (Su)r]- (16)

The second term in the square brackets describes the
interaction between the conduction electrons and the
long-range order of the spin system. This interaction
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has already been accounted for in terms of the band
gaps discussed in Sec. III. Thus the spin-disorder
resistivity is completely determined by the pair corre-
lation function g(R,), which is a measure of the corre-
lations between the fluctuations of the spins. We also
see from Eq. (15) that the function g(R,) is a measure
of the excess of short-range order over long-range order,
since for neighboring spins S; and S;, the short-range
order parameter is usually defined as (S;-S;)z.

Using the variational solution? for the electrical
resistivity in the presence of elastic scattering, the
following expression for the electrical resistivity is ob-

tained?3°:
pE=G*NB 2 g(R,)fx(Rn), (17)
where
% (K. )2 KR, @K
fa(Ry = [ RIS ERITE g
0

and B=9/16fi¢*vp’kr*. Denoting the average resistivity
b'y .5f%(pz+py+ pz), and the anisotropy of the re-
sistivity by Ap=p,—p,, we find by performing the
integration (18)

p=A4 2 L(x.)g(R,),

L(x) =%(1/%) [—2? cosx+2xsine—2(1—cosx) ], (19)

and

Bp=4 3 G(xs) g(Ru) [cos(Rp+5) —cost(B,- ) ],

G(x) = (1/2*) [—4? cosx+ 5 sinx— 8 (1—cosx) 1, (20)

where «,=2kpR,. The quantity 4 is given by A=
36rNG*/he*vr’, and we note that L(0) =1%, and
G(0) =0. In the absence of pair correlations, the ani-
sotropy is zero, and the expression for average re-
sistivity reduces to the standard result® py=144 (6Sa?),
where (65¢2)=S(S+1) —(S)2

The most significant feature of Egs. (19) and (20)
is the property that highly anisotropic spin correlations
can cause a fractional anisotropy Ap/p, which is con-
siderably larger than the fractional change in the aver-
age resistivity (5—po)/po. Considering nearest-neighbor
spin correlations in the AuMn lattice (kp= 142x/a), we
find that anisotropic correlations can cause a fractional
anisotropy of up to 589, of the fractional spin corre-
lation [(8So+8S:)|/(65:*), while the maximum possible
change in the average resistivity is about half this
amount. Thus it is possible to attribute the rapid
buildup of anisotropy in the resistivity (Fig. 4) as the
temperature is reduced below Ty to the buildup of
anisotropic spin correlations associated with the planar
magnetic ordering.

In the presence of large numbers of spin-wave exci-
tations, the precise form of the correlation function may
be quite complex. Close to the Néel temperature, how-
ever, large scale fluctuations occur in the spin system
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with spin correlations extending over considerable dis-
tances and taking a form characteristic of the stable
magnetic structure.® Thus for temperatures close to
T, a possible correlation function would be

g(Ra) =v(R) cos(Q-R,),

where Q has magnitude v/¢ and is directed along one
of the three axes, and v(R) is an envelope function
which becomes small for large R. In the paramagnetic
region, the vector Q could be directed with equal
probability along any one of the three crystallographic
axes. At temperatures below 7T, where a ¢ axis is
defined, the spin correlations can be assumed to have
a tetragonal form which becomes increasingly pro-
nounced with decreasing temperature. The behavior
shown in Fig. 4 can be accounted for on this basis if
we assume that the polarization Q= (0,0, 1)7/a be-
comes increasingly favorable with decreasing temper-
ature. This is equivalent to assuming that the short-
range order has the same planar form as the long-range
order. Using Eq. (21) with the substitution

(21)

Q= (07 0: 1)7!'/(1,
we find
Bp o [€0S0:8S1)r| ) [(6S0°3Sy)r|
0S8 e 009 e ()

Here S; and S, are spins in the first- and second-neighbor
shells to the spin Sp. The contribution to Eq. (22)
from correlations with spins in the third- and fourth-
neighbor shells isjzero, and the_contributions are rela-
tively small from correlations with spins beyond the
fourth-neighbor shell. The contributions of first- and
second-neighbor correlations to the quantity (5—po) /po
are less than 109, of the fractional spin correlations.
Thus planar spin correlations have the effect of raising
the transport cross section measured in the x direction
and lowering the transport cross section measured in
the z direction, leaving the resistivity averaged over
direction relatively unchanged. This is consistent with
the earlier conclusion that the spin-disorder resistivity
is approximately temperature-independent in the para-
magnetic region.

VI. DISCUSSION

The major approximation we have made in discussing
the spin-disorder resistivity of the AuMn compound
has been the use of a one-band, free-electron model in
which the effects of s-d interband transitions were
neglected. The justification for the use of this model
was based on the conclusion that the d-electron contri-
bution to the Fermi-level density of states is a relatively
small percentage of the total, and on the observation
that a good order of magnitude estimate of the lattice

% L. Van Hove, Phys. Rev. 95, 1374 (1954); M. J. Cooper and
R. Nathans, J. Appl. Phys. 37, 1041 (1966).
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resistivity can be obtained using the same model. We
have found that the magnitude of the low-temperature
spin-disorder resistivity can be explained using spin-
wave theory, provided that the effects of umklapp
processes and of low-energy spin-wave modes with
wave vectors near q==(1, 0, 0)v/a and q=
=#(0, 1, 0)7/a are included. However, the magnitude of
the low-temperature resistivity calculated using spin-
wave theory was found to depend primarily on the
excitation of these large-¢ spin-wave modes, which
would only occur if the exchange constant J;; between
Mn spins had a symmetry close to cubic. We have
assumed here that the tetragonal distortion and the
presence of the planar magnetic ordering have a negli-
gible effect on the symmetry of the exchange constant.

We have treated the effects on the resistivity of spin
correlations using a quasielastic approximation, and
have found that the correlation of the spin fluctuations
is related in a very simple and direct way to the ani-
sotropy of the spin-disorder resistivity. The most im-
portant result of this theory is that strongly anisotropic
spin correlations can cause a significant anisotropy in
the spin-disorder resistivity, while the effect on the
resistivity averaged over direction is usually less sig-
nificant. The anisotropy of the spin-disorder resistivity
of AuMn in the temperature range 0.7<7T'<Ty can
thus be qualitatively understood in terms of anisotropic
spin correlations, provided that the fractional spin corre-
lation [{6Sy+8S,)|/(85:?) is large for near-neighbor spins.
This calculation can also be used for interpreting the
resistivity in the paramagnetic regions of noncubic
metals such as the heavy rare earths, in which aniso-
tropic, spin correlations could  persist to quite high
temperatures. The presence of anisotropic spin corre-
lations would provide a possible mechanism for ex-
plaining the large femperature-dependent fractional ani-
sotropy (ps—p.) /B observed in the paramagnetic regions
of the rare earths Tb, Dy, Ho, and Er.3
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