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quite simply. The diGerence arises from a change in
electron-electron scattering which accompanies a change
in the occupation of d states. The rigid-band model
thus provides an adequate basis for explaining the
diGerence in photoemission in Ni and Ni-Al alloys,
just as it has been used successfully to explain the
magnetic behavior of Ni—Al anoys.

Inelastically scattered electrons contribute about
15% to the total energy distribution and about 20%
to the low-energy peak at hv=10.2 eV for pure Ni.
Values of the mean free paths for electron-electron
scattering for electrons 7 eV above the Fermi energy
are about 70 and 100 X, respectively, for pure Ni and
92%-Ni alloy.
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A many-body perturbation theory is developed for the calculation of the antiferromagnetic ground state
and lower excited states of one-electron atoms in the insulating state. It is assumed that the interatomic
distances are moderately small and that the interactions are well described by exchange coupling, but that
distortion of atoms in the lattice is still negligible. The method is essentially the Heitler-London approach:
A set of Slater determinants is constructed from nonorthogonal atomic orbitals with all possible spin arrange-
ments. The unperturbed ground state

~
0) has an alternating spin con6guration, while excited states are

generated one by one from
~
0) by interchanges of spins and by projecting out the, lower excited states. The

resulting orthonormal states introduce the concept of quasielectron (or quasihole) states and define creation
and destruction operators of those quasiparticles. Although the quasiparticles are correlated with each other
through the overlap integrals in the projected wave functions, the energy matrix elements can be decomposed
into linked clusters of localized electrons and holes. It is found that the clusters thus generated are cumulants.
The expression for the energy matrix is then transformed into the form of an effective Hamiltonian con-
sisting of cumulants and of creation and destruction operators of quasifermions, and the concept of the
exchange interaction is defined in terms of those operators. The new formulation not only facilitates the use
of the familiar many-body perturbation theory, but also eliminates difIIculties in handling spin variables
in the Heisenberg theory of magnetism. If only the two-body Coulomb and exchange diagrams are retained
and the higher-order diagrams are neglected, however, the e6ective Hamiltonian takes a form reminiscent
of the anisotropic exchange Hamiltonian, II,~; =—Zs s JssLSs*Ss'+X(Ss Ss*+SsrSsr) j, which is used
in the generalized Heisenberg theory and which includes the Ising model in its limit X~O. Finally, it is
shown that excitations accompanying electron transfers are readily included in the present method as
additional diagrams by an extension of the prescriptions for the generation of excited spin states. This
yields, in its first approximation, the intra-atomic interaction and the electron-transfer interaction, leading
to the Hamiltonian assumed by Hubbard and Anderson.

I. INTRODUCTION

EXCHANGE coupling between atoms has been a
& subject of considerable discussion in the theory of

magnetism, but the treatments are mostly based on
unrealistic and inconsistent approximations. ' First of
all, the explicit consequences of having many atoms in
a lattice have been neglected. This would not be in-
appropriate for a system of weakly interacting atoms
in the limit of large interatomic distances, but such a
situation is rarely applicable to real magnetic materials
since atoms in solids interact rather strongly with each
other. Furthermore, if atoms are truly well-separated,
the van der %aals interaction will dominate over the

~Based on work performed under the auspices of the U.S.
Atomic Energy Commission.

For a complete review of this topic see C. Herring, in 3fagne-
tisos, edited by G. T. Rado and H. Shul (Academic Press Inc.,
New York, 1966), Vol. IIB.

short-range exchange interaction, and the Heitler-
London method is not even asymptotically correct in
the calculation of exchange coupling. '' However, the
eGect of the long-range interaction has often been
neglected.

The effect of distant atoms appears through the over-

lapping of atomic wave functions, but the nonorthog-
onality of the latter introduces numerous complications
in the reduction of the energy expression, and only
recently, has such a reduction been performed rigor-
ously. 4 ' Use of orthogonal functions as atomic bases is,
of course, undesirable because it yields the false con-

2 C. Herring, Rev. Mod. Phys. 34, 631 (1962).' L. P. Gor'kov and L. P. Pitaevskii, Dokl. Akad. Nauk SSSR
151, 822 (1963) )English transl. : Soviet Phys. —Doklady 8, 788
(1964)g; C. Herring and M. Flicker, Phys, Rev. 134, A362 (1964).

4T. Arai, Phys. Rev. 126, 471 (1962); 134, A824 (1964).' W. J. Mullin, Phys. Rev. 136, A1126 (1964).
F. Yonezawa, Progr. Theoret. Phys. (Kyoto) 34, 210 (1965).

See the criticism on this paper by T. Arai, ibid. 36, 473 (1966}.
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elusion that the ground state of one-electron atoms is
always in the ferromagnetic state.

Furthermore, if we project out the motion of electrons
into spin space and generate a spin Hamiltonian, only
exchange interaction between atoms remains, and more
dynamical interactions such as electron transfers and
excitations of atoms can never be taken into consider-
ation. All previous work4 ' is limited in scope due to
this restriction.

To circumvent those diKculties, we shall present in
this paper a method of calculating the antiferromagnetic
ground state and lower excited states of one-electron
atoms in the insulating state. The formulation will be
developed for the situation where the interatomic dis-
tances are moderately small and the interactions are
well described by exchange coupling but distortions of
atoms are still small. The method is, in fact, a many-
body perturbation expansion based on the Heitler-
London approach, ~ but handles the localized electrons
explicitly without projecting out into spin space. This
procedure enables us to include electron transfers and
excitations of atoms. In fact, the method developed
here could become a rigorous one which is comparable
to the many-body perturbation treatment of the band
theory.

To simplify the formulation, we shall treat, in the
main part of this paper, the simple Heitler Londo-n case
where each atom carries a single localized electron and
where no electron transfers nor excitations of atoms are
included. In Sec. VII, however, we shall show that
electron transfers can be taken into account easily by
relaxing the restrictions imposed on the prescriptions
for generation of diagrams. Excitations of atoms may
also be considered in the method by adding more basic
functions, but the extension is only a technical matter,
and we shall not describe it any further.

As we shall discuss in Sec. VII, even the result of the
simple Heitler-London case given by (7.4) will be
different from and more general than the previous
work, 4 ' since our result can be written in a form
reminiscent of the anisotropic exchange interaction:

H,p, (X) =—Q Jgg[Sg'Sg*+) (Sp'Sg'+SpSg") $,
k,h

while the previous work could cover only the isotropic
case where X=1. The constants J» and )J&z may also
be interpreted di6erently. The kl» represents the
exchange coupling given by a matrix element between
two states which are generated by an interchange of
electrons, while the first term in (1.1), —ga,@JAN'Sa'S~',

may be considered as a static interaction between classi-
cal spins. If the exchange diagrams are negligible as
compared with the Coulomb interaction, it is entirely
plausible that the parameter X vanishes, suggesting a

' See also a perturbation expansion developed by W. J.Carr, Jr.,
Phys. Rev. 131, 1947 (1963). Most of his equations, however,
were specialized for the case of nondegenerate atoms.

possibility of 6nding the Ising interaction in real mag-
netic materials.

It should be noted here that an expression like the
anisotropic spin Hamiltonian (1.1) was obtained from
the effective Hamiltonian (7.4) by inserting appropriate
atomic spin operators in place of the creation and
destruction operators of electrons. Although this was
instructive for the forgoing illustration, the replacement
is not rigorous because the basic functions used here
are correlated wave functions of electrons and diferent
from the spin functions assumed in the Heisenberg
theory. In fact, the eGective Hamiltonian generated
from (7.4) and containing only the two-body Coulomb
and exchange diagrams could still be spin isotropic
despite the similarity in appearance to the anisotropic
spin Hamiltonian.

The electron-transfer mechanism yields new types of
interactions such as the intra-atomic interaction and
the electron-transfer interaction. Those interactions are
postulated, for instance, in Hubbard. 's theory of narrow
bands and Anderson's theory' of localized moments,
but the present method provides an explicit prescription
for the calculation of the constants. We note that those
interactions are not expressible in terms of atomic spin
operators and hence cannot be considered in the Heisen-
berg theory.

Since the formulation of the method involves compli-
cated mathematics, we shall sketch the structure of
the paper in the following. In Sec. II, we shall construct
a set of Slater determinants from nonorthogonal atomic
orbitals with all possible spin arrangements. The un-
perturbed ground-state wave function

~
0) has an alter-

nating spin arrangement while other functions
~

nmp)
are generated from

~
0) by interchanges of m pairs of n

and P spins and n Qips of P spins (or n spins). In Sec.
IV, functions

~
nmp) with common n and m will be

orthogonalized to each other after projecting out the
lower components

~

nm'p') with m'(m. The resulting
orthonormal functions X

~
nmp) will describe the spin

densities which are schematically represented by the
spin functions of the original bases

~
nmp). The concept

of quasielectron (or quasihole) states as well as the
dednition of creation and destruction operators of those
quasiparticles will follow from the orthonormal func-
tions X

~
nmp).

Although the quasiparticles are correlated with each
other through the overlap integrals involved in%~ nmp),
the decomposition of the energy matrix elements into
linked clusters can be performed rigorously. This will
be the subject of Secs. III—VI. Finally, it will be found
that the linked clusters so generated are cumulants.
In Sec. VII, the expression of the energy matrix will be
transformed into the form of an effective Hamiltonian
consisting of cumulant integrals and creation and de-
struction operators of quasiparticles. This facilitates

8 J. Hubbard, Proc. Roy. Soe. (London) A2'76, 238 (1963);
A2'lV, 237 (1964); A281, 401 (1964); A285, 542 (1965).' P. W. Anderson, Phys. Rev. 124, 41 (1961).
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the use of the familiar many-body perturbation
theory. '~"

XP,C'(1, 2, ~ ~, 2N) P,O„„(1,2, , 2N), (2.1)

associated with a set of 2'~ functions 0"„„» for 2N
spins and the product 4 of 2X atomic orbitals:

C (1, 2, ~ ~, 2N) =—y{rg—R(1")}~ ~ q {r~ R(N") I—
Xy{rN„g—R(1 ) } yfr»r R(N ) }, (2.2—)

where

~
h~) —=,{r-R(h~) }

I
ks) =—vfr —R(ks) }

(2.3a)

(2.3b)

are the atomic orbitals centered at the lattice points
R(h") =Rz and R(ks—) =—Rl„respectively. In (2.1), P„
and I', are permutation operators of the positional and
spin coordinates r and 0., respectively, and the constant
c and the sign ~„~=&1 will be specified later.

For convenience, we introduce a two-sublattice struc-
ture such that the nearest neighbors of an atom on
sublattice [A7 are on sublattice [B7 and vice versa.
This distinction of lattice points has already been in-
corporated in the notation of atomic orbitals

~

h") and

} k~). For example, the h" indicates the hth atom on
[A7 and so on. By 80, we denote the unperturbed
ground-state spin function in which all atoms on sub-
lattice [A7 are in spin-up states a and all on [B7 in
spin-down states P:

O'a= &(0'~) 1")' ' '&(0'» N") P(&&+» 1 ) ' ' ~(«» N ) ~

(24)
Other 2'~ —1 states can be generated from 0+0 by taking

'0 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957);
J. Hubbard, ibid. A240, 539 (1957)."R. Kubo, J. Phys. Soc. Japan 1'7, 1100 (1962).

'~T. Arai and B. Goodman, Phys. Rev. 155, 514 (1967).

II. BASIC WAVE FUNCTIONS

Let us consider a lattice of 2N one-electron atoms.
At infinite separations, the ground state of this lattice
has 2'~-fold degeneracy. As the interatomic distances
R are decreased, this degeneracy will split up, but if X
is not too large and if the E's are not too small, there
will be a set of 2'~ lowest levels well separated from
more highly excited states. For the most part of this
paper, we calculate the ground state and lower excited
states among the 2'~ levels assuming that those lower
states are still well separated from the more highly
excited states, even though E is infinitely large and the
distances E are moderately small. Spin-wave states in
many antiferromagnetic insulators are considered to
satisfy this situation. The system is then described by
a set of Heitler-London functions

I
~~p)—= f(») 'c} "" Z( —1)

all possible ways of reversing spins on [A7 and [B7,
that is,

Onmy=—~nmyo~o

—=S (h") ~ ~ S (h„~)S+(ks) ~ ~ S+(k~ ~)O~

(2 3)

where S+(h") is the raising or lowering operator of the
spin at atom h" on [A7:

S+(h") =S'(h") aiS"(h"), (2.6)

and S„„„represents the product of S (h")'s and
S+&ks) 's.

Since the spin functions O„„are single products of
n's and p's, the wave functions

~
nmp) generated by

(2.1) are also written as single Slater determinants.
To facilitate the matrix calculation, let us separate the
subspace spanned by orbitals with 0. spins from the
subspace consisting of orbitals with P spins and denote
the Q.-spin subspace by G . Similarly, the subspace Gp
consists of orbitals with P spins. The operation S„„»
introduced in (2.5) is then equivalent to the rearrange-
ment of orbitals where orbitals

~
hq") ~ .

~
h~") are

transferred from G to Gp and at the same time

~
kP) ~ ~ ~

~
k~„s) from Gs to G . When N&0, the func-

tion
~

nmp) is written as

) emp)= f(2N)!c} '" g(—1)»P
P

X4[kP ~ k s hg" "h„"7
X4[hg" ~ h ";kp ~ k „7

&«(&~) ' ' '&(0~+~)P(~)r++r) "P(~2'), (2.7)

where C's[hq" ~ h~"; kP ~ k~„7 is obtained from the
product of N orbitals C'& =

~

1s) ~ ~
~
N ) by the replace-

ment of
/
kP) ~ ~ ~

/
k„s) by [hq") ~ ~ ~

]
h„"), together

with the deletion of
~ k~P) ~ ~ ~

~
k~„~). Similarly,

C'~[kP k~„~, h~" ~ h "7 is derived from the original
product Cz by the replacement of m orbitals and by
the addition of

~
k~P) ~ ~ ~

~
k~„s). When e(0, the

expressions for G and Gp are reversed.
The expression for

~
mmp) given in (2.7) is not

unique since a number of ways exists to construct
pairing of k's and h's, but all functions generated
from a fixed S„„are the same up to the order of
permutations. A possible ambiguity in sign may be
eliminated by the following counting procedure. Instead
of deleting

~
k~P) ~ ~ ~

~
k~P) in Cs immediately,

let us replace them by fictitious functions 8(k~P), ~ ~ ~,

b(k~„~). The summation g» should be extended
over 2N+e functions, but the new expression is now
determined uniquely including the sign. For example,
let us consider a function obtained from (2.7) by the
replacement of 0& ~ ~ k~n by k&, ~ ~ k&~„,where the
series p&, ~ ~, p +„ is generated from 1, ~ ~ ., m+e by
the permutation E. The new expression for the G can
be transformed back to the original form by the permu-
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tation P~ ' of atomic orbitals while the Gp part returns
to the expression in (2.7) by the permutation I'„' of
electron coordinates. Since the total permutation
P„'XP„' is always even, the functions generated
should carry a 6xed sign regardless of the pairing
method. Since the 5 functions are assumed to be or-
thogonal to each other as well as to all atomic orbitals

~

h") and
~

ks) involved, the replacement by 8 is
effectively equivalent to the deletion of

~ k~P), ~ ~ ~,

~
k~„s) in C'ii when the matrix is integrated. In fact,

the 8 functions are designed to fix the sign of
~

nmp)
uniquely and should be removed after establishing the
sign.

The sign e„„~ in (2.1) is determined in accordance
with (2.7), and the constant c is fixed so that the
unperturbed ground-state function

~
0)=—

~
001) is nor-

malized to 1:

III. EXPANSION OF OVERLAP MATRIX
ELEMENTS

The use of nonorthogonal atomic orbitals as basis
necessarily introduces the nonorthogonality among
wave functions

~
nmp) with a fixed n obtained by {2.7) .

As electrons involved in
~

nmp) are correlated among
each other through the overlap integrals and electron
interchanges are controlled by the value of the overlap
matrix (b), it is important to calculate (6) correctly.

Since the wave functions are single Slater determi-
nants, the overlap matrix (6) splits into two determi-
nants belonging to subspaces G and Gp, as follows.

(nm'p'
~

nmp) = (nm'A„[ nmA~)( nm'B~—(
nmB—„),

(3.1)
(2.8) where

and

(nm'A~
~

nmA~) =cg ' Q( —1)~P,Cg*gki'~" k ~
' hi'" ~ h '"jCzikP ~ k hi ~ ~ h jdr (3.2a)

I'

( nm'B„~ —nmB~) =c—s ' Q(—1) P„Cia*[hi'" ~ h ~'"; ki' ~ ~ k ' jCsLhi" ~ h ki ~ ~ k )dr (3.2b)
P

The constants cg and cia are chosen so that (OA
~
OA)=—(OOAi ) OOAi)=1, (OB (

OB)—= (OOBi ) OOBi)=1, and
C =CgCgy.

We note that (OA
~

OA) and (OB
~
OB) are both written in the form of determinants h~ and ho, whose h'h and

k'k elements are given by the overlap integrals (h'"
~

h") and {k's
~
ks), respectively; of course, the values of

h~ and A~ are unity due to the normalization constants cg and c~. In the following, we shall show that other
elements (nm'A~

~
nmA„) and (—nm'B„~ —nmB~) can be expanded in terms of signed minors of the determinants

hz and Az. To illustrate electron interchanges involved in those elements explicitly, let us denote the expressions
in (3.2) as follows:

and
(nm'A~

~
nmA~)= (ki' ~—~ k ~

'~ hi'" ~ h '"
~

ki ~ k~ hi" ~ h ")

( nm'B~
I

—nmB~)= (hi—'" ~ h~. '—";ki's "k„+„'
I
hi" ~ h„";ki ~ k~„),

(3.3a)

(3.3b)

1=kg= +(h" [
5-'

[ P) (P [ h") (3 4)

where the type of interchanges described in (2.7) is assumed for the first m (or m') pairs hg;, i= 1, 2, ~ ~, m
(or m').

Let us demonstrate the calculation with simple examples.
(i) For instance, the element (0 ~

ks; h")—= (OA j 01A) with Soi= S (h~) S+(ks) is obtained from the determi-
nant hz by replacing the component

~

h") by ~
ko). This replacement can take place conveniently in the familiar

expansion of a determinant:

in terms of cofactors (h~
~
6 '

~
t") of elements (t"

I
h~) in hg. The result is

(0 [
ks h")=g(h" [ 6 '

[ l~) {t"[ ks). (3.5)

(ii) The replacement of (h"
~

by (ks
~

in the expansion

g(hz ) P) (P [
g-i

[ hx) (3.6)

will yield the expression for (ks; h"
~
0):

(k .h [0)=g(k lt )(t [~- jh ) (3 7)
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(iii) A combination of the above two examples leads to

(k' k" lk k~&=(k' lks)(k l~- lk'~)+g'g'(k' l/'~)(/ lk )(k~/'~l~- l/k )
l LI

where (k"/'"
l

b, '
l
/"k'") is a signed minor of order 1V—2 in h~. Similarly we will 6nd that

(iv) (k s
I

k'& = (k"
I
k') —Z Z(k" I

/ ") (/&
l
k') (/'"

I
~ '

I L"),

(3 g)

(3 9)

and

(v) (;k"
l

k")=(k"
l
6 'l k'")

The above examples can be extended to a general form as follows:

(3.10)

m +o m+a

( ') (k"" k-+-";k'"" k-'"Ik'"k -';k" "k-'&= 2' 2' LII(»" I/'")ll(/'Ik')7
» ~ ~ ~ ~~+~ &/'~" l~~+~

y (k A. . .k 2/ ~A. . ./, ~A/, bl. . ./, IA
l

g-
l
/A. ../ Ak ~d. ..k, IA/ A. . ./ 2) (3 ] 1)

and

(k,"Ik. ),
(.. .kA. ..

l
g &

l

...k.'&. . .)

( ~ ~ ~ ~ ~ ~
I
~-'I ~ ~ ~ ~ ~ ~ )

respectively. Those terms correspond to the first terms
in (3.8) and (3.9). After some trivial modiacation,
the expansion (3.11) can be extended to the case where
N(0 for the calculation of elements of the type (3.2b) .
The expansion (3.11) is, in fact, a generalization of the
Cauchy expansion of a determinant.

In the following, the properties of signed minors
(/~ ~ /~ l

6 '
l k~ ~ k ) will be summarized in the form

of two theorems. For simplicity, we shall omit, whenever
practical, su6ixes A and 8, but Ii and / will always
refer to atomic orbitals on l A 1 and k to those on l 8).
We note here that the calculation of matrix elements
on sublattice l Bj can be performed in exactly the same
manner as those on l Ag.

Theorem 1. The cofactor (/ l
6—'

l k) is the /h element
of the inverse of the overlap matrix (A~& whose /k

element is given by overlap integral (/ l k) on sublat tice
PA j. The values of (/ l

6 '
l k) may be evaluated cor-

rectly by using one of the methods discussed in Refs.
13 and 14, even if the values of the overlap integrals are
appreciable and the criterion +gory, l(/ l h) l(1 is not
satis6ed.

Since the energy matrix will be eventually expanded
in terms of diagrams consisting of (/ l k) an.d (/ l

6 '
l k),

"T. Arai and J. R. Gabriel, J. Math. Phys. 8, 1018 (1967)."J.L. Calais and K. Appel, J. Math. Phys. 5, 1001 (1964).
Also see T. L. Gilbert, i'. 3, 107 (1962).

where the summations not only extend over all distinct
imdhces l~ ~ l +„or l~' ~ 1„+„',but also include terms
where

(k 's
l

/ ~) (/ A
l kg)

('''kA/'8'''
I
g

I

'''/Ak'A''')

( ~ /, '"l5'l ~ ~ / ~ ~ )

are replaced by

we shall represent them, respectively, by a light line
and a heavy line starting from point h and ending at
point l as is shown in Fig. 1.

The theorem of Jacobi" concerning minors of a
determinant is useful in the calculation of

oh oh

{k'Ik} {hIlh 'Ih'}

qh' yk
A

bh &k

{~IzkI~'} {k'Ir-lIk}

z{k'I~'}{&'I&'I&'}

k h k h

${hIS Ig}{JIk}

k

{k'IrIk}
=Zz{k'Is'}{&'Is 'l&}{~Ik}

Fxo. 1. Summary of the definition of lines used in the diagram
representation.

"See, for instance, A. C. Aitken, Determinants and Matrices
(Oliver and Boyd, Edinburgh, 1956).The theorem has been used
by P.-O. Lowdin, Phys. Rev. 97, 1474 (1955).

(/g /
l
6 'lb' ~ k„).

The theorem can be stated as follows:

Theorem 2. The signed minor (/q ~ /~
l
6 '

l
hq ~ k )

is equal to the mmmm determinant whose ij element is

givenby (/, l
6 'l k,):

(/g ~ /
l
a—'lb~ ~ k„)

=I(/~I ~ 'Ik~)(/21~ 'Ik2)" (/-I ~ 'Ik-)I (3»)
Theorem 2 together with the exact calculation of

the inverse overlap matrix (/ l
6 '

l k) on sublattice
LAj will yield correct values of (/& /~ l

6 '
l

k& k~).
It should be noted that the restriction imposed on the
summations over/q ~ / and/q' ~ /

' in (3.11) can now
be removed, since the additional terms generated vanish
automatically due to the determinantal structure of
(/g ~ /„ l

6 '
l kg ~ k„).
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By inserting (3.12) into (3.11), we can expand
overlap-matrix elements in terms of overlap integrals
(l

~
Iz) and the inverse matrix elements (L

~
6 '

~
Iz).

The decomposition may be illustrated by diagrams.
For example, the expressions (3.8)-(3.10) can be de-
scribed by Figs. 2 (a), 2 (b), and 2 (c), where a cross (X)
denotes an electron which is brought into the subspace
G from Gp while an open dot represents a hole in G .
The second and third terms in diagram 2 (a)
come from the expansion of the 2)&2 determinant
(kl'

~

6 '
~

lfz') in (3.8). Since the restriction on the
summations g~' g~.' in (3.8) can be removed, it is
no longer necessary to indicate l and l' explicitly as
distinct points in the diagram. This simplifies the
diagrams 2(a) and 2(b) as 2(a') and 2(b'), where the
use of heavy lines is defined in Fig. 1.Let us call a line
connecting a cross and a dot a pair creat-iom lAze and a
line connecting two crosses (or two dots) an electrom

electrom (or hole hole) —over1ap lime.

Since the values of those lines are independent of
other lines in a diagram, they are calculated by the
following relations:

~ e ~ &™Q %P %t~-v
]&]s ]i (a)
~ II ~I 0~ ~ ~

~ ~ ~ .". --0 n n ~ ~ ~ n

{b)
Q M W Q ' ~ ~ ". OVV ~ ~ ~ V

~ ~ ~ ~ ~ e

]5 l& ]5 I(](]( ]4 {a)0" 0 Q ~ ~ ~~ ~ ~ ~ a ~ ~ I~

q pairs

FIG. 3. Diagrams for the general expression of overlap-matrix
elements.

and m electron —electron (or hole —hole) overlap lines

k~,—+k„+,' (or k„+,'-+k„+;), i = 1, ~ ~ ., m. The type of
diagrams shown in 3(c) is obtained from 3(a) or 3(b)
by the replacement of q pairs of creation lines by q
pairs of overlap lines. Other types of diagrams are all
generated from those standard diagrams by permu-
tations of upper termini k~' ~ k .+„'and of lower termini
h& ~ h .The permutations are due to the antisymmetri-
zation of the wave functions and introduce sign factors
(—1)~ in the resulting diagrams.

(a) the hole —hole overlap line

k'~k= (k
~

~-'
(
k'),

(b) the electron —electron overlap line

k~k'=(k'
~

I
) k)

=g g(k'
(

&') (i'
(
6 '

( i) (l [ k), (3.13b)

(3.13a)

IV. ORTHOGONALIZATION AND THE
PROJECTED OVERLAP MATRICES

A. Orthogonalization by Projection Operators
(c) the pair-creation line

k~k= g(k (
~-'

~
I) (I

~
k), (3.13c)

(d) the pair-creation line

k'~k'=g(k'
) r) (r (

~-z
(
k').

To use a perturbation expansion electively, we need
to orthogonalize the basic functions

~
A)—=

~
mmA~) and

introduce the concept of quasiparticle states. A set of
(3 13d) orthonormal functions obtained by

k h k' h 4
A

+ ]

k 4 h
0 ~

k h k h

(a)

U

k h
V

k h k h

Figure 3 illustrates diagrams for the general expres-
sion (3.11), where 3(a) and 3(b) appear from the
diagonal elements of the determinants when e)0 and
m&0, respectively. Those diagrams consist of m+m'
creation lines k,—+k; and Iz ~k, i =1, 2, ~ ~, m (or m')

I
A)-zh—=2 I

A'K8 "'j~ ~

is not convenient to use because the function
~ A)»&h

will acquire a large number of unlinked clusters through
the inverse overlap matrix 8 'I~ even if the original
function

~
A) consists of a limited number of clusters.

To avoid this complication, we construct an ortho-
normal set step by step starting from functions

~
mOA~)

of the lowest order in m.
The unperturbed ground-state function

~
OA) is al-

ready normalized in (2.8), while a set of

k' 4 k h
I( A

]k — ]4 ]( I]
i
4' k

(b) (b') (c)

FIG. 2. Expansions of overlap-matrix elements. Diagrams {a)
and (a') are for (k'; h' [ k; k), (b) and (b') for (k' ( k), and (c)
for (; Iz' [;k).

functions

p=1 2

generated by transposition of n orbitals from Gp to G is
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orthogonalized as follows:

x I noA~) =Q I noA, )(noA, I
8„»-'I'

I
noA ), (42)

where by (~ ~ ~
I 8„,—'

I
~ ~ ~ ) and (~ ~ ~

I
8„»-'~'

I
~ ~ ~ ) we

denote the inverse and the half power of the inverse of
the overlap matrix (noA» I

eoA„)—= (eoA» I
8~» I noA» )

among the

functions
I
noA~). The meaning of the operator 8„»—= 1

will become clear shortly. Of course, we need to consider
the orthogonalization among functions with a 6xed e
only; other functions are automatically orthogonal to
each other because of their spins.

Wave functions involving single interchanges, m=1,
are obtained from

I
n1A~) by projecting out the lower

components I OA) or
I noA~) by

8„&l n1A, )={1—o'.»}I n1A, ), (4.3)

where the projection operators 8„» and (P„p are de6ned
by

a„,,=+X
I

nOA, )(nOA, I
X

=g g I noA, &(noA, I
8„;~

I noA„&&nOA„[,

for n/0, (4.4a)

(P, =l OA)(OA I, for e=O, (4.4b)

~e»= &
—+np (4.5)

The orthonormal set ls then wlltten as

K
I n1A„)=Q e„g I n1A») (n1A» I

e„g-"'
I e1A„), (46)

where ( ~ ~ ~
I
8„-'I'

I
~ ~ ~ ) is the half power of the in-

verse of the matrix (~ ~ ~
I

8 „I

~ ~ ~ ).
Similarly, orthonormal functions with double inter-

changes are generated from
I n2A~) by projecting out

the lower components
I

noA, ) and
I
e1A„) and then by

orthogonalizing the resulting functions 8„» I
n2A~). This

method can be continued inde6nitely. The orthonormal
functions K

I nmA~) with an arbitrary m are given by

x
I nmA, )=g e„ I emA, )(nmA, I e.='I'

I nmA, ),

A repeated use of the recurrence relation (4.8) for 8„„
and the characteristic property of projection operators
6'„5'„~=(P„B„„»B ~ yield that

e„„=g(1—6'„~) =1—g 6'.;; 8„,= 1. (4.10)

Also, we 6nd that

e„ I
nm') =0,

O'. [em')=0,

a„„I
nm)=x

I nm),

if m& m', (4.11)

if m&m', (4.12a)

if m =m'. (4.12b)

In conclusion, the operator 6„projects out all lower
states

I
nm'A, ) where m'(m, while (P„„picks up the

mth states%
I
em).

B. Exyansion of the Projected Overlay Matrices

We shall now apply the expansion method developed
in Sec. III to the calculation of the projected overlap
matrices (nmA, I 8„[emA„) and the inverses
(nmA, I

8„„-'
I nmA„) and (nmA,

I
8„-"'IemA, ),

which appear in the process of the orthogonalization.
We vill then 6nd that the operators 8„+' just intro-
duced project out all pair-creation lines and the re-
sulting diagrams for (nmA, [8„-~[nmA, ) consis«f
overlap interaction lines only, where the notation
(nmA» I

8„'
I nmA~) with /=1, —1, and ——', is used

to denote both the overlap matrix and the inverses.
For example, use of the relation 8p»= j.—(Pp and

6»—=
I 0)(O I

leads to

(u'; a'I e„l u;h)=(x';h'
I u; I)—&u'; z'

I o&(o I x;h).

(4.13)

The erst term on the right, (k'; h'
I k; k), is given by

the sum of two diagrams in Fig. 2(a'), but (k'; h'
I 0)X

(0 I k; h) is equal to the second diagram alone. Hence,
only the overlapping pair diagram contributes to
(k'; h'

I 8»g I k; 1»), yielding that

&&';h'I coil&;h&=(&'I 1'I &)(~ I
~ 'If') (414a)

Here the complete cancellation of the second diagra, m
results from the fact that the two lines in the diagram
are independent of each other due to the determinantal
structure of (k'; h'

I k; h). The inverses (k'; h'
I

8@'
I 0; h),

where l= —1 and ——'„are also given by

&&'; h'
I

8»~'
I &; h&=(&'

I
l'

I &) (& I
~ '

I
h') (4 14b)

6„„—=g x
I emA, )(nmA, I

x

=g g e„„[emA,)

e. =—(1—o'„&&e„ (4.8) as is proved by appropriate matrix rnultiplications,
where (h I

6
I
h') =—(h I

h') .
The values of matrix elements (k'

I

1"'
I k) and

(h I
6—'

I h'&, for /=&1 and ——,', which appear in the
expressions in (4.14) are evaluated as follows. The
inverse (h I

6 '
I
h') can be evaluated accurately by

Theorem 1. Use of the results in (3.13b) will yield
X(nmA» [ 8„„'I emA, )(nmA,

I
8„. (4.9) the value of (k'

I

1'
I
k). Let (F) be the matrix whose
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k'k element is given by (O'
I

1'
I
k). Since (O'

I
I'

I
k)

behaves similar to the overlap integral (k'
I k), we can

compute the inverse (O'
I

1' '
I k) of the matrix (I')

equally well by one of the methods used in the calcu-
lation of the inverse overlap matrix (6 ').

Quantities like (h
I
6+'"

I
h') and (O'

I

F+"'
I k) are

calculated by a similar method. If, for instance, we
truncate the matrices 6 and 1', the eigenvalues (1+X)
and (1+Xr) can be evaluated, and the desired quan-
tities will be obtained, by 6+'I'=Ut(1+X)+'~'U and
1"+'t'=Urt(1+Xr)+'I'Ur. The accuracy of the calcu-
lation may be improved by the expansion technique
discussed in Ref. 13.

Since it is possible to expand (h I
6'~'

I
h') and

(k'
I

1' '"
I k) in terms of (h I

h') a"d (k'
I

1'
I k), re-

spectively, any of them can be written as a sum of
linked diagrams composed of light lines representing
the overlap integral (h I

h') or heavy lines describing
(O'

I
F

I k). This shows that the two termini h'h or kk'

involved are linked. I.et us denote the linkage by a
broken line connecting the two points as is shown in
Fig. 1, and call them (inverse) overlap lines.

The decomposition procedure can be extended to
matrices (nmA,

I
8„'

I nmAp) of higher order. The
result may be summarized as follows:

Theorem 3. All pair-creation lines in

(nmA, I
8„'

I nmA„)

are projected out by the operators 8„' and hence
the only lines in the diagrams remaining are 2m+n
overlap lines. Those diagrams are all generated from a
standard diagram by permutations of the upper termini
of the overlap lines between electrons as well as by
permutations of the lower termini of the overlap lines
between holes. Hence

(k, " k~„;h, " h.
I
e„„iIk,."k~„;h,".h„)

i=1 ~l
X (kI, '

I
I'

I k~) (h; I
& '

I hq, '), (4.15)

and a similar expression for ( ~ ~
I

8 „„'
I

~ ~ ~ ), where

for l= 1) (4.16a)

D~, ~
'= I(m+I n I)!m!I ' for/= —1 or —p, (4.16b)

and I'1 ~ I' denotes the series generated from
1, 2, ~ ~, m by a permutation I" while the summation

includes all possible permutations. The normali-
zation coef!icient D„„'given by (4.16) is a consequence
of the definition of ( ~ ~ ~

I
d —'

I

~ ~ ) as given by (3.11).
The theorem will be proved in the following. Since

B„p is equal to unity, (ki' ~ 'kp'
I epp I

ki' ' k„) is simply
given by (3.11), that is,

(k,'" k„'I e.pIk, " k„&

ll' ' ' ln l1~"' l1~ i=1

X (li' ~ l„'
I

& '
I
li ~ l~), (4.17)

where the summation Pi, ...i„includes, as before, terms
obtained by the replacement of (k, ' I

JJ') (l; I
k,)

and ( ~ ~ l ~ I6 'I ~ l,' ~ .) by (k Ik;) and

( ~ ~ ~ ~ ~ ~
I
6 '

I

~ ~ ~ ~ ~ ~ ). Use of (3.12) and (3.13b) in
(4.17) will yield that

n

(k,'" k.'I ., Ik, "k„&=+(—1) g(k, ,.'I
P i 1

(4.18a)

which proves (4.15) for 6„p.The inverse is also given by

(k,'" k„'I e.; Ik," k„)
n

= (n!) g( —1)i' g(kp, '
I

1' '
I k,). (4.18b)

P i=1

This is proved by appropriate matrix multiplications.
For instance, use of the expressions on the right of
(4.18) in

Q (ki' k '
I Q„p '

I 4 . k„)(ki k„
I e„p I ki k )

k1" kps

(4.19)

will yield the desired 5 function, because the summation

g», . ..»„can be replaced by a set of unrestricted sum-
mations (1/n!) g», ~ ~ P»„. The expressions in (4.18)
illustrate that diagrams for (ki' ~ k„'

I
B„p'

I ki ~ k„)
consists of nothing but e overlap lines. Thus, the
theorem is shown to be valid for 6„0'.

More generally, it will be found from (3.11) that
(k,' "k,.'; h,'" h. 'I e., Ik,".k~.; h,".h. ) in-
volves at least e overlap lines which connect 4 and k';
the remaining m+m' pairs of termini may contribute
in forming either pair-creation or overlap lines, thus
yielding an overlap matrix not involving any projection
operators 8. Therefore, (~ ~ ~

I 8„p I

~ ~ ~ ) may be decom-
posed as follows:

(ki' ~ k +I', hi' ~ ~ h„'
I e„p I

ki" k~~, hi. "h )

=Q Q(kq, ' ~ kq„'
I e~p I ki, ~ .kp„) (kq„„' ~ kq„,„',hi' ~ h„'

I ki „„"kp„,„,hi ~ h~&
(P) (0)

=Q Q(nOA, „ I 6„p I nOA „)(Om'A, I OmA, ),
(P) (Q)

(4.20)

where two series of numbers Pi ~ P„and P~i ~ .P~„result from a partition of 1, 2, ~ ~, m+n into two parts;
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(N+ml~ x(nmA, „ I e„
I nmA;)

X (nmA; I
8„„-'

I
nmA p)

x(nmA„-
I e„„InmA, „)

distinct partitions of this kind.
The same arguments will be applied to the decompo-

sition of ( ~ ~
I

8 „p'
I

~ ), and we will find at least n
overlap lines connecting h'h pairs of holes.

The expansion of (nm"A,
I

8»
I
nm'A„), for arbitrary

e, m', and m", may be performed similarly to that of
(' ' '

I 8pi I
' ) as is illustrated in (4.13) and (4.14).

It will then be found that a nonvanishing contribution
to ( ~ ~ ~

I
8» I

~ ~ ~ ) appears only if one more pair of
electron-electron and hole-hole overlap lines connect

( ~ ~
I

to
I

~ ~ ) in addition to the n overlap lines already
found in the expansion of (~ ~ ~

I
8„p I

~ ~ ~ ).
The calculation can be extended to higher-order

terms. To prove the expansion for an arbitrary m by an
induction method, we first assume that

X (0 I
0 m' —m A~, )

=—g g(0 m" m—A„ I O)
(P) (Q)

X(nmA, „ I 8„ I nmA, „)
X (0 I

0 m' —m Apt). (4.23)

Hence the expression (4.22) may be written in the
form

(nm"A,
I e„~i I

nm'A, )
=g gf(0 m"—m A« I

0 m' —m App)
(P) (Q)

one part contains e and the other m numbers. The term will become
summation go &

includes —g g pg(Om" —mA„IO)
(P) (0) 9 e

(nm"A,
I 8„ I

nm'A„) with m', m")m,

involves at least 2m+n overlap lines which connect

( ~ ~ ~
I

to
I

~ ~ ~ ) and show that the statement is also true
when m is replaced by m+1.

The original assumption implies that

(nmA, I
8„'

I nmA„), for l=&1 or ——',,

is written as (4.15). Furthermore, since the 2m+n
lines are disconnected from the remainder in

(nm"A,
I e„„I

nm'A„),

we can separate them as follows:

(nm"A,
I
e„.I

nm'A„)

=Q g(om" —m A„I 0 tn' mA„)—
(P) (Q)

X (nmA, „ I 8„ I nmA, „), (4.21)

where the summation g&t» includes

&'m'+n'& t'm'~

& m+ni &mi

distinct terms generated by appropriate partitions of
indices k~. - k +„hq. - h ~ into two parts.

Use of (4.8) yields the expansion of ( ~ ~
I e„~i I

~ ~ ~ ):
(nm"A,

I e„~i I
nm'A„)

V. EXPANSION OF THE PROJECTED
INTERACTION MATRICES

A. Separation of the Hamiltonian

In this section, we shall calculate the projected inter-
action matrices (n'm'p'

I
8„„.K8„„I nmp) by the tech-

nique developed in Secs. III and IV. The projection
operator used here is considered to operate in both
subspaces G and Gp simultaneously as follows:

8„„I
nmP)= 8

I
nt—nA ) 8

I
nmB ), (5.1)—

while the Hamiltonian X is assumed to be of the form:

2N 2N 2N

x= gee&&(r,)yg gee& &(;„;,)

—(Om" —m A„IO)(OIOm' —mA„)I
X (nmA, „ I

8„
I
nmA, „). (4.24)

The quantity in f J on the right of (4.24) is equivalent
to the expression on the right of (4.13). Hence the
expression on the right of (4.24) vanishes unless one
more pair of overlap lines connects ( ~ ~

I
to

I

~ ~ ) in
addition to the 2m+n lines which already exist in

( ~ ~
I 8„„I

~ ~ ~ ). This proves the original assumption as
well as Theorem 3 and (nmA, I

8„'
I nmAp) is written

as (4.15). The expression for the inverses is proved
immediately by appropriate matrix multiplications of
the type (4.19).We note that (nm"A,

I
8„„'

I
nm'A„) =0

if m' or m" is less than m, because of (4.11).

= (nm"A,
I 8. I

nm'A, )—Q Q (nm"A,
I
8

I nmA;)

x(nmA; I e.,--
I
nmA;)(nmA; I e„ I

nm'A„), (4.22)

2N 2N

+g g I Z, ,—Z, , I-', (5.2)

where J illustrates a site in both sublattices CA7 and
where the first and second terms on the right can be LB7 and the summation g&2~ is equivalent to
divided into two by (4.21). In particular, the second gp P+gg iP'.



For simplicity, X is considered to be a function of
positional coordinates only, although the method can
be extended to the case where K involves spin variables.
The number of electrons in a subspace is then a constant
X&e, and nonvanishing matrix elements appear only
if n =e'. Consequently, we only need. to calculate ele-
ments of the form (em'p'

I
e„xe

I Imp) which can
be divided into two parts as follows:

The Hamiltonian X involves only X+I variables be-
longing to G . The other X—e variables do not appear
in G; they behave like parameters in (. .X ..~ ) and
should be transferred to the second integral ( ~ Xp ).

If, for instance, X is

x.~p xol(;)+g +xi l(;„»,,)

(era'p'
I e„xe„ I Imp)

=g(n»rr'A; I e„.x.e„ I rsmA, )

+Z Z I ~;,-~;.I-, (5 4 )
jl)72

then Kp is equal to unity and vice versa, The two-body
interactions between G and G~ are formally partitioned

(5.3) into X and Xp as follows:

ga O'P

x.~g p(-rs~ a„. I e „..Xi»(;, ;,) e „„I
—rr»ns„)„, ,„,

S2

x,=g g(rr»n'A„,
I e. .xtsl(»;, », ,) e.

I rsmA„)„, (5.4c)

By K ~ and K q~, we denote one- and two-body inter-
action parts of K

S. Expansion of the Interaction Matrices

We shall now demonstrate the expansions of the
interaction matrices by simple examples. For instance,
use of expansions like (3.4) in (OA I

X I OA) yields
that

(O~ I X-r I
O~ )=Z Z (l I X(») I h) (& I

~ '
l l) (5 5a}

h=l /=1

that those diagrams do not carry open dots and crosses
which would otherwise appear in one of the wave
functions. Consequently, this type of interaction cannot
propagate to other matrices in the course of a pertur-
bation expansion, and their contributions are limited to
the self e»re»gy of the m-atrix.

The matrix element (k'; h'
I
x r I k; h) is expanded

as"

(&' h'
I
x I

& h) = (l't'
I x(» ) I &)(ls I

f), '
I

~')

+Z Z {(~'
I x(» ) I

l') (l I ~) (»'
I ~ '

I
le')

(oa I X.„I oa)

= g p g p(l, ls I
x&» (»r», ) I a,a,)

hy=lhg I fl 1 /2 l

X(hths I
6 '

I lrls), (5.5b)

where X(»} may be either the one-body potential
X"l(») in (5.4a) or the projection of the two-body
interaction onto the G space as de6ned by (5.4b).
We shall illustrate the expansions by diagrams in Fig. 4,
where wavy lines represent the dynamical interactions
(l I X(»)I lr) and (l,ls I

x&»(»,»s) I a,a,). A solid dot as-
sumes the sum over all sites in the lattice. We note

3Z
FIG. 4. Self-energy diagrams; (a) is for (OA I GC r I OA ) and (h)

for (OA I X IXIO&&.

+ (l I X(»s) I k) (k'
I
l') (/rl'

I
& '

I
lk'} I

+2 Z(i"
I x(»' ) I

h")(&'
I &) (h&"

I
~ '

I
h'l")

+Z 7 Z Z(l" I x("-)I
~")(~'

I
l')

)t'(l
I 0) (lr/'lr"

I
f) '

I
/hV'). (5.6)

A similar series may be found for (k'; |'r'
I
x rr I k; h).

The expansion (5.6) is represented by diagrams in

'fl Expansions like {5.5) and (5.6) may be obtained easily if the
permutation operator Z~( —1)~E involved in the wave function
on the right I

"~ ) is transferred to the left, ("~ I. The matrix
element is then written as

(" Iscl "&=~'& (—t)'

P,ct'(1, 2, ~ ~ ~ 2Ã) P O~'(1 2 ~ » «2g)

XSCC (1, 2s ~ ~
s 2E)e(1~ 2) "

s 2g) dT

and electron h in 4 (1, 2, ~ ~, 2Ã) 8(1,2, ~ ~, 2Ã) occupies a
6xed orbital h (or k) . More detailed manipulation will be found in
Ref. 4.
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/4 l( $r + + ta)
if it contains an interaction line. The rest of the diagram
may be referred to as a rzormafisafiorz Parf

r) )4+0
ii + 'I I (b)
5l V

»

(e)

Fza. S. Diagrams for (k'; h'
I 8mXNz8m I k; k); (a) and (b) are

for (k'; k'
I X z I k; h ), (c) for (k', fz'; 0) (0 I X,z I k; h ), (d) for

&k'» h'
I Xaz I 0) &0 Ik» k» and (e) for

(k'; h'
I 0)(0 I X z I 0)(0 I k; k).

Figs. 5(a) and 5(b). We may classify those diagrams
into three groups as follows.

The first group consists of the first two diagrams in
5(b) and is derived from the third and fourth terms in
(5.6). They are superpositions of two disconnected
parts; the diagrams for the overlap matrix (k'; k'

I k; k)
and a self-energy diagram. The last four diagrams in
5(b) form the second group. They are generated from
the diagrams in the first group by interchanges of
termini of heavy lines belonging to the self-energy and
overlap parts, and may be called kkzematical-interaction
diagrams. The last group is derived from the first and
second terms in (5.6) . It is generated from the diagrams
for (k'; k'

I k; k) by replacing one of the light lines
making up the heavy lines by an interaction line. They
may be called dyrIamical-&steractiorl, diagrams.

The method is readily extended to the calculation of
any interaction matrix element and the diagrams may
be generated by the following prescriptions.

(a) Draw all diagrams necessary to describe the
overlap-matrix element ( ~ ~ ~

I
~ ~ ~ ) and add a self-energy

diagram to each of them. Here crosses and open dots
are fixed points specified in the wave functions ( ~ ~ ~

I

and
I

~ ~ ~ ) but solid dots involved in the self-energy
part represent the sum over all sites in the sublattice
excluding those points already occupied by open dots.
This creates all diagrams belonging to the first group.

(b) Construct all possible kinematical-interaction
diagrams by connecting one or two pair-creation or
overlap lines to the self-energy part by interchanges of
the termini. This generates all diagrams in the second
group.

(c) When a solid dot in a self-energy diagram over-
laps with an open dot, that portion of the diagram is
replaced by a dynamical-interaction diagram. This
yields the diagrams in the third group.

Let us call a portion of a diagram a licked ieteractioe
parf if all its points are connected with each other and

C. Expansion of the Projected Interaction Matrices

Projected interaction matrices

(rzm'A, .
I t)„„x.&)„„

I
rzmA, )

may be expanded similarly. Since the operators 8„
and 6„~project out pair-creation lines and X interacts
with only a few lines, it is expected that diagrams for a
projected interaction matrix element will be super-
positions of diagrams of projected overlap-matrix ele-
ments and self-energy, dynamical-interaction or kine-
matical-interaction diagrams. Let us illustrate this by
simple examples.

(I) Since f)~zs ——I, the expansions of

(~ I o ~
I ~+zo70 ()+I I

~ l. o~ )

may be carried out by the prescriptions (a)~(c) . The
results are summarized in Fig. 6, where each solid dot
represents the sum over-all sites excluding points al-
ready occupied by other dots.

(ii) Use of the relation

ti«=I —Io)(oI zn &oI00-e„I oft&

will yield that

(o I
x„f)„

I k; k& = (o I
~.

I
k; k&

—
&o I 0o.

I o&&o I k; k&.

(5.7)

Figure 7 illustrates Eq. (5.7), where the first three
diagrams in the first line result from the first term in
(5.7) and the last one from the second term. The
dotted line indicates that the two parts in the last
diagram are independent of each other and, hence, the
solid dot in the lower terminal is allowed to overlap
with the open dot, while this is not permitted in the
second diagram. Consequently, the cancellation of these
two diagrams is not complete and the difference is given
by the diagram shown in the rniddle of the second line.
We shall call this a clmllaet-correction diagram. The

~'I- Y
(b)

0 &

I

(c)

PIG. 6. Diagrams for (&10A I 8~»OX z8~»0 I
a10»f ); (a) is

for (102
I

8zoX z8»o I
102 ) and (b) and (c) are for

&
—10~

I 8-z~-z8-z~ I
—10~ ).
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complete expression of (0 I
X 8sz I k; h) is given by the

three diagrams in the second line. Diagrams for
(0 I Ã~zz8sz I k; h) may be generated by appropriate
replacements of interaction lines.

(iii) The method can be extended to the expansion
of (k'; h'

I 8, X 8o I k; h), as follows:

&k'i h'
I 8oiX z 8oz

I hi h) = &k'i h
I
X z I hi h&

&k'ih' IX z IO&&OI »'h&

+(k'; h'
I 0)(0 I

X z I 0)(0 I k; h). (5.8)

Diagrams for each term on the right of (5.8) are listed
separately in Fig. 5. Here diagrams involving an isolated
pair-creation line will cancel each other, but again the
cancellation is not complete, leaving cumulant-cor-
rection diagrams as the remainder. For instance, the
first diagram in 5(c) is equal to the last diagram in
5(a) plus the first diagram in the second row in Fig. 8.
The complete sum is illustrated in Fig. 8, where the
diagrams in the second row are all cumulant-correction
diagrams. We note that all points in the diagrams in
Fig. 8 are now distinct.

The expansion may be extended to more complicated
elements, but we can by analogy expect that pair-
creation lines are either projected out by operators
8„or connected to the linked interaction part by the
ieterchaege mechanism described in the prescription
(b) or by the clmglatine overlapping mechanism just
discussed. We shall prove this in the following. Since
8„s=1, the prescriptions (a)~(c) are directly appli-
cable to the calculation of (zsm"A

I 8„&X 8„s I
zsm'A),

and it will be found that at least e lines should connect
the lower termini to the upper termini in order to find
a nonvanishing contribution. Of course, any one of
them could include an interaction line. The quantity
( ~ ~ ~

I
~ ~ X z8„i I

zzm'A~) may be expanded. as

—p g( ~ ~ ~
I

~ ~ .X z8„Q I SOA;)
e F

)z,'(zzOAs
I

8„s-z
I

zsOA; )
X(~OA;.

I 8„, I
~m'A„). (5.9)

Use of a decomposition similar to (4.21) and (4.23)
on the right of (5.9) yields that

—( ~ ~
I

~ ~ X z8„s I
zsOA „)(OA I

Om'A, ). (5.10)

Fzo. 7. Diagrams for i0 I X~re:r I k; k l.

h
l ( ]i IIr + p( 'il

V )( V

FrG. 8. A complete expression of diagrams for

(&', h'
I eoisc zem I k; k).

From this expression, it is obvious that diagrams con-
taining m pair-creation lines among the lower termini
cancel each other on the right of (5.10). Nonvanishing
contributions will appear only in the following situ-
ations. One possibility arises if at least one of m'

pair-creation lines is replaced by a pair of overlap lines
which connects the lower termini to the upper termini,
provided m" &1 in (em"A I. Of course, one of the two
overlap lines may be an interaction line as is the case in
the first three diagrams in Fig. 5(a) . Other possibilities
appear if a pair-creation line is either replaced by an
interaction line or linked to the interaction line by the
interchange or cumulative overlapping mechanisms.
Those three cases are illustrated by the three diagrams
in the second row of Fig. 7. ln conclusion, nonvanishing
contributions appear only if one more pair of termini
participates in connecting the two wave functions (
and

I ).
I.et us assume that a nonvanishing contribution to

( ~ ~
I

~ ~ X,z8„ I
Nm'A„) appears if at least is+2m

termini are involved in connecting the two wave func-
tions. The assumption can be extended to the case
where m is replaced by m+1, because Kq. (4.24) is
generalized as follows:

&" I" X.,8„.„INm'A„&

=(" I" X z8. I zsm'A„)

—( I" X.z8„ I NmA„„)

)& (OA
I
0 m' —m'A, ). (5.11)

This shows that nonvanishing contributions do not
appear unless one more pair of lower termini con-
tributes to the connection of the two wave functions.
This proves the original assumption. The same argu-
ments may be applied to the decomposition of
(tzm"Az,

I
8„X z ~ ~

I

~ ~ ~ ) as well as to matrices in-
volving two-body interaction K». The conclusion may
be summarized as follows.

Theorem 4. The normalization part of diagrams for
(i'm'A~

I
8„X8„

I
rzmA~) consists of nothing but

overlap lines which connect the lower termini to the
upper termini. The nucleus of the linked interaction
part is a self-energy diagram, a dynamical-interaction
diagram, or a kinematical-interaction diagram. The
latter type of diagrams appear only when one or two
overlap or pair-creation lines are connected to a self-
energy diagram by the interchange mechanism. Each
solid dot involved in a linked interaction part may
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fo1 X~=X~Iq (5.12a)

I
m —m' l&4, for X =X ii. (5.12b)

Any of the diagrams generated following the above
instructions will contain an interaction line representing
a one- or two-body interacting integral

(l I
X"'(r)

I h) or (lily
I
X"'(ri, r2) I

hihm).

I.et us denote by

(~ I
X"'(r)

I h) &nm'A. I 8- 0 I hj8- I nmA. &

or

(i,f,
I
X&»(r,r,) I

h,h, )
X (nm'A„

I
8. Prim I hih2j8. I emA, )

the sum of Rll possible diagrams which include the
particular integral

(g I
x&»(r)

I h) or (lit, I
X&'i(rir~)

I hihm).

C" I" 38

represents not only the normalization parts of the

connect a pair-creation line by the cumulative over-
lapping mechanism, yielding cumulant-correction dia-
grams. A diagram including pair-creation lines will
vanish unless they Rre Rll COQQcctcd to the 11nkcd 1Qtc1-
action part.

The 6rst statement of Theorem 4 implies that in
each projected interaction-matrix element the normali-
zation part contains the same number of lower and
upper termini and the diagrams are exactly the same
as those for the corresponding overlap-matrix element.
Self-energy diagrams of one- and, two-body interaction
operators include, respectively, one and two heavy
11ncs Rnd hcncc they CRQ COQncct to oQly one Rnd two
more lines by the interchange mechanism. From Figs.
4 and 5(a), it will be found that the number of solid
dots involved in self-energy and dynamical-interaction
parts cannot exceed two if 3.' is a one-body operator
and four if X is a two-body operator. This imposes a
limitation on the size of linked interaction parts. If an
energy matrix of a one-body interaction is concerned,
only three lines can be attached to the self-energy
diagrams, one by the interchange and two by the
cumulant-correction mechanism, the latter connecting
one to the upper terminus and one to the lower terminus.
In case of a two-body interaction, the number can be
doubled. A dynamical-interaction diagram does not
accommodate an extra line by the interchange mecha-
nism since all possible permutations are already included
in the diagrams in Fig. 5(a) . In conclusion:

Corollory: Nonvanishing contributions from

(nm'A„
I 8„X„8„„I emA, )

w10 RppCR1 OQly 1f

diagrams, but also the portions of the linked interaction
parts which consist of heavy lines and light lines. It is
obvious that the projected interaction-matrix elements
Rrc cxpRQded Rs

(nm'A„.
I 8„.x.8„„I nmA, )

=2 Z(f I
X'"(r)

I h) &nm'A.
I 8- D I

h38- I nmA. )

+Q Q Q Q (lll2 I
x"' (rir2) I

hih2)
hy lan li. lg

X ( nmA~'
I 8„Clil2

I
hih2j8„ I nmA„) (.5.13)

The expression is a generalization of (5.5) and (5.6)
and may be obtained directly by the technique de-
scribed in Ref. 4.

VI. CUMULANT REARRANGEMENT OF THE
ENERGY MATRIX

I.et us now calculate the energy matrix based on the
orthonorinal wave functions m

I nmp) defined in the
full space:

m
I nmp) =—m

I nmA, ) m
I nmB„)—

—=mlk, " k~„;h," h„&

Xm
I hi ~ h ki ~ k~ ). (6.1)

Since excitations are assumed to be generated by
permutations of spins, electrons taken out of 6 are
always placed in Gp and vice versa, and electrons
ki ~„and holes hi ~ h„ in G are holes and elec-

trons, respectively, in Gp. Hence, the same indices
k," k +„; h,".h~ are repeated in m

I
nmAn) and

m
I

—nmB~) in reverse order in (6.1).
A proper adaptation of the notation in (5.13) to the

energy matrix yields that

(emp lmxm I emp)

=Z Z(j'I x"'(ri)
I j)&IICj'

I jjll&

+2 g g' g g'( ji'j2'
I
x"'(rir2)

I jij~)
ja ji.~ ja'

x &IICji'j' I jij~]ll) (62)

where II) denotes m
I nmp) and

&IILji'j'
I jij2jll) —= &nm'A'

I mL ji'j'
I ji j~1m I nmA. &

X (—nm'B ~
I mCj ij'm'

I jijijm I
nmB, ), —(6.3)

Rnd

(nm'A„.
I mC ji'j,'

I ji jpgm I nmA, )

=g g(nmA„, I
8„„;i~2lnmA, -.&

X&em'A„-
I 8„..Cjig I j,j,j8, lnmAg&

X(emA-
I

8„„—'~'
I nmA„) (6.4).



To transform the expression {6.2) into a more at-
tractive form, let us decompose the one-body part of
the Hamiltonian (5,2) as

3COI(rI) =2"(rl) —Q V(rl, R;), (6.5)

where T(rI) is the kinetic energy and V(rl, R;) is the
elective potential of the ion at 8;. In the Appendix,
we shall show how the use of (6.5) in the first term
on the right of (6.2) yields that

)( ~ ~

l
A y}

h

kp, 'kp. hp,
.

1 1 e. ~

II=K Z(j' I
2"{rI)—V(rl'R') I j)(IILj'

I j]ll&

-Z Z'Z Z'(j~'"
I V(;R,') ljj")

&«IIC j'i"'
I jj"]II&

—2 Z ZZ'(ii'"'I V(rl R')Ijj)
(j+-j»») j» j»»»

&&(IICj'&'" ljj]ll&, (66)
wllcl'6 (j~j ) denotes 'tile loll pMI' 111 wh1ch 'two clcc-
troQs Rlc Rt Rtom j Rnd IloDc Rt atom j ~ S1ncc thc sct
of indices j,j,j,j involved 1Q thc sccoIld tcI'IQ on
the right may be replaced by either j1, j., j~', j~' or

g1q JI, J1 ) JI ) llsc of tile rcslll'tlIlg 'two cxpl'csslolls III (6.2)
leads to

(II 3.'Il)=Q e;(Nm'p', tImp)

+-'. Z Z Z Z'(j'~' I~(j j.)Ij.j.)
jI ja ii.' 8»

x&IIC~'~'I j j.]ll&
+ Z 2 Z (»I&I I &'(&ISA)I&I&I)

(j1. ja) j~» ja»

~ &IIC jl'JI'
I jl jl]ll &, (6 7)

&herc

c;(Nm'p'; IIIsp) —=Q (j' I T(rl) —v(rl., RI) I j)
&«IICj'Ij]II&, (6.g)

X(jl jm) =XII(rlr1) —V(rl, R;,) —V(r1, R;,)

+1/I R;,—R;, I, (6.9a)

K'( jl j1) =XI'I (rlr1) —V(rl, R;,) V(r1, R,,)—
+1/I R,,—R,, I. (6.9b)

The energy expression (6.T) is convenient for the
system for one-electron atoms, each carrying a tightly
bouDd clcctroD RQd interacting weakly with cRch othcY.
In fact, 3C( jl j1) represents an interaction between two
neutral atoms and e; the self-energy of an atom. H vrc

usc R solution p of R slQglc atom~

PXO. 9. A t~1CRl (HRgI'3IQ foI' RQ MIMI'~ IQRtI'1X CICIDCIlt.

as basis in the constr@.ction of the product function C

defined by (2.2), the energy e;(II''p'; nIIIp) becomes
exactly equal to the atomic energy eo multiplied by
~mm'~yy"

Our object is to calculate the second term on the
right of (6.7). Use of (6.3) and (6.4) reduces it to
products of inverse overlap matrices (~ ~ ~

I
8„"'

I
~ ~ ~ )

and interaction matrices ( ~ ~
I
8„.[ ~ ~

I
~ ~ ]8„„I

~ ~ ~ ).
Thc 1DtclRct10Q matrices Rrc CRlculRted by the ex-

pansion technique developed in Sec. V, and the typical
diagram is iBustratcd in Fig. 9, where the shaded

portion indicates the linked interaction part 2;. %C
note that only a few termini are connected to the
interaction part 2; wc shall call them outgoing (upper)
ol' isc05N sg (low'cl) $8YIIISNI. Tile lntcractlon pal t ap-
pcR1's only ln G~ or Gp 1'f thc Hamiltonian ls of thc type
(5.4a) but appears in both G and Gp if BC is of the type
(5.4b). Under the summations g;,P;,'P;, P;, ' in

(6./), the energy integral (IIII'P'
I
K ~ K

I IlmP) is
antisyrnmetric with respect to permutations of the
indices k and h. Consequently, for each diagram there
are (m+II)!nz! distinct ways to attach indices. Let us
denote the permutations by the factor ( —1)~ and
lnd1ccs k~I' kp +„hyj' ' 'h~ 1Q thc diagram ln Flg. 9.

A standard diagram for the overlap matrix (I 8„„'"
I &

given by (4.15) consists of broken hnes connecting kl
to ky'p ~ ~ ~

p
h to h '; other diagrams Rre Rll generated

f1om the staDdRrd diagram by pcrmutatlons of thc
termini of those broken lines. However, each diagram
contributes identically to the energy expression (6.7)
because of. the antisymmctric properties of the inter-
action matrix. Hence, the inverse (I 8„'I' I) is given
electively by

(I 8- '" I&=IIII()'''I I' '"I ~')(» I
~'"I I '),

{6.11)

Rnd only thc stRQdRrd dlRg1RIDS showD 1Q Flg. 9 alc
needed for these overlap matrices.

The summations g„- in (6.4) include

[T(rl) —V(rI R ) }y(rl—R) =coy(rl R) {610)—terms generated from all possible distinct sets of indices
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k~ ~ -k~„and h~. ~ .h, and can be split into two parts,
gg& and g&&&&. The former gg& is the sum over
indices belonging to the linked interaction part, and
the latter P&g& is the sum over indices involved in the
normalization part T.his will split the expression (6.4)
schematically into a form like

Ga ga g gp

&N' ll N). = Z' Z' ' 2'&N'
I

t&-'"
I

N'&
(&) (&') (&) (N')

X (N'
I 8

I N)(N I
6&

"'
I
N). (6 14b)

ga ga ga ga
~ ~ ~ ~ ~ ~ (6.12)

I and E represent indices involved in the linked inter-
action and normalization parts, respectively, that is,

(~) (L ~) (&) (&')

and
L=kg, ~ hz. , ",hz, ~ kz, ~ ~ (6.15a)

and consequently the energy matrix elements can also
be split up as

&II & II) = „Z.„Z&L' ll &* II L&~&N' ll N&z (6 13)

where the two factors on the right are formally given by

ga ga gy Gp

&L' ll &'ll L)N=Z' Z' Z' Z'&L'
I

8 '"
I

L'&
(L) (L ') (L) (I')

X(I' I 2;I I)(I I
8-'"

I L) (6.14a)

N =kg. , hN. . . h»j, . kg, . (6.15b)

The indices in L and N (or L' and N') taken together
are the same as the indices included in the wave function
on the right (or left) of (II K II).

Since each index appears either in g'g& or g'g&,
those two summations are not independent of each
other, and (L' ll 2; II L)~ and (N' ll N)r, cannot be
calculated separately. If the restrictions on the sum-
mations are disregarded, (N' ll N) will become equiv-
alent to the normalization condition of the basic func-
tions x

I amp):

(N'
I I N)&(k~ .'. ~ h~ .' ~ ~ h~ ' ~ k~ '

~ ~
I X

I kryo "~ h»r "~ ~ h~ ~ ~ ~ k»j. ~ ~ ~ )
=I 8(k»j,"~ ~, k~ ~ )b(hN, ~ ~, h~, ' ~ .) jg.[8(h,"~ ~; h, '. ~ .)8(k, ~ ~; k, '

~ )$ „(6.16)

where L ~ 7g. includes 8 functions among the indices
involved in the G part of X and E'.

However, an extra diagram will be included errone-
ously whenever k or h, involved in the normalization
part, coincides with one of the indices in the interaction
part. Hence, the correct sum will be obtained if we
construct such fictitious diagrams explicitly and sub-
tract them from the unrestricted sum obtained above.
To eliminate the normalization parts still remaining in
those fictitious diagrams, the above process has to be
repeated until all overlap lines are connected to the in-

teraction parts. The linked diagrams generated in each
of the processes are clmllmtt-correction terms similar to
those introduced in Sec. V, but in place of pair-creation
lines, overlap lines are involved in the present processes.

An example of the cumulant-correction diagrams is
illustrated in Fig. 10, where a broken line on the right
indicates that the two parts in the diagram are inde-
pendent of each other and the summations associated
with them are not restricted. The normalization part
can then be replaced by (6.16), and the energy matrix
elements may be written as

&II&II&= 2 2 2&k~'".h~' " h~'" kz'" ll&'Ilk'""h~" ", hz "kz" ~ &--&,
( ~ ~ ~ J/ (/ ~ ~ ~)

(6.17)

where g~~. ..&
includes not only the indices involved in

the original sums gg&g Pg&gp but also others which
have been connected to the interaction parts as the
results of the cumulant corrections. This proves the
linked cluster expansion of the Heitler —London method.

The calculation of the energy matrix elements may
be summarized as follows.

(a) Construct linked interaction diagrams according
to the instructions in Theorem 4 and the corollary.
Diagrams are to be constructed in subspaces G and Qp
simultaneously, and the open dots and crosses must be
replaced by solid dots and heavy crosses. If m=m', the

type of diagrams in Fig. 8 will be generated in each
space, while, for m/m', diagrams like those in Fig. 7
will appear. Connect the outgoing and incoming termini
with broken lines representing overlap integrals
(k I

F "'
I k;) or (h; I

6'"
I h ') involved in (I 0 '" I)

The procedure is illustrated by the examples in Fig. 11.
(b) Generate cumulant-correction diagrams of the

type shown in Fig. 10 and attach an extra factor —1 to
each. Repeat the process and generate cumulant-
correction diagrams in higher orders until all overlap
lines are exhausted.

(c) Impose the orthogonality condition (6.16) on
the indices not involved in the interaction part. Se-
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cause of the structure of the orthogonality condition
(6.16), the 8 function for a particular set of indices,
say, k,k (or k,k, '), can be eliminated only if the set of
indices appears twice in the interaction diagram, once
as an electron pair in G arid once as a hole pair in
Gp or vice versa. The resulting diagrams will contribute
to energy matrix elements relating two distinct spin
states.

(d) Numerical values of diagrams are obtained by
inserting values of lines defined in Fig. 1. Solid dots
and heavy crosses involved in the interaction parts
represent the sum over all sites in the sublattices LA j
and

I Bj, respectively.

I

9

+

d b

Gq G~,' Gp

FIG. 10. Illustration of the cumulative overlapping
mechanism.

Hermitian conjugate of A& satisfies the expressions

VII. PERTURBATION APPROACH
and

At'K
I

~ ~ ~ ~ ~ ~ )= (—1)"("K
I

I ), (7.2a)

A&x
I

1 ~ )~ = ( ~ 1) "«&—x
I

~ ~ ~ ~ ~ ) (7.1a)

A(x
I

~ ~ ~ ~ ~ ~ )=0, (7.1b)

where I represents indices k and k, and s(l) is the
number of indices, which precede 1 in K

I

~ ~ ~ 1 ~ ~ ). The

. A. Effective Hamiltonian and the Perturbation
Expansion

To formulate the many-body perturbation expansion,
we need to introduce a set of creation and destruction
operators. Let an operator AI, or AI, delete electron k
or hole k which appears in K

I
emp) when A~ or A~

operates on it, but erase K
I emp) if the index k or k is

absent in X
I mmp). That is,

A,&x I" r ")=0, (7.2b)

because of the orthogonality of the bases. Operators BI,
and BI, in Gp may be defined similarly. The operators
A and 8 satisfy the anticommutation relations

[Apt, A(.(~=[8(t, 8( ]~=o(p, (7.3a)

I
A)t, Aptj~=LA), Ap]+=I 8(', 8)'j+=[B(,8( j+=0.

(7.3b)

The relations (7.1)—(7.3) illustrate that A, At, 8,
and B~ are creation and destruction operators in G
and Gp, respectively, of quasielectrons and holes defined

by the orthonormal bases x
I emp). The energy calcu-

lation is then converted to the eigenvalue problem of
the effective Hamiltonian:

&.n=&0+ &
$1~ ~ 1 gf 0 ~ ~ $0 ~ ~ $4 ~ ~ $1~ ~ ~ + 7g/ ~ ~ ~I

k,,''" k,' "k,' "
ll ~ II k, ,".k,,""k, "k," )

XA~ '" A '" Aa '"8v '"As "~ .A ""AI 8a " (74)L L L L L L 'L

The values of (II 2, Il)«~„& may be evaluated by the
instructions (a) —(d) in Sec. VI.'~

The dominant contributions to X,«will undoubtedly
come from the two-body Coulomb and exchange inter-
actions. Figure 11 illustrates diagrams for the exchange
interaction; diagrams generated from these by rotation
through 180' should also be included. The type of
diagrams in Fig. 11 is written as

(0 II Z, II kk; kk&A, 8,A,8„(7.3a)

while those obtained by the rotation represent the
Hermitian conjugate of the above expression, that is,

(7 3b)

' To derive the value of an arbitrary matrix element, we should
in principle, include an infinitely large number of overlap lines in
the generation of cumulant-correction diagrams following instruc-
tion (b}.

Simultaneous destruction of electron Ig in G~ and
hole h in G denoted by AI,B& is equivalent to a shift
of electron h from Gp to G and may correspond to the
raising operator SI,+ in the Heisenberg theory. Similarly
A~BI, corresponds to the lowering operator 51, . The
two terms in (7.5) are the arIalog of the anisotropic
exchange Hamiltonian:

P( ~ ~ &s:sP+(0 II z II kk; kk)s;s, +
k, h,

y (kk; kk II z II 0&s.+s;
g~»ps;san+7 (—spsp+ sos,")7. (7.6)

The first term is derived from the two-body Coulomb
and exchange diagrams illustrated in Fig. 4(b) together
with the cumulant-correction terms generated from
them by attaching overlap lines carrying termini
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I

I

I

G~ , Gp

6 ,
''k 6

G~,'

Gp

L
I
I

+ etc.
I
I

6

I

G~ ~& Gp

Fzo. 1i. Diagrams for the exchange interaction. The Gp parts
of the diagrams will also take the other shapes which appear in the
G„parts of the second and third diagrams, leading to a total of
nine diagrams.

2 itA i( =Xi) or BitBi(=N~) . Those terms do not intro-
duce interchanges of spins and correspond to the Ising
Hamiltonian obtained when the spins are considered
as classical vectors.

As we have pointed out in the introduction, the
Hamiltonian (7.6) is a generalization of the Heisenberg
spin Hamiltonian H,~; (X=I) obtained previously
and could include the Ising model. However, the differ-
ences are not limited to appearances only. Previously
one could introduce only one kind of parameter, the
exchange coupling constants J», which are quantities
characteristic of the quantum effect. Consequently, it
is hard to justify that one can write the Hamiltonian
as B,~;„(X=0) when spins are considered as classical
vectors. The present method describes the interactions
J»AA, AJ,B& 8&, etc., as if they are static interactions
between classical vectors, while the exchange couplings
given by (7.5) are quantities characteristic of the
quantum eGect and given by matrix elements between
two states generated by the corresponding interchanges
of electrons.

Those differences are mainly due to the different
projections of the motion of electrons into spin space.
We note, however, that even for the simple Heitler-
London case the present method already includes ionic
structures through the orthogonalization procedure of
the basic functions. Therefore, the exact result of (7.4)
can be different from previously published results. ' '

The more complicated a diagram is, the less its value
becomes, since each additional line introduces a factor
of the order of an overlap integral. ' This justi6es the
truncation of the effective Hamiltonian (7.4).

The ground-state energy can be evaluated by the
perturbation expansion obtained by Goldstone. '

"More precisely, the order of magnitude of the linked inter-
action diagrams may be estimated easily. The cumulative over-
lapping mechanism will introduce additional pair-creation and/or
overlap lines. Each pair-creation line yields at most a factor of the
order of the nearest-neighbor overlap integral while each overlap
line adds at most a factor of the order of the half-power of the
next-nearest-neighbor overlap integral.

&=Q(0 I ~rL(&o 3lo) '~r7"
I 0) i, (7 7)

r=O

where the precise definition of the cumulants ( ),„
is given in Ref. 12. It should be noted that the one-

Intra-atomic interaction diagrams given by

Q UiiAitAiBiBit
l

(7.9)

will also appear whenever a pair of electrons occupies a
single atom.

These interactions have been postulated in Hubbard's
theory of narrow bandsa and Anderson's theory of
localized moments. The present method provides an
explicit prescription for the calculation of the inter-
action constants. We note that these terms are not
expressible in terms of atomic spin operators nor can
they be included in the Heisenberg theory of magnetism.
In fact, the main object of the present paper is to
develop a method of calculating localized electrons in
which the electron-transfer mechanism and excitations
of electrons in atoms are included so that the method

' Wick s theorem for interacting fermions is an obvious general-
ization of the theorem obtained in Ref. 12. See footnote 15 of
Ref. 12.

particle states defined by (6.8) and (6.10) are all
degenerate and inappropriate to be used in the pertur-
bation expansion for an unperturbed Hamiltonian 3Co.

Instead, the two-body term denoted by ( ~ ~ ~ )SpSiz in
(7.6) should be included in Xo.

The present method may be compared with the
method in Ref. 12. The inclusion of the two-body
static interactions in Xo will greatly increase the con-
vergence of the perturbation expansion but requires a
generalization of Wick's theorem" to establish a pre-
scription for the calculation of diagrams generated in the
course of the perturbation expansion. The calculation in
terms of fermion operators is, of course, simpler than
the calculation involving spin operators.

B.Electron-Transfer Mechanism

Since excitations so far have been limited to permu-
tations of spins, the 8 function between a particular
pair of indices appearing in (6.16) cannot be removed
unless the pair appears in both 6 and Gp simultaneously
as we have noted in the instruction (c) in Sec. VI.
This restricts the summations in the effective Hamil-
tonian (7.4) and the type of diagrams.

If the restriction is disregarded and the two parts of
each wave function, X

I
NmA„) and X I

—em'B~ ) are
constructed independently in 6 and G~, each atom no
longer carries an electron; some of them may carry
one or two electrons and others none, and thus all
possible ionic structures by charge transfers will be
generated. These newly obtained functions are still
orthonormal and the contributions appear as additional
diagrams. The linked interaction parts in Fig. 10 illus-
trate typical examples of electron-transfer diagrams.
They are written in the form

ZLI'aa(~i~i+BiBt)+&xi:*(~a'A'+Ba'Bi') 7 (7.&)
k, h
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can become an exact approach for the perturbation
treatment of electrons in the insulating state. Although
we have not discussed the method of including exci-
tations of electrons, the extension may be carried out
easily if we construct orthonormal basic functions by a
technique similar to the one described in Sec. IV.

Physically, the operators A, A~, 8, and B~ can be
handled in exactly the same manner as the creation
and destruction operators of the Wannier states. Be-
cause of the correlation built in the basic functions, the
present method is free from the difhculties involved in
the Wannier functions and can be used, for example,
in an explicit calculation of the antiferromagnetic
ground state. The successive orthogonalization intro-
duced in Sec. IV ensures the maximum localization of
electrons, while there is no exact proof of localization
of the Wannier functions in the three-dimensional case.

C. Quasisyin States

In the limit of large interatomic separations, both
K

I Nmp) and the spin function 0'„~ describe exactly
the same spin state. As the distances become smaller,
however, the magnitude of localized spins in X

I nmp)
may be screened by neighboring electrons with opposite
spins due to the overlapping of charge densities of
atomic orbitals. To illustrate this, let us calculate the
spin density of the unperturbed ground state

I 0). If
the nearest-neighbor overlap integral is assumed to be
appreciable but other overlap integrals are all con-
sidered negligible, overlap lines can be replaced by

+2 Z I f) (f I

&-'
I h) (h I

h lgh

=Z lh)(hl, (7.10)

and a similar expression for the spin-down part.
These charge distributions and the resulting net spin

density are shown in Fig. 12(a). Since there is one
electron per atom in the lattice, the sum of the two
charge distributions within a Wigner —Seitz cell is unity
while the spin density in the cell is given by the di8er-
ence between those two distributions and is necessarily
less than 1, illustrating the reduction of the net mag-
netic moment per atom in the quasispin state.

When the spins of electrons k and h are interchanged,
the atom k and its neighbors h' will occupy the same
spin states, and the cancellation of spin densities will
not take place as is demonstrated in Fig. 12(b). More
precisely, the charge density of the spin-up part is given

by

Q I
h') (O'I+

I h)(h I

—l 2 ll h) (h I h) (h I + I h) (h I &) (h I J

5 functions since orbitals are orthonormal within a
sublattice. The density matrix for the spin-up part is
then given by

pso (1 1 ) =Q I h) (h I
6

I h) (h I

Gg

Gct

(b)

FIG. 12. Charge and spin densities of the basic functions
K

~ amp); (a) is for the unperturbed ground-state function X
~
0)

and (b) for K
~

kh; hk).

where gator& includes all nearest neighbors of atom h.
The last term comes from the second term of (7.10)
and contributes only slightly to a partial cancellation
of the spin densities.

This demonstrates that even in the simple Heitler-
London scheme the present method deviates from the
generalized Heisenberg theory. The basic functions

I emp) used here are different from and more realistic
than the spin functions 0&„„used in the Heisenberg
theory. Each atom in the unperturbed ground state
carries a net magnetic moment which may be less than
a Bohr magneton. An interchange of quasispins will not
necessarily transfer the net magnetic moment, and the
effective Hamiltonian K,tt is different from (7.6) even
if only the two-body Coulomb and exchange inter-
actions are retained and all other terms obtained by
higher-order permutations are neglected in K,«. This is
the reason why the truncated Hamiltonian K,ff could
still be spin-isotropic even though it resembles the
anisotropic spin Hamiltonian in appearance. Indeed,
the magnetization may be calculated erroneously if one
simply replaces the fermion operators in 3C,«by atomic
spin operators and solves the resulting spin Hamil-
tonian. In the Heisenberg theory, the fractional mag-
netization appears only as the result of spin correlation.
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This shows that the present method cannot be applied
for generation of a spin Hamiltonian in a rigorous
manner.

APPENDIX

Since each atom involved in
I rlrrlp) carries a single

electron, the matrix element (mes'p'
I
Xo~(r)

I nrnp) can
be expanded similar to (6.6) but without the last term.
In the course of the orthogonalization, however, many
determinants,

I
nrrl'~~ ) and

I
rirri, "&—n. ) with

m"&m, are added in K
I nmp& and this creates a

variety of ionic structures. Consequently (6.6) is no
longer trivial. To prove (6.6), let us denote by J the
jth electron which is shifted from atom j to atom g.
For singly occupied atoms, no electron transfers take
place and hence f =j and f =j while f =j=jQj
illustrates that two electrons are at atom j and none

at atom j".We denote by (j&—j") the resulting ion

pair.
The erst term on the right of (6.2) is then written as

g 2// j/ j/I/

x &IICff" is/'711» (A1)

where I I ) represents X
I rsvp) Le.t us repiac«(r; &p )

for f'/y and V(r; R;) in the above expression by
p'(r; g-„) snd P(r; gr), respectively. Then (A1) be-

comes

I=+ g(y 12'(r~) —p'(r~; ~x) I y)(IIC f I @711&
—2 2"2 +'(ff" I l'(ri; ~--)

I z7")&IICff" I sf'7ll&

(~yy//)

—2 g g p'( ff" I l ( „&;-)Ijj)(IICff" ljj711)+», (A2)
&~ p/)

where hI results from the above replacement and is given by

»=2 Z(f I l'(r; ~r) —l'(r~; ~;) I s)&IICf I z711&

+ 2 2 2'(ff"
I v(r~;~) —l'(r~;~')lj"i")&IICff" I

j"j"711)

=2 2 2 (f I l («; ~r-) —1 (ri; ~~")
I ~) &IICf I &711& (A3)

j j/ j//

pg j//, j.//)

Note that the third term in the middle of (A3) appears
when the term involving ( j"+—j) is reduced to the form

of the third term in (A2). This term cancels the first
term in (A3).

Contributions to AI will appear from terms like the
second diagram in Fig. j.i. The diagram shows that
atomic orbital k(=j") is transformed to h(&f') in 6
but no electron transfer has taken place in Gp. As the
result, there are two electrons at atom It but none at k

and

2 2'( f I l'(r~; &~) —1'(r~; ~.) I S)&IICz' I S711&
i P

is not zero. However, there is a diagram generated by
the interchange of the G„and Gp parts, in which two

electrons are at atom k but none at atom II. Contri-

butions of such diagrams to AI are obviously given by

2 2'(f
I
1'(r; &~) —l'(r~; ~.) I J)&IILf IS711& (A3)

i P

According to the properties of X I ernp) illustrated in

(6.1), it is evident that for each diagram involving the
ionic structure ( j~j"), there exists a corresponding

diagram of the same value with the reversed ionic

structure ( j"+-j). Hence, the total contributions to» vanish, and (A2) is equal to (6.6). This proves

Eq. (6.6). A similar discussion may be applied to the
calculation of the constant terms 1/I R, ,—R, , I

in (6.9) .
If, as is discussed in Sec. VII 8, the charge transfer is

explicitly included in K
I nmp), the above cancellation

no longer holds. However, linear combinations of
K

I
erlp) in which charge transfers ( j+—j") as well as

( j"+—j) a,re equally included can be considered as the
basic functions. Then» vanishes and Eqs. (6.7)—(6.9)
are still valid.


