PHYSICAL REVIEW

VOLUME 165, NUMBER 2

Magnetoresistance of a Permalloy Single Crystal and Effect of
3d Orbital Degeneracies*

L. BERGER AND S. A. FRIEDBERG
Department of Physics, Carnegie Institute of Technology, Pittsburgh, Pennsylvania
(Received 8 May 1967)

The electrical resistance of single crystals of the alloy 159, Fe-85%, Ni has been measured at 20, 77, and
299°K, in a transverse or longitudinal magnetic field sufficient to cause ferromagnetic saturation. The
current is parallel to a (100), (110), or (111) direction. At 20°K, a change in orientation of the magnetiza-
tion causes changes of resistivity reaching 30%. The temperature variation of the phenomenological Doring
coefficients ki—ks follows largely from their dependence on the type of scattering centers; the coefficients
are large and positive in the case of impurity scattering alone, and are small or slightly negative in the case
of phonon or magnon scattering alone. A microscopic theory has also been developed according to which
conduction electrons are scattered by impurities into near-degenerate 3d states; these states are strongly
perturbed and mixed by the interaction A4 L.S.. The perturbation of a near-degenerate pair of states is
found to be highly anisotropic, and is possible only along a certain “polarization axis.” Two different
models reproduce correctly most features of the experimental data and are consistent with cubic symmetry.
In the first model, the polarization axes are assumed to be parallel to the fourfold cubic axes of the crystal,
and spin-orbit perturbation is assumed to decrease the probability of being scattered into a state of the pair.
In the other model, the polarization axes are along the threefold cubic axes, and spin-orbit interaction
increases the scattering probability. In both models, it is necessary to assume that the spin-orbit perturba-
tion of a pair is large and nonlinear (because of the near degeneracy), in such a way that it tends to saturate
at an almost constant value. Calculations of impurity scattering are made in the Slater-Koster approxima-
tion. The theory is then extended to show that the validity and success of these two models is actually
independent of whether the 4 L,S; interaction or the 4 (L,S,+L,S,) interaction is the perturbing agent.
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I. INTRODUCTION

HE electrical resistance of nickel single crystals,’5

or of iron single crystals,!»%9 in an external magnetic
field has been measured by several authors. Similar
data exist in the case of dilute Fe-Si alloys,®! of the
alloy* 609 Ni-40% Fe, and of Cu-Ni alloy films.
The magnetoresistance effects observed at room tem-
perature or in alloys are probably due®~% to the spin-
orbit interaction influencing the scattering mechanisms.
On the other hand, the effects observed at very low tem-
perature in very pure nickel, iron, or cobalt,’:%:12:18.18,16
are due to the Lorentz force, or to scattering by domain
walls, and will not be considered here.
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Electrical resistivity measurements!?'5 on polycrystal-
line Fe-Ni and Co-Ni alloys corresponding to an
electron concentration of 27.7 electrons per atom show
very large effects of spin-orbit interaction. These large
effects are also present in measurements of the thermal
conductivity of Fe-Ni alloys.’ They are probably due
to the presence of an orbital degeneracy at the Fermi
level of the alloy.1?

The present single-crystal measurements are a tool to
study the perturbation of 3d states by spin-orbit
interaction. This method provides a very narrow energy
window, looking selectively at states located at the
Fermi level. From that point of view, the analysis of
measurements of other quantities depending on spin-
orbit interaction, such as the magnetocrystalline
anisotropy or the gyromagnetic ratio, is not so simple
since all states below the Fermi level contribute in
that case.

II. DESCRIPTION OF SAMPLES AND OF
APPARATUS

A single crystal of the alloy 15% Fe-85% Ni,
obtained by one pass of zone-melting, was purchased
from Materials Research Corporation, Orangeburg,
New York. The crystal was then deeply etched in aqua
regia, to reveal the etch pits used for orientation. The
optical reflections are mainly on {111} planes, as in
pure nickel.” Small rods with a cross-section area of
about 1mm square were cut from the crystal, using a
diamond wheel and a slow motor-driven watchmaker’s
blade saw. The rods were ground to an octagonal
cross section with a wet, fine-grained, carborundum

77, G, Walker, H. J. Williams, and R. M. Bozorth, Rev. Sci.
Instr. 20, 947 (1949).
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F1c. 1. Resistivity of a (100) sam-
ple in a transverse or longitudinal
field, relative to the zero-field resistiv-
ity po. The angle of the transverse
field with a [010] crystal direction is
called @. p(001, 100) means that the
magnetic field is along [001], and the
current along [100].
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wheel, and then rolled between two pieces of emery
cloth until a circular cross section was obtained. Care
was exercised in order to apply only moderate stresses.
Finally, the samples were etched in aqua regia, to
remove the surface layers. No thermal treatment was
used.

Of the three samples which have been investigated,
the first one has an axis parallel to a (100) direction,
the second parallel to a (110) direction, and the third
one parallel to a (111) direction. These crystal orienta-
tions were checked” by x-ray reflections, and found to
be correct to better than 45°, The diameter is close to
0.8 mm, and the length close to 5 mm. Copper wires
were soft-soldered to the ends, as current leads. The
edges of two thin phosphor bronze strips were pressed
against the sample as potential probes, 2.5 mm apart.
The difference of potential is directly recorded by a
Brown Electronik automatic potentiometer, with a
full-scale deflection corresponding to 1 mV. The sample
current is between 1 and 5 A.

Though the sample geometry is not defined with
enough accuracy to allow an accurate determination of
the absolute resistivity, the values p=14-15X10"8 Qm
found at 300°K seem compatible with the data of the
literature.’® The resistivity ratio psge/ps2 Was equal to
4.160.04 for each of the three samples. This is larger
than the value psgs/ps.2=3.50 found® for a polycrystal-
line sample of the same alloy. Even though the alloy
differs considerably from the composition NisFe most
favorable to the formation of a superlattice, the possi-

18 R. Bozorth, Ferromagnetism (D. Van Nostrand Company, Inc.,
Princeton, New Jersey, 1951), p. 107.
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bility of some degree of ordering cannot be completely
excluded.

A chemical analysis performed by Schwarzkopf
Microanalytical Laboratory, Woodside, New York, on
fragments of the single crystal gave a composition of
85.49, Ni+0.5% and 13.99, Fe4=0.59%, in mass.

III. EXPERIMENTAL RESULTS

Figure 1 shows the relative values of the resistivity
p+ of the (100) sample, in a transverse external field of
8000 G. The sample is rotated slowly around its axis by
a synchronous motor. The resistivity p;; in a longitudinal
external field of 940 G is shown by horizontal lines on
the upper part of the same diagram. All values are
relative to the zero-field resistivity po at the same tem-
perature. When we write p(001, 100), 001 refers to the
magnetic field direction, and 100 refers to the current
direction.

The results for the (110) sample are shown in Fig. 2.
The average transverse resistivity and the longitudinal
resistivity for the (111) sample are given in Table I.
In this last case the transverse rotation pattern did not
have the expected sixfold symmetry; this may be due to
the sixfold resistance variations being small and easily
masked by small crystal orientation errors.

The fields were sufficient to cause ferromagnetic
saturation, but small enough that a correction for the
effect of the slope of the resistance above saturation is
not necessary.

The measurements are performed at 20, 77, and in a
bath of light oil at 299°K4-2°. In the case of the (100)
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sample, they are done at 169°K, too, in a bath of liquid
ethylene.

The relative values of the zero-field resistivity po at
various temperatures are given in Table II. This
includes one zero-field measurement done at 4.2°K in
liquid helium on the (110) sample.

IV. DERIVATION OF THE DORING
COEFFICIENTS

Doring® has given a general expression for the
resistivity of a saturated ferromagnetic cubic single
crystal, correct up to fourth order in the components of
the magnetization:

p/po=1+8+k1 (e?Br*+ B+ —
k2201008182 20000038585+ 2003008381) +ks (s —%
k(!B +ariBet+asBs 35 —%
k5 (2010005%3185+ 2atp0us00 B85 2030100928381
(s=ala’tafadtadar?), (1)

where a;, as, and as are the components of the unit
vector « parallel to the saturation magnetization, and
where By, 85, and B; are the components of the unit

Tasre I. Resistivity pr of a (111) sample in a transverse
field, averaged over all possible directions of that field. Resistance
pi1 in a longitudinal field.

T(°K) px/po eil/po
20 1.006 1.193
77 1.004 1.1595

29942 0.997 1.047

vector § parallel to the current. The coefficient §
vanishes if the easy directions are (111), and if they
are equally populated in the zero-field state.

Using a digital computer, we have fitted Eq. (1) to
the data of Figs. 1 and 2, and Table I. The best values
of k1—ks are given in Table III. Neither the zero-field
state nor § are reproducible, and it is advisable to
leave & out of the fitting process by considering only
resistivity differences.

In Table IV, the Déring coefficients of pure nickel®
and of pure iron’ at room temperature are given for the
sake of comparison. In the range 20-300°K which has
been investigated, our alloy is similar to pure nickel,
in the sense that the measured values of k3 and %4 are
negative, and that %; is larger than &,.

In the case of alloy polycrystals, Parker'®!® has
suggested that most of the thermal variation of the
magnetoresistance is due to the change from impurity
to phonon (or magnon) scattering. Let us write
Matthiessen’s rule for the resistivity, in the case of two
different orientations 1 and 2 of the saturation magneti-

TaBrE II. Values of the zero-field resistivity po at temperature
T, relative to the value at 20°K.

T(°K) {100) sample  (110) sample (111) sample
4.2 ces 0.942 X
71 1.21 1.24 1.20
169 2.03 cee .
29942 3.96 3.92 3.88

¥ R, Parker, Proc. Phys. Soc. (London) A64, 447 (1951); B64,
930_(1951); B65, 616 (1952).
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Tasre III. The Déring coefficients ki, ko, ks, ks, ks, of a 159, Fe-85% Ni single crystal.

(o) pn/po
T(°K) k ks ka ks ks =(po(T) —po(4.2))/po(T)
20 0.549 0.144 —0.263 —0.378 0.247 0.058
i 0.409 0.131 —0.195 —0.264 0.170 0.215
29942 0.0518 0.0478 —0.0243 —0.0139 0.0259 0.760

zation (or of the current) and also for the zero-field
case 0:
p1= (p1) imp+(p1) o1y

p2= (p2) impt(p2) ph,

po= (p0) imp=+ (p0) ph. (2)
Then
P2—p1
Po

- (PO) imp [PT“'PI:I + (Po) ph [Pz—m] ( 3a,)
Po Po  limp Po Po  _ph

_ (p0) pn ([92—91] _ [pz—pl] ) n [pz-—m] . (3b)
Po Po ph Po imp Po imp

where [ (p2—p1) /poJimp and [ (p2—p1) /poJon are constants
representing the values that (ps—p1)/po would have if,
respectively, impurity scattering or phonon scattering
were acting alone. In Eq. (3b), the ratio [ (p2—p1) /poton
is independent of the number of phonons present per
unit volume, since both numerator and denominator
are proportional to that number. The ratio might
depend on the characteristics of a phonon, such as the
average wavelength, etc., but these are constant at the
Debye temperature and above. As a result, [ (p2—p1)/
poon is independent of temperature, except possibly at
temperatures considerably below the Debye tem-
perature. Of course, this argument may not hold so
well if magnons contribute appreciably to electron
scattering, since their wavelength is temperature-
dependent.

Then, when using Eq. (3b), we assume that only
(00) pn/po depends on temperature; it is calculated in
Table III from Table II. Parker has also introduced an
empirical correction to take into account the influence
of the thermal decrease of the saturation magnetization,
but this is negligible for our alloy at room temperature
and below.

Because the Doring coefficients of an alloy single
crystal are related linearly to differences in the resis-

tivity measured at various « or § directions, one would
expect them to obey an equation similar to Eq. (3b),
that is, to vary with temperature as a linear function of
(p0) pu/po. Figure 3, which uses the data of Table III,
suggests that this is verified only approximately. The
intercepts of the extrapolated straight lines on the
right side or left side vertical axis give, respectively, the
values of the Doring coefficients for phonon scattering
alone, and for impurity scattering alone. The first ones
are found to be small or negative, while the second ones
are large and positive. The departures from a straight
line may be due to the phonon wavelength variations
mentioned above.

V. QUANTUM THEORY OF THE FERRO-
MAGNETIC ANISOTROPY OF
RESISTIVITY

The magnetoresistance of ferromagnets is often called
ferromagnetic anisotropy of resistivity. In 1951, Smit2
proposed a mechanism for this anisotropy. The spin-flip
part 4(L,S,+L,S,) of periodic spin-orbit interaction
slightly admixes spin-down 3d states into nominally
spin-up 3d states. Then it becomes possible for 4s spin-
down conduction electrons to be scattered by im-
purities into these spin-up 3d states. For a given spin
orientation, the degree of admixture is found to be
different for the five 3d orbitals of various spatial
orientation symmetries. Therefore, the scattering
probability, as computed by the Born approximation,
will depend on the angle between the & vector of the
incident 4s conduction electron and the spin, resulting
in the anisotropy of resistivity.

On the other hand, Berger'® has used the non-flip
Hamiltonian 4 L,S,. As before, this perturbation mixes
the 3d states together in a way which lacks cubic
symmetry; an anisotropy of the impurity scattering
cross section and of the electrical-resistivity results. We
will see that it is necessary to use here a better scatter-
ing approximation than the Born approximation. It is
well known that this same A4 LS, is responsible for the
anomaly of the gyromagnetic ratio, and for the extraor-

TasLe IV. The Déring coefficients of pure nickel and of pure iron at room temperature, according to various authors.

k ke k3 ks ks
Nickel (Déring®) 0.0654 0.0266 —0.032 —0.054 0.020
Iron (Hirone and Horib) 0.00153 0.00593 0.00194 —0.00053 —0.00269

® Reference 3. b Reference 7.
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Fic. 3. The Déring coefficients at 20, 77, and 299°K, plotted

against (po) pu/po= (0o (T) —po(4.2) )/pP(T) . The signs of ks and k4
have been changed to make them positive.

dinary Hall effect R;; therefore, using the present
mechanism, it has been possible®® to explain the relation
between the singularities of the anisotropy and of R,
observed in series of Fe-Ni and Co-Ni alloys, by
introducing the assumption that a near degeneracy is
present in the 3d band structure close to the Fermi
level of the alloy. The same assumption explains® the
change of sign of the magnetostriction in the same alloy
series.

Using the full spin-orbit Hamiltonian A4 (L,S,+
L,S,~+L,S,), Kondo“ calculated the anisotropy of
resistivity in the case of magnon scattering. However,
our Fig. 3 shows that impurity scattering is the main
cause of anisotropy in our alloy, and we will not
consider magnon or phonon scattering any further.

VI. CASE OF SINGLE CRYSTALS

We can hope that the theories mentioned in Sec. V
give a qualitative explanation of the anisotropy ob-
served in polycrystals. However, there remains to give
an explanation of more detailed experiments performed
on cubic single crystals, which have been summarized
in our orientation diagrams of Figs. 1 and 2, in Table I,
or in the values of the Déoring coefficients of Table III.

Marsocci?! has used Smit’s theory with A (L,S.+
L,S,) to calculate an orientation diagram for single-
crystal films of nickel and of an iron-nickel alloy. The
current was assumed to be parallel to a (100) direction.
However, since he takes into account all five 3d orbitals
of a given spin and, like Smit, assumes them to be all
degenerate, there is no way in which the cubic symmetry
of the crystal can actually be felt by the 3d electrons
in his model, and his result (see solid circles in his Fig. 1)
must be due to some error, presumably the neglect of

2 T,. Berger, Phys. Rev. 138, A1083 (1965).
21V, Marsocci, Phys. Rev. 137, A1842 (1965).
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interference terms between the probability amplitudes
for the various scattered 3d states. This is also indicated
by the fact that the (arbitrary) Oz quantization axis
appears as a privileged direction in his theoretical
curve. Nevertheless, there is little doubt that Smit’s
theory could be used if certain types of 3d orbitals
were assumed to dominate over others. This will be
sketched at the end of the present paper.

We will now try to use the other theory.’® The first
problem is to calculate the effect of AL,S, on the
band structure, with certain simplifying assumptions.
The second problem involves the calculation of cross
sections for impurity scattering, and of the electrical
resistivity.

VII. ORBITAL MAGNETIC POLARIZATION OF A
PAIR OF STATES

As in our original paper,’® we assume that a pair of
nearly degenerate orbital states ¢, and ¢, with parallel
spins is present in the 3d band of the alloy. Their spin,
for example, is parallel to the saturation magnetization
(spin-up).

They are mixed together by AL,S,’, where the
0x'y'z’ system is defined such that the 2’ axis is always
along the saturation magnetization.

¥=adatbfo. 4
The unit vector « parallel to the saturation magneti-

zation has the components oy, az, and a3 relative to the
fourfold axes Oxyz of the crystal,

L=0;L,4aL,+asL,.

Let us introduce a real-valued vector m by its
components in the Oxyz system:

m=i"a | Lz | ¥s);
my=1"(a | Ly [ Ys);
ms=1"(Ya | L, | ¢o). (5)
Then, for spin-up electrons,
Wa| ALSSS | ) =4 {a| S:' | )i(cvmitammatcaims)
=1(14%) a-m. (6)

Moreover, because of parity and time-reversal in-
variance, the diagonal matrix elements of AL,’S,
vanish. Equation (6) shows, therefore, that the degree
of mixing of the two 3d states by spin-orbit interaction
depends only on the component of the magnetization
along a certain fixed vector m. Conversely, the states
¢ of Eq. (4), with arbitrary coefficient ¢ and b, have
(L) always parallel or antiparallel to m. The maximum
possible (L) expectation is in fact 2zm, and is obtained
when a=-1b. We call m the ‘“‘orbital magnetic vector”
of the pair vq, Y.

VIII. DELTA MODEL FOR THE 3d STATES

We assume the 3d states to be itinerant and de-
scribed by the tight-binding approximation. The
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periodic AL,’S,’ mixes together only states of the
same k.

Then one has to specify the direction of m for each
point of the 3d Fermi surface where near-degenerate
pairs exist. We assume that, due to crystal field and
band splittings, certain types of pairs and correspond-
ingly certain m directions are dominant at the Fermi
level over other types.

We first investigate a model in which the dominant
degenerate pairs are of three different kinds, numbered
by the subscript 7, each of them associated with one of
the three fourfold cubic axes and having its orbital
magnetic vector m; along this axis (Fig. 4). This
““delta model” is consistent with cubic symmetry and is
similar to the assumption made for the case of poly-
crystals in our former paper.® These three kinds of
pairs are perhaps associated with portions of the 3d
Fermi surface close to the fourfold axes in % space.

IX. IMPURITY SCATTERING IN THE PRESENCE
OF SPIN-ORBIT INTERACTION

We assume?®® that the current carriers are 4s electrons
and that these conduction electrons are scattered by
impurities into vacant 3d states at the Fermi level.
The net current carried by 3d electrons is neglected.
These specific assumptions are not really necessary,
and the present theory may well be valid under more
general conditions.

The transition rates from one 4s state to the various
regions of the 3d Fermi surface are additive, so that we
assume for the symmetric resistivity tensor sy

3
Sik= 21: (85) ot (Sb) ik (7a)
=

where the “partial resistivity tensors” (s;) 4 correspond
to the case where only transitions to 3d states belonging
to one of the three dominant types (see Fig. 4) would
be allowed. On the other hand, (s)s is caused by
transitions to a general background of other 3d states,
assumed to be without pronounced features and to have
over-all spherical symmetry. The only effect of this
background is to dilute somewhat the strong crystal
anisotropy effects introduced by the (s;)4 terms.
Equation 7a is remotely similar to Matthiessen’s rule,
and is subject to similar limitations.

By symmetry, one principal axis of (s;) 4 is parallel
to m;; the two other axes are perpendicular to m;, and

F1c. 4. Directions of the
orbital magnetic axes mj; of o
dominant degenerate pairs (j=
1, 2, 3), in the delta model.

Dominant Pairs of States
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correspond to equal eigenvalues;

(87) x=2C (0= (p/ | m | 2) (m;) ;(m;)), (»<1)

(7b)
where (m;); represents a component of m; in the Oxyz
system.

Since the background favors no special crystal
direction, we must have, as in a polycrystal,

(85) = Co( 8+ Asorion) . (7c)

X. SATURATION CURVE

The tensor (s;); may depend on the mixing of 3d
states constituting a pair, and therefore, by Eq. (6), on
the component of « along m;, which we call («);,

(—1<(e);=<1)  (8)

The exact form of the dependence may vary with the
model used to describe impurity scattering. However,
in all cases, the following important facts hold:

(@)j= e my/ |m,;|,

(a) (s,)« is an even function of (a)j, and depends
only on (a) 2.

(b) For small values of (@), the elements of (s;)
depend linearly on («) 2.

(c) For large values of ()2, the mixing between
states of the pair by the interaction 4 L,’S./, is almost
complete (ax’=ib), and becomes almost independent
of (a)?. As a result, the elements of the tensor (s;)u
tend to “saturate” at values independent of ()%
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As a rough simplifying assumption, we assume that
all elements vary in the same ratio; then p is independ-
ent of (a)? and only C varies [see Eq. (7b)]. This
agrees with a detailed numerical calculation made with
the Slater-Koster approximation (described below). In
the case of other scattering approximations, the
assumption is probably at least qualitatively correct,
in the sense that all elements go simultaneously up, or
simultaneously down.

To provide one example of saturation behavior we
have considered a near-degenerate 3d band (Fig. 5)
consisting of two parallel branches ¢ and b, separated
by an energy A in the absence of spin-orbit interaction.
The scattering of 4s electrons into 3d states by a very
localized impurity potential is treated in the Slater-
Koster? formalism, neglecting any matrix element of V
between overlapping Wannier functions centered on
different atoms. An expression for the s-d scattering
rate is given by Gomes? in this approximation. In our
case, considering separately the scattering into each of
the two branches p and ¢ which result from the mixing
of branches @ and b (Fig. 5), the total s-d scattering rate
becomes

_1=2_7" [6 2] Vo | 20
fi Il_lbp|2ast|Vsbl2l2
2 2 > |2
™ Ibql iVblnq (9)

T | 1= 0| %G:G, | Var | 2|2

if we assume Vg Vau=Vs,=0. Since A#* is much
smaller than the bandwidth, the Green functions G,
and G, for branches p and ¢ at the Fermi level are
affected very little by mixing, and we have GRIG,~

~Gy. The 3d densities of states #n,=n, are here
exactly independent of mixing. It is through the co-
efficients &, and b, [see Eq. (4) ] that mixing affects the
scattering rate; they can be calculated by degenerate
perturbation theory for any given value of ()7
using Eq. (6). We assume A#?=0.075 eV, and |m | =
2%. By Eq. (7b), C is proportional to the scattering rate.
Hence the dependence of C on (@) # may be calculated
by Eq. (9), using a digital computer. The result
(saturation curve) is shown on Fig. 5 for the cases
A=0.050 eV and A=0.100 eV assuming GG, | Vi | 2=
0.49. As could be expected, the larger A, the more
linear is the saturation curve. The assumptions made in
this Slater-Koster approximation may not be realistic,
but the only purpose of the calculation is to give one
simple example of saturation curve.

As long as we neglect overlap effects, this Slater-
Koster approximation gives a scattering rate independ-
ent of k direction, for the incident 4s electron. This
implies p=0 in Eq. (7b), in fortuitous agreement with
the small value p=0.0528 obtained below by fitting to
the experimental data.

With the same simple model of 3d band structure
(Fig. 5) mentioned above, we have also solved the

22 G, F. Koster, Phys. Rev. 95, 1436 (1954).
2 A, A. Gomes, J. Phys. Chem. Solids 27, 451 (1966).

L. BERGER AND S. A. FRIEDBERG

165

scattering problem by the first Born approximation. As
shown in Fig. 5, the parameter C is then found to be
independent of mixing, and is therefore independent
of (@)2 The Born approximation is therefore inade-
quate?* for our problem. More generally, if V is the
strength of the impurity potential, and if the scattering
rate varies like 7*, then mixing will decrease C for
n>2, and increase C for #<2. We may have »>2 for
our nickel-rich Ni-Fe alloy, since a replacement of Fe
by stronger-scattering Cr or V atoms is known to lead
to a 3d scattering resonance.

XI. CALCULATIONS WITH A HYPERBOLIC
SATURATION CURVE

Instead of the saturation curve coming from the
Slater-Koster approximation, we actually use in further
numerical computations a similar curve having a much
simpler analytical expression (“hyperbolic” saturation
curve, see Fig. 5);

C=gCo[1+0(e) #1/[1+e(a) 7],

where ¢, b, and ¢ are adjustable parameters. The value
of ¢ only determines in what proportion the special 3d
states [Eq. (7b)] and the background [Eq. (7c)]
contribute to the total resistivity.

Using Egs. (7), (8), and (10), it is then possible, in
the delta model, to compute the observed resistivity p,

given by .
p(e, B)= Z, ;sikﬁiﬁk- (11)

With the help of a digital computer, the values of p,
q, b, and e may be adjusted to fit the experimental
rotation diagrams at 20°K, where impurity scattering
is dominant. The value of Cj is irrelevant, since we fit
p11/po and p1/po rather than absolute resistivity values.
For po we take the calculated resistivity value when
o] (111), 8| (100).

The values of the parameters giving the best fit with
the delta model are shown on the first line of Table V.
The result of the fit is shown by the dashed curve in
Figs. 6 and 7 in the case of a current parallel to a (100)
or (110) direction; the solid curve is experimental.
Finally, when the current is along (111), the average
(p11—p1)/po is predicted to be -0.145, while the
experimental value at 20°K (Table I) is +0.187.

We see that our delta model is able to reproduce
correctly most qualitative features of the experimental
data. Note that the results for both p;/po and p1/po
are represented on the same graphs. Even better agree-
ment is obtained with the lambda model described
below.

The curves obtained by fitting the Déring phenome-
nological theory to the data at 20°K (see coefficients in

2 Because of a computation error, it was incorrectly stated in our
former publication (ref. 13) that the first Born approximation can
be used for this problem. For the same reason, the curves in Fig. 10
of that paper are incorrect. Since that time, we have computed
these curves again, using the Slater—Koster approximation. The

curves then remain on one side of the horizontal axis and are in
better agreement with the experimental data.

(10)
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TasLE V. Values of parameters giving best fit of microscopic theory to the data at 20°K. Last column indicates
average difference remaining between theory and experiment, in arbitrary units.
rms
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Table IIT) are also shown on Figs. 6 and 7, for com-
parison.

Since b<e, spin-orbit interaction decreases the
probability of being scattered into a state of the pair,
in this delta model. Since ¢ is of order unity, we see
that the degenerate pairs are responsible for the major
part of the observed resistivity of the alloy, and the
background of states for only a minor part.

XII. RELATION BETWEEN PHENOMENOLOGICAL
THEORY AND DELTA MODEL

For qualitative purposes, the relation between the
Doring coefficients and the shape of the saturation
curve may be seen by expanding C in powers of (a)?;

C=¢Co(14+Bs(a) #+Ba(a) - +-). (12)

If we neglect Bs, Bg*++, then Eq. (12) together with
Eqgs. (7), (8), and (11) lead in the delta model to an
expression for p( e, 3) which reduces exactly to the form
proposed by Déring [ Eq. (1) ], with the following values
of the coefficients:

ky=(—2qpBy+45)/T,
o= A45/T,
ky=—4¢B:(1—%p)/T,
ka=—2qpBd/T,
Es=0,

(T=29(1—%p) (3+Bx+3Bs) +1+34,).

We have by definition ¢2>0. A saturation curve of the
type shown on Fig. 5 gives B;<0 and B;>0. Then, with
A:>0 and 0<p<1 as the only assumptions, we can
see that the Eqgs. (13) give &>0, k>0, k1> ks, k30,
k<0, in good agreement with our experimental data
(Table III) at 20°K. The only discrepancy is with ks,
predicted to vanish.

Moreover, Egs. (13) show that the nonlinearity of
the saturation curve is essential. If we were to assume
B,=0, this would imply ks;=Fk,=0. Then the pi/po
curve for the (100) sample would be predicted to be
straight and horizontal, in disagreement with the
experimental curve (Fig. 6). Actually, k; and &, are as
large as &y and &,.

In practice, the coefficients Bs and Bs in Eq. (12) are
too large to be neglected, and the preceding discussion
has only qualitative validity.

(13)

XIII. LAMBDA MODEL

Apart from the delta model of Fig. 4, we have also
investigated a model where the dominant orbital
magnetic vectors are of four different types (j=1, 2, 3,
4), each of them parallel to one of the four equivalent
(111) axes of the crystal.
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We have fitted this “lambda model” to the experi-
mental data at 20°K, using the hyperbolic saturation
curve of Eq. (10), and using Egs. (7), (8), and (11), as
before. The best fit corresponds to the second line of
Table V. Note that b>e¢, so that mixing here increases
the scattering rate.

The delta model and the lambda model may be con-
sidered as two extreme, but opposite, cases among all
possible models consistent with cubic symmetry. It is
likely that intermediate, more complicated models
would give intermediate results.

XIV. L,S.+L,S, SATURATION THEORY

The theory presented here needs only a slight modi-
fication in order to apply to the case where the mixing
of two near-degenerate states is due to the other part
A(L)S/+L,/S,) of spin-orbit interaction. Consider a
pair of states ¢, and s of opposite spin, having the
orbital magnetic vector m; as defined by Eq. (3).
Then one can show

l <§ba | A(Lz,Sz/"{'Lyl'Sy,) I‘pb) ] I= l 314h |2 | m I :
X(1=(a)). (14)

Hence, as before, the degree of mixing between the
two states depends only on the value of the component
() ; of the magnetization « along m;. The only differ-
ence is that the mixing now is zero for (a)?=1 and
increases (with a tendency to saturation) when (o)
decreases to zero. The hyperbolic saturation curve of
Eq. (10), for example, should now be written:

1401 —(a) #]
"1e[1— () A

This new saturation curve is related to the type of
curves shown on Fig. 5 by a left-right mirror reflection.
Note that the most important characteristics of the
saturation curve, namely, its concavity (either up or
down), is invariant under the reflection.

Assuming the delta model, we have fitted Eq. (15) to
the data at 20°K, using Egs. (7), (8), and (11). The
best fit corresponds to the third line of Table V; since
V’<e¢/, mixing by the A(L,)S,+L,S,) interaction
decreases the scattering rate.

We have also fitted Eq. (15) to the data with the
lambda model, using Egs. (7), (8), and (11). Here the
best fit corresponds to the fourth line of Table V.
Since ’> ¢/, mixing increases C and the scattering rate.

As shown by Smit,? the Born approximation gives
here a nonzero result, and it is not entirely necessary to
use the Slater-Koster approximation or other approxi-
mations in order to derive a saturation curve from first
principles.

Since the spin-down 3d states are probably completely
filled in our alloy, the only near degeneracy which may
be significant with the present spin-flip perturbation
A(LSS/+L,/S,) must be between spin-up 3d states

C=¢C (15)
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and spin-down 4s states; the mixing will be possible if
these 4s states have partial 3d character.

XV. FINAL REMARKS

We have fitted our theory to the experimental data
in four different cases. The quality of the fit may be
expressed in each case by giving the root-mean-square
difference between theoretical and experimental values
of resistivity. The rms difference obtained by sampling
over 12 selected directions of the magnetization or
current is listed in the last column of Table V, in
arbitrary units. We see that the best fits are obtained
with the delta model in the case of the A (L,S,+
L,/ S,’) interaction, and with the lambda model in the
case of the AL,’S,’ interaction, and they are almost
equally good. Even though not the best, the delta
model in the AL,S,’ case is still fairly successful, as
was shown in Figs. 6 and 7.

The main advantage of our microscopic theory is
that it formulates all spin-orbit properties of the
scattering impurity in terms of an orbital magnetic
vector and of a saturation curve, without having to
specify further the state of the 3d electrons. Neverthe-
less, one may try to locate the near-degenerate states
in existing calculated band structures for pure nickel.
As mentioned before,® the proximity of critical points
may enhance the effect of accidental degeneracies; the
points X and L are possible candidates.?® Unfortunately,
the strong impurity potential modifies considerably the
wavefunction on the impurity, and it is not obvious
that these pure metal calculations are of much meaning
for our problem. This is also shown by the fact that we
found the Born approximation to be inadequate for
our scattering calculations in the AL,’S,’ case. More-
over, in a disordered alloy, it is not certain that spin-
orbit interaction would mix together only states of
same k. If the k selection rule is broken, then a much
wider class of degeneracies becomes active in the alloy.

Judging solely from the point of view of m; directions,
pairs made of a state of type A, and of a state of type
Ay would be one suitable choice for the delta model
since the m; of such pairs are parallel to the fourfold A
directions. However, at least in the case of pure nickel,
the Ay’ states are far below the Fermi level.

An orbital magnetic vector can be defined only for a
pair of states. Therefore, the present theory does not
apply to the case of a degenerate triplet.

We note, finally, that it cannot be excluded that the
nonlinearities giving rise to the coefficients ks, ks, and
ks might come from another source than the existence

% After the manuscript of the present paper had been written,
there appeared an interesting abstract by W. N. Furey, Bull. Am.
Phys. Soc. 12, 311 (1967). It stresses the importance of near-
degeneracies in determining the magnetocrystalline anisotropy of
pure nickel, as calculated from an “interpolated’” band structure.
The near-degeneracy would be located in a limited region around
point X. As in our case, the higher-order phenomenological
coefficient (there called K») is of the same order or magnitude as
K, because of the degeneracy.

PERMALLOY SINGLE CRYSTAL

679

of near degeneracies. Such a source may be the failure
of Eq. (7a) in the presence of multiband conduction or
of anisotropic mean free path.

XVI. CONCLUSIONS

The Déring coefficients &i—k5 of our 159, Fe-85%, Ni
single crystal have been determined at 20, 77, and
299°K, by fitting of the phenomenological Déring
expression to the experimental data of resistivity in a
magnetic field. By using an expression based on
Matthiessen’s rule, it is possible to extrapolate the
values of the Doring coefficients to the case of im-
purity scattering alone and to the case of phonon
scattering alone. The coefficients are large and positive
in the first case, and are small or slightly negative in
the second case.

A simple microscopic theory has been developed,
which is able to reproduce correctly most qualitative
features of the single-crystal data. The first assumption
made in this theory is that conduction electrons are
impurity-scattered into near-degenerate 3d states,
present at the Fermi level of the alloy. The second
assumption is that the “orbital magnetic vectors,”
which indicate how spin-orbit interaction AL,S,
affects these orbital 3d states, have special crystal
directions. These directions may either be parallel to
the fourfold cubic axes (delta model) or to the threefold
cubic axes (Jambda model). The third assumption is
that, because of the near degeneracy, the effect of spin-
orbit interaction on a state is large and nonlinear, and
tends to saturate at a constant maximum value; first-
order perturbation theory is insufficient.

The theory is extended to cover the case where the
A(L/S/+L,/S,/) interaction is the mixing agent
between near-degenerate states. A reasonable fit to the
experimental data may be achieved here too.

We have shown that, whatever interaction is assumed
to be active, the best fit always requires that the
mixing increase the scattering rate in the lambda
model, and decrease it in the delta model. [ Note added
in proof. L. Hodges, D. R. Stone, and A. V. Gold
[Phys. Rev. Letters 19, 655 (1967)] have recently
shown that the spin-orbit parameter of nickel metal
is A#*=0.102 eV instead of 0.075 eV. This would
cause a proportional increase of the band gap values

A quoted for the various saturation curves on our
Fig. 5.]
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