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Average Energy of States of Given Multiplicities in Atoms
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By use of the diagonal sum rule, formulas are derived for the weighted mean energy of the multiplets with
a given S value in a partly filled shell of equivalent electrons with a given azimuthal quantum number l. As
an incidental result, a formula is also derived for the mean energy of multiplet states with a given Sf'. The
results can be applied to spectroscopic and magnetic problems. They lead to a straightforward proof that
the average energy of multiplets increases with the value of S, one of Hund's rules.

T is well known' that one can set up closed formulas
. . for the weighted mean energies of all the multiplets
arising from a given con6guration in the theory of
atomic multiplets. It is less familiar that one can use
the same methods to set up formulas for the weighted
mean energies of the multiplets of a given multiplicity
arising from a partly 6lled shell of equivalent electrons.
Jprgensen' has stated such theorems without giving a
proof. On account of the interest of the theorems, it
seems worthwhile showing how tie results follow from
very general and familiar methods of atomic theory.
The theorems are useful particularly for shells of
equivalent d and f electrons, in which there are many
diGerent multiplets of each multiplicity; they can be
used to check the correctness of calculations of the
energies of the individual multiplets for various num-
bers of electrons in the shells. The present reason of
the author for investigating the theorems is their
application in the theory of magnetism; they will be
applied to a problem of this type in the following
paper. '

The method of proof which we shall use is familiar
from the earliest days of the application of the deter-
minantal method to spectral properties; it is substan-
tially the same as that used by Bloch4 in his earliest

study of the magnetism of an electron gas, but he was
applying it to the free-electron case rather than to
atomic shells. We start by 6nding the number of deter-
minantal functions associated with a shell /&, where g
is the number of electrons in a shell with azimuthal
quantum number l, and associated with a particular
magnetic quantum number M8. Then we shall use the
sum rule to 6nd the sum of the energies of these deter™
minantal functions, and hence, to 6nd the average
energy of the multiplets associated with this Mg. This
will include all multiplets whose 5 equals Ms, Ms+
1,.~ . Hence, if we 6nd the functions for a given MB,
and remove from them those with the value Ms+1, we
shall have just those with S equal to the Mz in question.

Let the number of electrons with spin up be gt =
—,'q+Ms, and that with spin-down be q~

——-,'q —Ms. The
number of ways of choosing qt orbitals from the num-
ber 2l+1 of spin-orbitals with spin up is

(23+1) !/q~!(21+1—q~) !,

and we have a similar result for the number of ways
choosing q~ orbitals of spin down. Thus the number of
determinantal functions associated with a given value
of Ms=2(q& —

q~) is given by

L(2i+1) ]'
(y|q+Ms)! (gq —Ms)!(2l+1—

2q
—Ms)!(21+1—~q+Ms)!

Next we must 6nd the sum of the diagonal matrix
components of energy for these determinants. We must
use the general formula for the diagonal matrix com-
ponent of energy of a determinantal function, which
has two parts. The 6rst is the sum over all spin-orbitals
of the one-electron integrals

I= (i [f ~
i)= u;*(1)f,ug(1) dv„

*Assisted by the National Science Foundation.' For a general discussion, see J. C. Slater, Quantum Theory of
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where f, is the one-electron operator (kinetic energy
plus potential energy in the Geld of the nuclei) of the
1st electron, and I; is the ith spin-orbital. The second
part is the sum over all pairs of spin-orbitals of the
quantities (ij

~ g i ~j ) (ij
~ g !ji)—, where

(ij ( g j mu)= u,*(1)u;*(2)g~qu (1)u„(2)dv~dv~,

in which g~~ is the two-electron operator (repulsion
between the 1st and 2nd electrons) for the Grst and
second electrons. The integrations involve summations
over spins, and the exchange integral (ij ~ g ~

ji) is zero
for a pair of spin-orbitals with opposite spin. The
indices i, j refer to diGerent quantum numbers. In our

4 F. Bloch, Z. Physik 57, 545 (1929).
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case, where all spin-orbitals have the same principal
and azimuthal quantum numbers, we may take the
index i or j to refer merely to the m& and m, of the
spin-orbital.

The one-electron integrals are all alike, and are listed
in texts on atomic theory. ~ The two-electron integrals
are given by the following formulas:

(ij I g ( ij )= g&c~(l,m«, l,m«) c"(ipeI,;,' l,m&;)

XF"(n;l;; nglg), (2)
where

F'(n, l;; n;l;) = R„„,*(r,)R„,(,*(rg)

XR„;l;(r~)R„,.~,. (r2) rPrjdr~dr2, (3)

&'j
I g l

j')=Z I:"(l
where

r(a) '
G'(n;l, ; n;l;) = R„,*(r,)R„,.g,.*(r2)

0 0

XR„,~, (r&) R„,. ~,. (r2) rq'r2 drydf2 (5)

In these formulas, the c~'s are de6ned in texts on atomic
structure' in terms of the integrals of a product of three
spherical harmonics, and are tabulated in such texts.
They are dif'ferent from zero only for k=l&+l2, l&+
l2 —2, ~, so that the summation over k is really only
over a small number of values of the index. The quan-
tities R„~(r) are the radial factors in the orbitals of a
spherically symmetrical problem, to be multiplied by a
spherical harmonic to give the orbital wave function. In
the integrals over r, in Eqs. (3) and (5), r(a) and r(b)
refer to the smaller and larger, respectively, of rj and
r2 Hartree u.nits of energy are used in Eqs. (3) and
(5). We note that for equivalent electrons, for which
the principal and azimuthal quantum numbers, I and
l, are identical for the ith and jth cases, the G~'s become
identical with F~'s. On account of the summations over
spins, as we have noted before, the exchange integrals
(ij ~ g ~ji) vanish unless the two spin-orbitals n, and
I; have the same spin.

%e must now carry out the sums of one-electron and
two-electron integrals to get the total energy of the
determinantal function. As for the one-electron in-
tegrals, they are the same for each of the functions, equal
to I(nl), where n and l are principal and azimutha1
quantum numbers of the partially filled shell of equiva-
lent electrons which we are considering. Hence the
contribution of these functions to the total energy is
qI(nl) . For the two-electron integrals, we handle
separately the terms for k=0 and k/0. All c~(lrn~;,
l~m«) equal unity for k=0, and all c (l~mE;, l,m&;) are
zero for k=0 if m~;/no~;. Hence we see that as far as
the terms in k=0 are concerned, each of the integrals
(ij [ g [ij) contributes F (nl; nl), and each of the

5See for example, J. C. Slater, Quantum Theory of Atomic
Structure (McGraw-Hill Book Co., Inc. , New York, 1960), Vol.
1, Sec. 13-3.For the tabulation. see, Vol. 2, Appendix 20.

integrals (ij ~ g ~
ji) contributes F'(nl; nl) if i=j, zero

otherwise. Thus we see that the contribution of the
two terms (ij

~ g ( ij ) —(ij ( g jji) for k =0 is F (rd; nl)
for each pair of spin-orbitals for which the quantum
numbers of the two spin-orbitals are diGerent, zero if
the quantum numbers are the same. However, no case
occurs in which the quantum numbers are the same, on
account of the exclusion principle. Hence the contribu-
tion of the terms k=0 to the average energy is simply
the number of pairs of spin-orbitals, which is —,Lq (q —1)],
times F'(nl; nl) . A pair of spin-orbitals makes the same
contribution to this term whether the spins are the
same or opposite.

Next we consider the terms in the integrals corre-
sponding to k/0. Ke wish to sum the quantities
(ij ( g ( ij) (ij—( g ~ji) over all pairs of indices i and

j which appear in one of the determinantal functions
enumerated in Eq. (1), and over all of these deter-
minantal functions. Since (ij ) g ~ ji) (iy—) g ~

ji) is
automatically zero for i=j, we may replace the sum
over pairs i, j for which i&j by half the double sum
over all values of i and j. In the process of summing
over all determinantal functions we sum separately
over m~; and m~, . Then we can use two theorems con-
cerning these summations, derived originally by Short-
ley. ' These are

(ij ~ g ) ij.)—(2l,+1)Fo(n,l, n,.l,.) . (6)
and

Q;(ij ~ g ~
ji)= '

~
+pc"(l,0; l,0)G'(n, l, ; n;l;).

2l,+1&'~'

2l+1]
(7)

In these theorems the summation over j is over the
21,+1 possible values of m~;. These theorems are used
in proving the formula for the average energy of a
configuration, quoted in Ref. i.

From Eq. (6) we see that the terms (ij ~ g ~
ij) will

contribute only to the terms for k =0, which we have
already considered. Hence for the terms k/0 we need
sum only the terms (ij

~ g ~ji) From E. q. (7) we see
that in the present case, where /, =l, , this reduces to

P, (ij ~ g ~
ji)= P&c"(l0; l0)F~(nl; nl). (g)

If we now sum over the index i as well as j, and divide

by 2 since we will otherwise count each pair twice, we
have that the sum of —(ij ~ g ~ji) over the pairs of
indices nz&;, no&; is given by

(terms for k =0)——,'(2l+1)QI yoc~(l0; l0)F"(nl; nl). (9)

Since there are ~(2l+1) 2l pairs of indices i and j,
where now i', we can then use an average value of
exchange, for k/0, equal to the value in Eq. (9),
divided by —', P(2l+1) 2lj. That is, we have (average
value of)

(ji( g [ ji) (ij ( g (ji)=—F'(nl; nl) f, (10)—
where

f= (1/2l) g&yoc~ (l0 l0) F'(nl; nl) .
6 See Shortley, Ref. 1.
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This average holds when the two spin-orbitals have the
same spin. For spin-orbitals with opposite spin, the
term in f in Eq. (10) is absent.

For a given determinantal function, we shall then
have g) spin-orbltals with spin Up) Rnd g) with spin
down. There will be —', qi (qi —1) pairs with spin up, and
—',Lqi(q~ —1)] with spin down, . Each of these pairs, on
the average, will contribute an amount given by Eq.
(10) to the sum of two-electron integrals. We shall then
6nd for the average energy of all the determinantal
functions associated with a given 3fa the value

qI(nl) + Lq(q 1)]Fo(nl. nl)

—
l lb'(qi —1)]+-'Le(q~—1)]jf (»)

By using the relations between q~, q~, and M8, the
average energy of terms with given MB can be rewritten

qI(nl) +-,'Lq(q —1)]F'(nl; nl) —Pq(-,'q —1)+Ms']f.
(13)

The sum of the energies of all determinantal functions
with the given Ms is the average value of Eq. (12) or
(13), multiplied by the number of such functions, as
given. in Eq. (1). We may now investigate the average
energy of all multiplets with a given 5 value. By the
sum rule, as we have mentioned before, we know that
the sum of the energies of all multiplet functions corre-
sponding to 5, S+1, 5+2, ~ ~ equals the sum of the
energies of all determinantal functions with MB= S. If
we find a sum in the same way for Ms+1, this will give
the sum of energies of all multiplet functions corre-
sponding to 5+1, 5+2, ~ . Thus we subtract this
from the sum of all energies corresponding to MB=5.
The number of determinantal functions corresponding
to Ms and 5 is the number given by Eq. (1), minus
the same function with Ms+1 substituted in place of
MB. If we carry these steps through, finding the sum
of all energies of multiplets corresponding to 5, and
then dividing by the number of such multiplet states,
we 6nd the result that the average energy of multiplets
of given 5 value, in con6guration P, is given by

qI(nl)+-', Lq(q —1)]t F'(nl; nt) f]—
+(2q —5) (kq+5+1) L(21+1)/(21+2)]t; (14)

where f is given by Eq. (11).
For the states of maximum multiplicity, we have

5= ~q, provided the shell is no more than half-6lled, or
q is no greater than 23+1.Thus in this case the average
energy of the states of maximum multiplicity is qI+
-', Cq(q —1)](F'—f), the last term of Eq. (14) repre-
senting the energy difference from this state of maxi-
mum multiplicity. If we find the average energy of
multiplets with 5—1, minus that with 5, we 6nd

average energy of multiplets S—1,

minus average energy of multiplets 5
=25L(21+1)/(21+2)]f. (15)

Since f is necessarily positive, 'we have in Eq. (15) a
straightforward proof of Hund's rule, as applied to the
average energy; the average energy increases as 5
decreases, or the multiplets with the largest 5 have the
lowest average energy.

If the shell is more than half-6lled, a diferent form
of the equation is more convenient, since in this case
the 5 for the state of maximum multiplicity equals half
the number of holes in the shell, rather than half the
number of electrons. Since the shell can hold 2(2l+1)
electrons, the number of holes is 2(21+1)—q. The
convenient form for Eq. (14) in this case states that
the average energy of multiplets of given 5 value,
in con6guratlon 1~ is

qI(nr)+-', t q(q —1)]LF'(nl; nt) —f]
—(21+1)(2l+1—q)f+ (21+1——', q —5)

X(»+1—,q+5+1)L(21+1)/(»+2)]f, («)
which can be derived from Eq. (14) by straightforward
algebraic manipulation. Here, as in Eq. (14), the last
term vanishes when we are dealing with the state of
maximum Inultipliclty, so thRt thc earlier terms give
the energy of this state of maximum multiplicity. The
separations of the energies of the various multiplets
for the case of q holes with a shell more than half-61led
are of course identical with those for the case of g
electrons, with a shell less than half-611ed.

Ke can set up an equivalent formula, more sym-
metrical than Eqs. (14) or (16), in which the terms
independent of 5 represent the average energy of all
multiplets in the con6guration, rather than the energy
of the multiplets of the maximum multiplicity, Prom
Ref. 1 it is known that the average energy of all multi-
plets in the con6guration /& is given by

qI(nl)+-', t'q(q —1)]fF'(nl nl) —L2E/(41+1)]f}. (17)

If we make a transformation of Eq. (14) or (16) so
that the expression of Eq. (17) forms the constant term,
we 6nd that the average energy of multiplets of given
5 value, in con6guration /&, is given by

qI(nl)+-', [q(q 1)]f Fo (nf; —nl) —
t 21/(4/+1)]f)

+tL3/4(4~+1)]qL2(2~+1) —q]—5(5+1)~

&I (21+1)/(2f+2)]f (1g)

The last term of this formula, unlike Eqs. (14) and
(16), depends symmetrically on q and 2(21+1)—q, or
on the number of electrons and of holes in the shell, so
that it can be used conveniently whether the shell is
more or less than half-6lled.

This last form LEq. (18)] is that stated by Jprgen-
son, ~ though he does not give it in just the form we have
used. He does not present the coefBcients of the various
terms in analytic'forms in terms of f, as we have done,
but rather gives separate formulas for each / value. It
is convenient to have this information, so as not to
have to consult tables of the c~'s. Consequently we give
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P: f=-;F'(n1; n1),

d: f=(1/14)LF'(n2 n2)+F4(n2 n2) j
f: f=(2/45)F'(n3; n3)+(1/33)F'(n3 n3)

in Eq. (19) the values of f for p, d, and f electrons: By substituting these expressions in Eq. (18), we get
the results of jprgensen (except that it is to be noted
that he has made an error in the codhcients of Ii' for

f electrons). We can equally well use Eq. (19) in the
expressions of Eqs. (14) and (16).

The writer is greatly indebted to his colleagues
Professor G. F. Koster and Professor P. DeCicco of

+(50/128'I)Fs(n3;n3). (19) M.LT. for valuable comments concerning this paper.
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In an atom, or a crystal, with net magnetic moment, the Hartree-Pock equations for electrons with
spins up (that is, parallel to 'the net magnetization) and spins down (opposite) are difterent. By using
di6'erent wave functions for the:.",diferent spins, one attains spin-polarized calculations, which are more
accurate than the ordinary restricted Hartree-Fock type. One-electron energies for electrons of spin up and
down will dier. The method has been used in recent calculations of energy bands in ferromagnetic and anti-
ferromagnetic crystals. The present paper studies the essential feature of the calculations, the nature of the
exchange integrals responsible for the energy difference between spin-up and spin-down energies. This is done
both in terms of the rigorous Hartree-Pock method, and in terms of the free-electron exchange method which
is used in the energy-band "calculations. It is shown that the two methods are consistent with each other,
the free-electron exchange method giving a good approximation to the spin-polarization eGect. Correlation
can be taken into account by decreasing the difference in exchange energy between spin up and spin down,
in a way similar to what":must'- be done in the theory of atomic multiplets, in using empirical F~ integrals
which'are smaller than those found by the Hartree-Fock method. Such a decrease in exchange eftect has
been found necessary to get agreement with experiment in the spin-polarized energy-band calculations.

l. INTRODUCTION

NUMBER of recent papers, by %akoh and
.I Yamashita, ' Switendick' Connolly, ' Cho', and

DeCicco' have shown that it is possible to calculate
spin-polarized energy bands, that is, separate energy
bands for electrons with spins pointing up and spins
pointing down, in a magnetic crystal. The potentials
in which electrons of the two spin orientations move

*Assisted by the National Science Foundation.
'S. %'akoh and J. Yamashita, J. Phys. Soc. Japan 19, 1342

(1964};J. Yamashita, M. Fukuchi, and S. %'akoh, ibid. 18, 999
(1963);J, Yamashita, ibid. 18, 1010 (1963);S. Wakoh, i'. 20,
1894(1965);J.Yamashita, S.Wakoh, and S.Asano, from QNantum
Theory of Atoms, Moleclles, and the Solid State, edited by P.-O.
Lowdin (Academic Press Inc. , New York, 1966),p. 497.

~ A. C. Switendick, M.I.T. Ph.D. thesis, 1963 (unpublished);
J. Appl. Phys. N', 1022 (1966}.

3 J. %. D. Connolly, Ph.D. thesis, University of Florida, 1966
(unpublished); J. W D. Connolly, S. J. Cho, J. B. Conklin, Jr.,
and J.C. Slater, Quarterly Progress Report No. 62 Solid-State and
Molecular Theory Group, Massachusetts Institute of Technology,
1966, p. 3 (unpublished). J. %. D. Connolly, Phys. Rev. 159)
415 (1967).' S.J. Cho, Phys. Rev. 15'7, 632 (1967).' P. DeCicco and A. Kitz, Quarterly Progress Report No. 63,
Solid-State and Molecular Theory Group, Massachusetts Insti-
tute of Technology, 1967, p. 2 (unpublished); Phys. Rev. {to be
published) .

diBer on account of exchange effects. One 60s these

energy bands up to a common Fermi level, and since
the bands for spin pointing up have lower energies,
one will Gnd more electrons of spin up than of spin
down. The exchange eGect for electrons of either spin
increases (as a negative contribution to the energy)
with the density of electrons of that spin. Consequently,
the preponderance of electrons with spins up, or along
the direction of magnetization in a magnetized ferro-

magnetic material, leads to the lower bands for these
electrons, and we have the ingredients for a self-con-

sistent treatment of ferromagnetism. The writers quoted
above have shown that such self-consistency can in

fact be achieved, for a number of ferromagnetic crystals,
and they have shown that similar arguments can be

applied to antiferromagnetism. It is the purpose of the

present paper to look somewhat more critically into
their methods and results.

The calculations which have been made in the papers
cited above have been based on the simplified treatment
of exchange, derived from the theory of a free-electron

gas, suggested some years ago by the author. 6 Since

6 J. C. Slater, Phys. Rev. 81, 385 (1951); 82, 538 (1951);
QNantum Theory of Atomic Strlctlre (McGraw-Hill Book Co.,
Inc. , New York, 1960), Vol. 2, Sec. 17-3 and Appendix 22.


