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The exact eigenvalue spectrum and thermodynamic properties of the spin Hamiltonian

Ni2
3=2|J| 2 (Sei*Se_1+0Sy-Ssp1)
=1

are calculated for short chains of N=4, 6, 8, and 10 spins, each of spin , for alternation parameter ¢=0.2,
0.4, 0.6, and 0.8, with Sy;1=S$,. The behavior for N= « is estimated by extrapolation. Comparison is
made with the known results for =0 and 1. The ground-state energy, ground-state short-range order,
energy gap, and triplet excitation spectrum are compared with various approximate theories. Zero-tem-
perature infinite-chain magnetization curves are inferred from the finite-chain results. The energy, entropy,
specific heat, and magnetic susceptibility for N =10 are shown to approximate well the behavior for N = «
when T/ | J| >a. The magnetic-susceptibility data on the free radical 2,2-bis(p-nitrophenyl)-1-picryl-
hydrazyl are shown to agree well with the theoretical results for an alternating chain with ¢=0.6.

I. INTRODUCTION

HE topologically linear chain of nearest-neighbor

exchange-coupled spins (.S=%) has been the subject
of extensive study. It has been of theoretical interest
because it is a relatively simple quantum many-body
system which has been found to be susceptible to exact
calculation in some instances. It is of experimental
interest because of the discovery of crystalline solids,
such as Cu(NHj;),SO4H:O!, which clearly exhibit
regular antiferromagnetic linear chain behavior.

Most of the theoretical work done to date has con-
cerned the regular chain, where the exchange integral
coupling any pair of nearest neighbors is taken to be
a single constant in the isotropic case, or a set of two
constants in the uniaxial anisotropic case. References to
work on the regular chain prior to 1964 are well summar-
ized in the paper of Bonner and Fisher.? Subsequent
papers on the exact solution of the regular-chain prob-
lem include (1) calculation of the zero-temperature
magnetization curve for arbitrary uniaxial exchange
anisotropy,** and (2) rigorous justification of Bethe’s®
choice of eigenfunctions for representing the ground
state,* also for the arbitrary uniaxial anisotropic case.

The alternating Heisenberg linear chain corresponds
to the isotropic Hamiltonian

N
5e(N,a) =—2J 2 (SsirSei1t+aSes Saiyr), (1)

=1

where J is the exchange integral coupling a spin with its
nearest right neighbor and a¢J is the exchange integral
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of a spin with its nearest left neighbor, with | a | <1.
This paper discusses the completely antiferromagnetic
case, where J<0 and ¢2>0, which is thought to char-
acterize the spin arrays found in certain aromatic solid
free radicals. A comprehensive list of literature refer-
ences to studies of magnetic interactions in the radicals
(up to September, 1965) is given in the review paper of
Nordio, Soos, and McConnell.®

Authors who have previously considered the anti-
ferromagnetic alternating chain have used field-theory
techniques. They rewrite Eq. (1) in terms of appro-
priate creation and annihilation operators and then use
some approximation scheme to obtain an eigenspectrum.
Thus, Lynden-Bell and McConnell’ calculate the
excitation spectrum and susceptibility of the system of
noninteracting triplet exciton quasiparticles which
result when Eq. (1) is suitably transformed and
truncated to a quadratic form in triplet-state creation
and annihilation operators. Montgomery® does a similar
calculation, obtaining an approximate Hamiltonian
which is quadratic in terms of boson operators, which
he diagonalizes by a canonical transformation.
Bulaevskii® rewrites Eq. (1) in terms of two sets of
fermion operators (corresponding to the two trans-
lationally inequivalent adjacent spin sites) and calcu-
lates the ground-state and excitation energies of the
exact Hamiltonian in the Hartree-Fock (HF) approxi-
mation.

Soos!® does extensive calculations starting from Eq.
(1) rewritten in terms of a single set of fermion oper-

6§ P. L. Nordio, Z. G. Soos, and H. M. McConnell, Ann. Rev.
Phys. Chem. 17, 237 (1966).

7R. M. Lynden-Bell and H. M. McConnell, J. Chem. Phys.
37, 794 (1962).

8 C. G. Montgomery, Ph.D. thesis, California Institute of
Technology, 1965 (unpublished).

9 L. N. BulaevskiY, Zh. Eksperim. i Teor. Fiz. 44, 1008 (1963)
[English transl.: Soviet Phys.—JETP 17, 684 (1963)].

0 Z. G. Soos, J. Chem. Phys. 43, 1121 (1965) ; Phys. Rev. 149,

3(30 (71)966) ; Z. G. Soos and R. G. Hughes, J. Chem. Phys. 46, 253
1967).
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ators. He solves exactly a truncated Hamiltonian,
using the pseudospin approach developed by Anderson!
for superconductivity theory. His theory should
improve upon the HF result in the view that he takes
into account pair correlations between antiparallel
spins which are not explicitly included in the HF cal-
culation.!® He calculates ground-state energy, minimum
energy gap, triplet exciton bandwidth and paramag-
netic susceptibility, all as a function of temperature
and alternation parameter.!?

Notable success was achieved by Griffiths!® and
Bonner and Fisher? in inferring the physical properties
of long regular chains (e=1) by extrapolating from the
behavior calculated for short chains of 2-11 spins. The
authors decided to apply the same approach to the
alternating chain where, for the case | @ | <1, one might
expect properties of finite chains to converge even more
rapidly with IV to the V= values. The procedure of
calculation is given in Sec. 11, the results are given and
compared with previous calculations mentioned above
in Secs. IIT and IV, and a comparison with experiment
is given in Sec. V.

II. METHOD OF CALCULATION

The eigenvalues of Eq. (1) for N=4, 6, 8 and 10 and
2=0.2, 0.4, 0.6 and 0.8 are found by diagonalizing the
exact Hamiltonian matrix, written in a suitable repre-
sentation. The procedure follows closely that used by
Griffiths® for the regular chain. The chain is closed, i.e.,
Sn11=S;, and N is taken to be even. Since 3¢(N,a) and

N
Sz= Z S

=1

commute, a convenient choice of basis functions are the
eigenfunctions of S* which are direct products of the
eigenfunctions of S;% This yields 3C(N,a) as a 2V X2V
matrix in block form along the diagonal in which the

lal‘gest bIOCk iS

and each block corresponds to a single .S%. Reduction of
the size of the blocks is possible because of the (N/2)-
fold translational symmetry which results when the
chain is closed to form a ring. New basis functions are
constructed which are eigenfunctions both of S* and
of the translation operator which transforms spins 1—3,
2—4, etc. Each submatrix of 3¢(V,e) and given S?
when written in terms of this new basis, is further
reduced to a block form along the diagonal in which
there are 3V blocks of approximately equal order. Each
of these resulting submatrices is characterized by a

1 P, W. Anderson, Phys. Rev. 112, 1900 (1958).

12 The relation between the alternation parameter of Soos and
that of this paper is a= (1—38)/(148); also Jgoos(1+8) =—2J.

13 R, B. Griffiths, Ph.D. thesis, Stanford University, 1962 (un-
published).
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given S? and a given eigenvalue ¢* of the translation
operator.

Thus, for example, for N=10 there are 21°=1024
eigenstates. By using the simple product eigenstates of
S¢ as basis functions, the largest submatrix to be

diagonalized is
10 10
=252X252.
(5)%(5) -2

When 3¢(N,e) is written using the eigenfunctions both
of S% and of the translation operator, the size of the
largest submatrix is reduced to 52X52. This was the
largest matrix we could conveniently diagonalize (con-
sidering both significance of the calculation and cost)
on the IBM 7094. The complex matrix diagonalization
program which we used was written by Jon Petersen of
the Service Bureau Corporation and we are most
appreciative to him for making it available to us.

The eigenvalues of Eq. (1) for values of NV and @
considered here range from —4.5J (the ferromagnetic
ground state for N=10 and ¢=0.8) to 8.31921J (the
antiferromagnetic ground state for V=10 and ¢=0.8).
The calculated eigenvalues are exact to within about
4+0.000017. The eigenvalue spectra obtained were
checked against the exact trace relations of Egs. (2),
derived for a closed alternating chain of an even number
of spins:

Tric=0,

Trae=EN J2¥ (1+4?),
Tr(S7)?=1N2V,
Trie(S9)=—3iNJ2¥(1+a). (2)

For a given N and g, all eigenvalues for any given
| §2| and given eigenvalue of the translation operator
are also eigenvalues for each smaller | S?| and the same
eigenvalue of the translation operator. This was a
particularly useful check which would reveal sign
errors in off-diagonal elements which cannot be detected
by the relations (2). Unfortunately, no way was found
to use this degeneracy, which is a consequence of
[3¢,52]=0, to reduce the size of the matrices.’

The thermodynamic functions were calculated by
direct evaluation of the appropriate partition sums
using programs written by the authors for the IBM
1620.

III. GROUND-STATE AND TRIPLET
EXCITATIONS

The calculated ground-state energies per spin in
units of | J |, e(IV,a), are given in Table 1,”® along with
the estimated infinite-chain values. In order to estimate

14 After this work was completed, the authors received a copy of
a report of F. Carboni, University of Kansas, 1967 (unpublished},
in which he makes use of the operator which rotates all spins by
180° to reduce further the order of the matrices corresponding to
2 —

1 Robert Griffiths (private communication).
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TasrLE I. Ground-state energy per spin, e(V, a).

N a=0 0.2 0.4 0.6 0.8 1.0e

4 —0.75000 —0.75826 —0.78589 —0.83589 —0.90826 —1.00000
6 —0.75000 —0.75419 —0.76910 —0.80000 —0.85371 —0.93425
8 —0.75000 —0.75397 —0.76707 —0.79266 —0.83789 —0.91277
10 —0.75000 —0.75395 —0.76677 —0.79082 —0.83192 —0.90309
© —0.75000 —0.7667 —0.7899 —0.8246 —0.8859

—0.7539

# Values for ¢ =1.0, N =4, 6, 8 from Orbach, Ref. 17, and for N =10 from Griffiths, Ref. 15.

€(©,a) it was convenient to use the empirical relation
e(V,a) /e ,0) =exp(C/N?). (3)

The constants C, #, and &(,s) were determined by
fitting the relation (3) to the data of Table I at N=6,
8, and 10. The results are shown in Fig. 1. The estimated
€(®,1) of —0.8859 may be compared with the exact
value, given by Hulthén,® of —0.8863. Notice that
Eq. (3) reduces to the form assumed by Bonner and
Fisher? for the case of =1 when N is large. When «a
is 0.6, quite rapid convergence with increasing NV is
noted so that ¢(10,¢) is within about 0.19, of the
estimated €( ,a). The value ¢(N,0) =—2% is exact.

First-order perturbation theory using 3C(V,0) as the
unperturbed Hamiltonian yields a zero correction to
the ground-state energy for all N. The second-order
correction is nonzero for the short chains but was
found to be too formidable to calculate for arbitrary V.
We infer ¢(V,a) =€(N,0)+0(a?). This is in agreement
with the curves of Fig. 2.

In Fig. 2 results for the ground-state energy as a
function of alternation parameter are compared with
three previous approximate calculations of ¢(«,a),
viz., the quasiboson calculation of Montgomery,? the
pseudospin calculation of Soos,® and the Hartree-Fock
calculation of Bulaevskil.® The Hartree-Fock result
provides a rigorous upper bound on the antiferro-

-
Q
e
2
9l -
(4,63)
(2,8.7) j
87 I I I I ‘%
0 2 .4 6 -8 1.0

a/N)

Fic. 1. Logarithm of the ground-state energy per spin versus
(4/N)=. Values of (a,x) are given next to the corresponding
curves. The points for a=1.0 are taken from Orbach (Ref. 17)
and Griffiths (Ref. 15).

16 T,, Hulthén, Arkiv Mat. Astron. Fysik 26A, No, 11 (1938).

magnetic ground-state energy for the infinite alter-
nating chain, as was pointed out by Griffiths® for the
corresponding calculation of the infinite regular chain.
Bulaevskii’s ground-state HF calculation involves
finding the smallest diagonal element of Eq. (1) in a
particular representation which, in accord with the
variation method, yields an upper bound on the ground-
state energy. It is plausible, although not rigorously
shown, to infer that ¢(10,e) is a lower bound for the
exact ¢(«,s). The extrapolated ¢(,s) calculated
here, the quasiboson result of Montgomery, and the
pseudospin result of Soos are within these expected
limits.

The short-range order of the alternating chain at
absolute zero 7(V,a) was evaluated by calculating

4_ N
(N,e)=— ¥ 2 (S#S%) (4)

i=1
in the ground state. The results are shown in Fig. 3.
The curve for N= is an extrapolation based on the
empirical relation of the same form as Eq. (3), with

-.75

—.80

—95

F16. 2. Ground-state energy per spin as a function of alternation
parameter. The number of spins in the chain is given in parentheses
next to the corresponding curve. The points for a=1.0 are taken
from Orbach (Ref. 17). The curve labeled M is the quasiboson
result of Montgomery (Ref. 8), the curve labeled S is the pseudo-
spin result of Soos (Ref. 10), and B is the Hartree-Fock result of
Bulaevskil (Ref. 9).
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F16. 3. Ground-state short-range order as a function of alterna-
tion parameter for N=4, 6, 8, and 10. The value for N= = is an
estimate as explained in the text. The point [J is the exact value
calculated by Orbach (Ref. 17), for N= . The points for ¢=1.0
are taken from Bonner and Fisher (Ref. 2).

eo(N,a)/eo(0,a) replaced by 7(N,a)/r(w,a). The
extrapolated value of 7(w,1) is 0.591, which may be
compared with the Soos result of 0.590 8 and the exact
result of 0.596,% given by Orbach.

When Eq. (4) is evaluated using first-order perturbed
wave functions, the lowest-order correction to 7(V,0) is
linear in a. From Fig. 3, the limiting value of 27 (0, @) =
14-a/44+0(a*) may be inferred.

If the alternating chain is placed in an external field
H, the Hamiltonian (1) must be augmented by the
Zeeman term

JC,=gBHS? (5)

where g is the electron g factor and g8 is the Bohr mag-

TaBre II. Ground-state magnetization.

eBH/ | T |
N M/Ngg a= ¢=0.4 4=0.6 ¢=0.8
4 >0,<% O 0 0 0
>, <3 1.83303 1.74356 1.74356 1.83303
>% 2.4 2.8 3.2 3.6
6 >0,<3 O 0 0 0
>%, <3 1.77867 1.55081 1.37289 1.30132
>% <3 2.14645 2.36381 2.62711 2.92095
>% 2.4 2.8 3.2 3.6
8 >0,<3 O 0 0 0
>4 <% 1.77156 1.50148 1.23427 1.04920
>1 <3 1.99408 2.06290 2.20474 2.40619
>3, <}  2.26608 2.57221 2.90225 3.24773
>3 2.4 2.8 3.2 3.6
10 >0, <% O 0 0 0
>, <t 1.77058 1.48770 1.17665 0.91143
>3 <% 1.91181 1.87472 1.91587 2.03905
>3, <2 2.13800 2.34415 2.59707 2.88327
>2 <1  2.31821 2.66115 3.01863 3.38547
>3 2.4 2.8 3.2 3.6
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neton. The ground-state magnetization M as a func-
tion of H for given N and @, corresponding to 3¢+3C.,
is given in Table II. For a given N and 0<ae <1, there
are 3N-magnetization steps leading up to the satura-
tion magnetization of NgB/2. The minimum field needed
to saturate is easily shown to be 2(14a) | J| /g8,
independent of V.

Bonner and Fisher? estimated the infinite regular
chain magnetization by drawing a smooth curve
through. the midpoints of the magnetization steps for
finite V. In Fig. 4 the exact curve of Griffiths® for
N=w, a=11is plotted to show the excellent agreement
between the midpoints of the steps for N =10 (squares)
and the limiting result. A smooth-curve estimate of the
a=0.4 limiting magnetization has been drawn through
the midpoints of the ¢=0.4, N=10 curve and is also
shown in the figure. Similar N=c magnetization

6 T T T T
N T,
0o 0 4 1.0
8o
60
4 s
M
NgB
2 ~
1 1 1
°5 1 2 3 4 5
gB8H

Fic. 4. Ground-state magnetization for ¢=0, 0.4 and 1.0 as a
function of magnetic field. The data points are midpoints of the
magnetization steps for N=06, 8, and 10. The data for a=1.0 are
from the regular chain eigenvalues calculated by Orbach (Ref. 17)
and Griffiths (Ref. 15). The stepped curves are exact results for
N=10. The smooth curves for ¢=0 and 1.0 are exact results
for N= o, the latter from Griffiths (Ref. 3). The smooth curve for
a=04 is an estimate for N= «, as explained in the text.

curves may be drawn for other a values. The single step
for a=01in Fig. 4 is, of course, exact for all even V.
Estimating the limiting curve for the particular
case of ¢=0.8 is most difficult in the vicinity of
g8H/ | J| S1. It is not clear whether the magneti-
zation for the infinite chain approaches zero for a
nonzero value of external field, nor can we accurately
infer the slope of the magnetization for vanishing M.
The results for the extreme ¢ values are known exactly.
Thus for a=0, M is zero up to a critical field of H=
2| J| /gB. For a=1.0, Griffiths® has inferred and Yang
and Yang? have verified precisely that there is a zero-
field susceptibility at absolute zero of (dM/dH)/
(Ngp2/ | J|)=1/2z> Tt seems quite unlikely that
there is a nonzero susceptibility for ¢ 0.6, judging
from the step midpoint curves for ¢=0.2, 0.4, and 0.6;
but no such result can be inferred for 0.8 Sa<<1.0. The
HF result®® predicts a zero susceptibility for all0< e< 1

17 R. L.¥YOrbach, Phys, Rev. 115, 1181 (1959).

18 1,. N. Bulaevskil, Zh. Eksperim. i Teor. Fiz. 43, 968, (1962)
[English transl.: Soviet Phys.—JETP 16, 685 (1963)].
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and a finite susceptibility of (dM/dH)/(Ng28%/| J |) =
1/(2n+4-8) for a=1. The triplet exciton gas theory’
and the pseudospin theory' both predict a zero sus-
ceptibility for 0<e<1.

For the system of isolated pairs, an energy gap exists
between the lowest excited (triplet) state and the
ground state, while for the infinite regular chain there is
no gap.? Chains of 4, 6, 8, and 10 spins exhibit a gap,
A(0) in units of | J |, for all values of the alternation
parameter 0<¢<1, as is shown in Fig. 5. The various
approximate theories of the infinite chain are presented
for comparison. It is reasonable to infer that the curve
for N=10 is an upper limit to the N=c value, and
hence the HF result is probably the most reliable ap-
proximation to the infinite chain result.

Whether or not the gap vanishes for N=o and
0<a<11is not clear, although disappearance of the gap

20 T T

-

5 —

A0) 10 |~

] i
%5 .2 4

a

F1c. 5. Alternation energy gap as a function of alternation
parameter. Previous calculations plotted for comparison include
A, the Hartree-Fock result of Bulaevskil (Ref. 9); B, the quasi-
boson calculation of Montgomery (Ref. 8); C, the pseudospin
calculation of Soos (Ref. 10); and D, the triplet exciton gas
calculation of Lynden-Bell and McConnell (Ref. 7).

for the infinite chain when a $0.6 appears quite un-
likely. For small g, first-order perturbation theory for
N=4, 6, and 8 yields the result that A(0)/2=1—
a/2+0(a?).

Triplet excitations of Eq. (1) may be discussed in a
manner parallel to the spin-wave theory of the regular
antiferromagnetic chain given by des Cloizeaux and
Pearson.!® The wave number % is defined via the eigen-
value e* of the operator which translates each spin in
the closed chain to the position of its second-right
nearest neighbor. For the boundary condition Sy1= S,
the allowed values of e* for an N-spin chain (N even)
are the /2 N/2-th roots of unity, with the range of %
restricted to —w<k<w. The lowest-energy excited
states of 3¢(V,a) for a given k are found to be triplet
states for the finite chains investigated and may be
identified as the triplet exciton states of McConnell and

197. des Cloizeaux and J. J. Pearson, Phys. Rev. 128, 2131
(1962).
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1
32
24
4
Ak) 16 = =
L 2a
.40
8 % 67 -
8¢
1.0o°
0 | 1 1
o] /4 w2 3nl4 ™
k

F16. 6. Triplet exciton spectrum as a function of wave number
for N=10and ¢=0,0.2, 0.4, 0.6, 0.8, and 1.0. The points for a=1.0
are from Bonner and Fisher (Ref. 2). The solid curves (N= o)
are from Bulaevskil (Ref. 9). The dashed curve is the exact result
for a=1.0 and N= « of des Cloizeaux and Pearson (Ref. 19).
For all the data and curves, A (k) =A(—k).

co-workers.”?® When ¢ =1 these states make up one-half
of the spin-wave states considered by des Cloizeaux and
Pearson.

" In Fig. 6, the excitation energy of the triplet excitons,
A(k) in units of | J |, is plotted for N =10 and various
a values. For comparison, the infinite chain excitation
energies’ of Bulaevski? and the des Cloizeaux and
Pearson result”® for N=o and e¢=1 are given. The
agreement is best for small a, as might be expected. For
small ¢, the expression of Bulaevskii in our notation
reduces to

A(k)=2—a cos k, (6)

which is precisely the result of the exciton gas theory”
and agrees with Montgomery? for small a. In Table 111,
our results for N=10 and ¢=0.2 are compared with
results of the various approximate theories.

IV. THERMODYNAMIC PROPERTIES

The internal energy, entropy, specific-heat and low-
field magnetic susceptibility have been calculated for

Tasre III. Triplet exciton spectrum for N=10, ¢=0.2 com-
pared with N= o, ¢=0.2 results of various approximate cal-
culations.

A(0) A(FE27/5)  A(%4rn/5)
N =10, exact 1.77058 1.93279 2.17155
N = », Bulaevskif» 1.770 1.925 2.170
N= o, SoosP 1.787 1.942 2.171
N=o, Eq. (6) 1.800 1.938 2.162

& Reference 9.
b Reference 10.

20 H. Sternlicht and H. M. McConnell, J. Chem. Phys. 35, 1793
§1921;; H. M. McConnell and R. Lynden-Bell, ibid. 36, 2393
1962).
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0
kT/13t

Fic. 7. Internal energy as a function of temperature for the
10-spin chain for the indicated @ values of 0, 0.2, 0.4, 0.6, 0.8,
and 1.0. The dashed curves are estimates for the «-spin chain,
as explained in the text. The curves for a=1.0 are from Bonner
and Fisher (Ref. 2).

N=4,6, 8, and 10 and ¢=0.2, 0.4, 0.6, and 0.8.* Where
feasible, we have made N=wco extrapolations. The
thermodynamic functions for a=0 have been calculated
for V=2 and these results are readily shown to be exact
for all even N. The curves of Bonner and Fisher?
corresponding to N =10 for ¢=1.0 and their N=o
extrapolations are plotted for comparison. We are
indebted to Dr. Bonner for a copy of their numerical
results which we used for the plots.

In Fig. 7 the internal energy U for alternating chains
of ten spins is plotted versus temperature for various a
values. The dashed curves at 27/ | J| <0.8 are an
extrapolated estimate of the V= behavior, based on
the extrapolation technique already discussed using an
equation of the form of Eq. (3). The extrapolated
curves for ¢=0.2, 0.4, and 0.6 differ too little from the
N =10 curves to be shown as separate curves on this
graph. The very rapid convergence of the internal
energy is evidenced by the fact that the values for N=8

Ng T T T

1
1.5

1.0 2.0
KT /Il
Fic. 8. Entropy as a function of temperature for the 10-spin

chain for ¢=0, 0.8, and 1.0. Dashed estimates for N= o are
given. The curves for a=1.0 are from Bonner and Fisher (Ref. 2).

2 Tables of the thermodynamic properties have been deposited
with the ADI Auxiliary Publications Project, c/o Library of
Congress, Washington, D.C. 20540. A copy may be obtained by
requesting Document No. 9622 and remitting $3.75 for photo-
print or $2.00 for microfilm.

AND K. P. BARR 165

and 10 differ by less than 0.5%, at all temperatures
for ¢=0.2, 0.4, and 0.6, and at kT/||J | >0.80 for
a=0.8. The N=o estimates differ from the ¥=10
values by less than 0.5% for all T with a ¢=0.2, 0.4,
and 0.6, and at 2T/ | J | >0.65 for a=0.8.

The entropy S, plotted in Fig. 8 for ¢=0, 0.8, and
1.0 for 10-spin chains, is a much less sensitive function
of alternation parameter than the energy. Also, the
convergence with IV at a given temperature is less rapid
than for U. The agreement of the V=38 and 10 curves is
to within 0.59%, down to kT/| J| =0, 0.45, 0.75 and
0.90 for =0.2, 0.4, 0.6, and 0.8, respectively; the N =10
and o curves differ by less than 0.5% down to
kET/| J| =0,0, 0.65, and 0.80 for the same respective
a values.

In Fig. 9, the specific heat in zero magnetic field Cp,
for N=4, 6, 8, and 10 with ¢=0.8, is plotted along with

Cu_
N

k

| | I
10 15 20
KT/

2.5

F16. 9. Specific heat in zero magnetic field for ¢=0.8 and for N=4,
6, 8, and 10. The dashed curve is the estimate for N= w,

an estimate of the NV=-c behavior. The convergence
of the specific-heat curves for finite NV is relatively
poor in the vicinity of the maximum, although certainly
more rapid for small ¢ values and high temperatures.
The estimate for the N = curve was determined by
numerically differentiating the N=c estimate of U.
This was necessary because the irregular behavior of
Cpy for small fixed T and increasing N did not admit of
an extrapolation function of the form of Eq. (3).
The 10-spin-chain specific-heat results for ¢=0, 0.6,
and 1.0 are given in Fig. 10, and the inset shows the
variation of the value and temperature of the specific-
heat maximum with temperature. The curves for N =8
and 10 agree to within 0.5% at £T/ | J | >0.15, 0.15,
0.40, and 1.45 for ¢=0.2, 0.4, 0.6, and 0.8, respectively.
The N=o estimates are within 0.59%, of the N=10
values at kT/ | J | >0.6, 0.6, 0.9, and 1.15 for the same
corresponding @ values.

For T>> | J | /k, the specific heat may be approxi-
mated by the first term in the exact high-temperature
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expansion.?? The result is
Cy=3Nk(14a?) (J/kT)?

to lowest order in (J/kT'), for any even N.

The magnetic susceptibility for a=0.8 and N =4, 6, 8,
and 10 is given in Fig. 11. The N =« estimate based on
an Eq. (3) extrapolation is also given for 2T/ | J | >
0.3. Extrapolation was not attempted for ¢=0.8
below 2T/ | J | =0.3 because of the poor convergence
of the finite-chain values as a function of N.

In Fig. 12, the susceptibilities for 10-spin chains with
2=0, 0.2, 0.4, 0.6, 0.8, and 1.0 are given as solid curves
along with the dashed extrapolated N=c estimates.
The inset shows the variation of the dimensionless
©®/T,, the ratio of the Weiss constant © to the tem-
perature of the maximum susceptibility 7', as a func-

(7)

1.0
kT/NI

Fic. 10. Specific heat in zero magnetic field for the 10-spin chain
for 2=0, 0.6, and 1.0. The inset shows the temperature of the
specific-heat maximum % 7T°/| J | (circles) and the value of the
maximum Cgm/Nk (squares) versus alternation parameter for
the 10-spin chain. The dashed curves are estimates for N= .
The data for a=1.0 is from Bonner and Fisher (Ref. 2).

tion of alternation parameter. Also shown in the inset
is the dependence of susceptibility maximum x» on
temperature. The Weiss constant was obtained from
the high-temperature expansion for the susceptibility,
which is given by

(s () ). o

Infinite chain estimates are not given because of the
good agreement between T, and x= for N =10 and the
corresponding V=0 values.

The susceptibilities for 8- and 10-spin chains agree to
within 0.5% at kT/| J| >0.20, 0.30, 0.75, and 0.95
for =0.2, 0.4, 0.6, and 0.8, respectively. The 10-spin-
chain values and o« -spin-chain estimates differ by less
than 0.59% at kT/| J| >0, 0, 0.65, and 0.80 for the
same corresponding ¢ values. The variation of suscepti-

(12926% Domb and D. W, Wood, Proc. Phys. Soc. (London) 86, 1
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Fic. 11. Susceptibility in low magnetic fields for ¢=0.8 and
N=4, 6, 8, and 10. The dashed estimate for N= « is given down
to kT/| J|=0.3.

bility of the infinite alternating chain with temperature
for 0<kT/| J| <0.3 a is very uncertain because of the
poor convergence with NV of the short-chain values at
low temperatures and the uncertainty of the value at
T=0.

The two previously published susceptibility calcu-
lations for Eq. (1) may be compared with our results.
The triplet exciton gas’ yields the correct susceptibility
in the limit of vanishing @, but for ¢£0 in the region
kT/| J| Za, where a meaningful comparison can be
made with our NV =10 result, there is only rough quali-
tative agreement. Similarly, poor quantitative agree-
ment with the pseudospin calculation! is noted, even
in the a¢=0 limit. These two calculations involve
approximations which should be best at T<K | J | /&
and so this lack of agreement is perhaps not surprising.
Rough qualitative agreement is found since all three
results are increasing functions of a at low temperature,

kT/NI

FiG. 12. Susceptibility in low magnetic fields for the 10-spin
chain for ¢=0, 0.2, 0.4, 0.6, 0.8, and 1.0. Dashed estimates for
N = are given. The inset shows the Weiss constant divided by
the temperature of the susceptibility maximum ©/7, (circles)
and the product of maximum susceptibility times the correspond-
ing temperature, p=xmnkTm/Ng?B* (squares), versus alternation
parameter for the 10-spin chain. The data for a=1.0is from Bonner
and Fisher (Ref. 2).
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Fic. 13. Relative susceptibility-temperature product versus
temperature of the solid free radical D (INOs)2+.The circles are ex-
perimental data from Duffy and Strandburg (Ref. 26). The curves
Srg the&)rlel(:)ical fits corresponding to the indicated & values of 0,

.6, and 1.0.

decreasing functions of ¢ at high temperature, and pass
through a single maximum at 7= | J | /.

It is interesting to compare our results for the
isotropic alternating chain with the results of Bonner
and Fisher? for the anisotropic regular chain. The
anisotropic regular chain may be characterized by the
Hamiltonian

N
G(NVy)=-27 ;1 [vSi-Sepnt (1—7) S2S%nl,  (9)

where, clearly, G(N,1)=3C(N,1). The completely
anisotropic Ising limit is characterized by y=0 and the
isotropic Heisenberg limit by y=1.

With one exception, the qualitative features of the
thermodynamic functions considered here for 3C(V,a)
are quite similar to the corresponding functions for
G(NV,y), where the variation of @ or ¥ does not sub-
stantially change these features. The exception is the
perpendicular susceptibility, which is discussed below.

The qualitative behavior of Cy as a function of ¢ is
quite similar to the behavior of the specific heat of the
anisotropic chain (9) as a function of v. Either stronger
alternation or increased anisotropy shifts the specific-
heat maximum to lower temperatures, increasing its
maximum value and reducing the high temperature
(‘tail!’.

The anisotropic regular chain exhibits a parallel
susceptibility which has the same qualitative de-
pendence on v as do the curves of Fig. 10 on @, and for
v#1 the parallel susceptibility is zero? at T'=0. The
perpendicular susceptibility of the anisotropic chain?
is nonzero at 7'=0 for all 0<y< 1, and is always equal
to or greater than the corresponding parallel value,
approaching a nonzero value for all v as 7—0. In our

23 Jill Bonner (private communication).
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case, as previously pointed out, it is unclear whether or
not x at T'=0 is zero for N=o and 0<ae<1.

V. COMPARISON WITH EXPERIMENT

Strongly alternating antiferromagnetic spin chains
account rather well for the magnetic behavior of the
ionic free-radical solids triethylammonium(TCNQ),
and Wiirster’s blue perchlorate (below its 189°K
transition temperature) .82 Corroborating crystal-struc-
ture studies support these interpretations. Regular (or
very weakly alternating) antiferromagnetic chains
account well for the magnetic susceptibility of the
singly nitrated DPPH radical solid (2-phenyl-2-p-
nitrophenyl-1-picrylhydrazyl.) 26 Attempts by the
authors to fit susceptibility data of various free radicals
to an alternating-chain susceptibility of intermediate
alternation (¢~0.5) have met with success only in one
case, that of doubly nitrated DPPH [2,2-bis(p-
nitrophenyl) -1-picrylhydrazyl ].

In Fig. 13, the relative susceptibility-temperature
data (circles) of Duffy and Strandburg? for doubly-
nitrated DPPH [D(NO;),- | are given along with the
theoretical curves for ¢=0, 0.6, and 1.0. The theo-
retical curves have been arbitrarily fitted to the ex-
perimental data at 20°K. The “best fit” ¢=0.6 curve
corresponds to J/k=—7.7°K. For an absolute fit one
requires 94.29, spins which, within the quoted experi-
mental error, agrees with the experimental 93%, found
from the Curie-Weiss law observed at high tem-
peratures. The low temperature rise in x below 3°K is
attributed to paramagnetic impurities.6 This alter-
nating chain interpretation should be regarded as
tentative until supplemental measurements, such as
detailed crystal-structure determinations, are made.

Note added in proof. As kindly pointed out to us by
Dr. Zoltan Soos, the data (Ref. 26) on the free radical
N-picryl-9-aminocarbazyl also fit rather well to a linear-
chain susceptibility of intermediate alternation (a~0.4,
J/k=—58K).
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