165

find once again

Eo=C exp(— E/2V%). (29)

Here, however, there is no question that the series is
logarithmic, we have been able to calculate it ex-
plicitly.

The full implication of our performing-perturbation
theory with a limited basis set is still being investi-
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gated. The calculation is, however, a strong indication
that our assumption of a geometric series in Eq. (24)
is more than wishful thinking, but reflects correctly
the basis dynamics of the problem.
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A systematic discussion is given of the approximate free energies and Curie temperatures that can be
obtained by using trial density matrices (which describe various possible decompositions of the ferro-
magnet into clusters) in a variational calculation of the free energy. Single-spin clusters lead to the molecular-
field model (as is well known) and two-spin clusters yield the Oguchi pair model. The relation of the
“constant-coupling” method to these approximations is clarified. A rigorous calculation using three-spin
A clusters is found to give results differing from those of Oguchi. Finally, the Bethe-Peierls-Weiss approxi-
mation is considered within the framework of this paper.

I. INTRODUCTION

N exact calculation of the free energy, and con-
sequently of the thermodynamic properties of a
Heisenberg ferromagnet, appears to be beyond the
reach of present mathematical techniques, except at
high temperatures where an expansion in powers of the
exchange constant gives accurate results and at low
temperatures when spin waves (possibly renormalized
and weakly interacting) give a good description of the
system. Assuming isotropic exchange between nearest
neighbors, which greatly simplifies all the calculations,
the Hamiltonian of the system of interacting spins is

ge=—2J > S:iSi+gusH D, S (11)
2,7 i
The exact density matrix is
P=eXpL—.B(N§—GC)]1 Tr{p} =1, (12)

where 8=1/kT and the free-energy-per-spin & is de-
fined by

exp(—BNF) =Z=Tr{exp(—p5%) }. (13)

The essential difficulty in the way of an exact evalua-
tion of Z is that there are important contributions to

* Work performed at the Ames Laboratory of the U.S. Atomic
Energy Commission. Contribution No. 1975. .

1 Present address: University of Sussex, Falmer, Brighton,
Sussex, England.

it from very large rings of spins coupled by the nearest-
neighbor interaction. Many approximate theories in-
troduce some relatively small clusters of spins, tretead
exactly, whose interaction with other clusters is simu-
lated by an effective field, so that the density matrix
factorizes. A detailed account of many of these theories
can be found in the book by Smart!. These effective
fields have been chosen on an intuitive ad hoc basis. It
will be seen that in some cases these fields are not the
optimum ones in the sense that they do not minimize
the corresponding free energies. It must, however, be
borne in mind that they may well lead to better descrip-
tions of particular aspects of the properties of a
ferromagnet, for example the location of the Curie
temperature.

Calculations of the type given here can be done
equally well using spin-wave variables. In these terms,
the theory of Bloch? corresponds to employing an
approximate density matrix diagonal in the spin-wave
occupation numbers which automatically eliminates
the off-diagonal parts of the truncated Holstein-Prima-
koff Hamiltonian. Brooks et al.? have used the present
technique to treat the temperature dependence of
crystal-field effects in terbium.

YJ. S. Smart, Effective Field Theories of Magnetism (W. B.
Saunders Co., Phila., 1966).

2 M. Bloch, Phys. Rev. Letters 9, 286 (1962).

3 M. S. S. Brooks, D. A. Goodings, and H. I. Ralph, Proc. Phys.
Soc. (London) (to be published).
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II. VARIATIONAL PRINCIPLE AND CLUSTER
DENSITY MATRICES

The well-known variational principle to be employed
is that the mean-free-energy per spin & given by

F=(1/N) Tr{pic}+(1/NB) Tr{p Inp},
F=(1/N) @)+ (1/NB)(In p),

with Tr{p} =1, is an absolute minimum for the true
density matrix. Although a familiar case, it is conveni-
ent to begin with the single-spin cluster, since the form
of the corresponding free energy will be needed in
Sec. IIT.

(I11)

A. Single-Spin Cluster

The density matrix described by this decomposition

p= H exp( _th;"g) /ZaN,

spins ¢

is
(112)

with
So
Zo=Tr{exp(—hSiz)} = Y, exp(—mbh,)
m=—=80
=exp(—pF,).

This last equation defines the cluster free energy per
spin ¥, and it follows directly that the mean z com-
ponent of the spin is (S.),=B3F,/dk,. It is then clear
that the two terms in the approximate free energy per
spin for the entire crystal, when each spin has # nearest

neighbors, are
(1/N)(3),= —JIn{S1+Ss)+gusH(S: )
=—Jn (Sz>v2+g#BH<Sz Yor

(1/N8) (Inp)s=— (1/B) ho(S:)o+Fo,
and that the complete expression is
Fo=(h—hy) 9F o/ dho+Fs—Bjn(0F./0hs)?,
where 2=0gusH and j=4J.
The condition for &, to be a minimum is that
8F4/0hs=0,
and the solution (or more precisely a solution) of this
equation is
h—hy=28jn(3F;/dhs) =2jn{Sz)..

This is just the Weiss formula for the molecular field,
and its properties are well known. We note here only
that in this model a phase transition occurs when the
parameter ;j takes the value jo=3nSo(So+1), where
So is the spin of an individual atom.

(113)

and
(114)

(115)

(116)

(117)

B. Two-Spin (Pair) Clusters

Any ferromagnet with spins on the sites of a Bravais
lattice can be decomposed into pairs of nearest neigh-
bors so that no spin belongs to two pairs and every spin
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belongs to some pair. The corresponding density matrix

1S
p= 11 exp(Go) /2.7,

pairs

(118)

where
Zx=Tr1,2{eXp[Gr(1: 2)]} Eexp[—-ZﬂF,:], (IIQ)

which defines the cluster free energy per spin, F,. The
most general form for G, which we shall consider is

Gr(1,2) =24"S;+Sp+27S1,.52,:— br (S1,6+ S2,.) . (1110)

It follows from Egs. (II9) and (I110) that the mean
spin in the z direction is

(S,)r=PBOF,/0h,. (1I11)

The mean energy per spin for the entire crystal can
then be written as

(I/N) <3C>= —J<S1'Sz>,,-—](’ﬂ—1) <Sz>72
=J0F./9j'—Bj(n—1) (0F+/0hx)?,

since only spins in the same cluster are correlated. The
corresponding free energy per spin is

Fy=(§—7') OF 4 /dj' —NOFy/ON+ (h—hy) OF /Ol Fx

(1112)

—Bj(n—1) (8F,/dk,)2. (I113)
The conditions for &, to be a minimum are
9%« __~é€f_’f=@ =0
a' N Ohy
with the solutions
7=
A=0,
he=h—28j(n—1)3F,/0h,=h—2j(n—1)(S,),. (1114)

These are in fact just the equations defining the Oguchi
pair model,* and they yield a somewhat lower free
energy, and also a lower value for 7., than the single-spin
model. This pair model also shows some short-range
order even above the Curie point.

At this juncture, rather than going on immediately
to discuss clusters containing three or more spins, it is
appropriate to consider the relation of the “constant-
coupling” approximation® to these models.

III. CONSTANT-COUPLING APPROXIMATION

In Secs. I and II, two approximations to the free
energy of the real ferromagnet were obtained by using
trial density matrices including clusters of one and two
spins, respectively, and the free energies were expressed
in terms of the cluster free energies per spin F,(%;) and
F.(h,). With those results available, consider the func-

4T, Oguchi, Progr. Theoret. Phys. (Kyoto) 13, 148 (1955).
( 5;.)W. Kasteleijn and J. Van Kranendonk, Physica 22, 317
1956).
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tion F(S) defined by
F(8) =aF,(8) —bF,(S),

where the arguments of the F’s are chosen to be

(I111)

he=h—25b8,  h,=h—2jaS. (I112)
It then follows immediately that
0F /38 =a F,/38—b dF,/d8
= —2abj[dF,/dh,—oF ,/oh,)
=—2abJ[{S.)r—(S:)s]. (1113)

The condition for F to be a minimum, or at least sta-
tionary, is that

<Sz>1r= (Sz}c,

an equation which determines S as a function of 8
and %. There remains the question of how to choose the
parameters @ and b so that F is in some sense a good
approximation to the true free energy of the real ferro-
magnet and can also be analyzed into components
which have a natural interpretation in terms of entropy,
mean exchange energy, and magnetic moment. Ex-
pressed in terms of the &’s, the function F is

F=0F,—bF,—2JabS[{S.)r— (S.)s]

(1114)

+JLa(n—1)(S:).2~bn(S,).*]. (III5)
At the minimum of F,
(Sade=(S:)o={(S.),
and there,
Frin=05,—0F+J[a(n—1) —bn](S.)
The last term vanishes if
a(n—1)=bn, (1116)

and this will be used as one condition on @ and 5.
As the first step in analyzing F we define the entropy
8 by
=—3F/aT. (I117)

Now F depends on T both explicitly and through the
temperature dependence of S. Explicitly,

=—8F /0T = —aF ,+bF,—8F/358(85/aT).
But at the minimum, 8F/dS=0, and there,
TS=aTS,—bTS.. (1118)

Using the results of Sec. IT, and putting 7' =7, we know
that
TS"' =j aF 1I'/ aj +IZ,,-6F 1r/ ahr_F ry

TS,=joF,/3j+h,0F,/0h,—F,.
Combining Egs. (ITI8) and (III9),
T3 =jaﬁ/aj_ﬁ+ (l/ﬁ) (ah,—bhs) (Sl)'

(III9)
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Using Eq. (II12), this reduces to
T8=70F/3j—F+(1/8) (a—B)(S.),

and, alternatively, to
F=joF/9j+(1/8) (a—b)k(S,)—TS. (II110)

This equation has a direct, natural, and self-consistent
physical interpretation, with (3Cexen)=7(8F/95), for
instance, if it is arranged that

a—b=1,

so that, using (III6), the coefficients are determined
to be

(I1111)

The function
Foo=nF,—(n—1)F, (I1112)

is in fact the free-energy function in the constant-
coupling approximation. It should be emphasized that
it is not in.any sense a rigorous upper bound to the
free energy of the physical ferromagnet (or any system
of interacting spins with Heisenberg interactions).
However, it does have the useful stationary property
of Eq. (II13), and, as shown here, it also has a self-
consistent thermodynamic interpretation. It is perhaps
also worth noting that the first term in F, .. is the exact
free energy for a pseudocrystal with sheaves of # spins
at every lattice site, each spin interacting with only
one spin in a sheaf at a nearest-neighbor site. The
function F, .. was also obtained by Strieb et al.8 in the
second order of a graphical cluster expansion of the
free energy. For a pseudocrystal of sheaves of # spins,
this second-order term is the exact result.

IV. THREE-SPIN CLUSTERS

The natural way to extend the work of Sec. II is to
consider clusters containing three spins. There are only
two essentially distinct types of cluster, namely, A
clusters, having end spins which are not nearest neigh-
bors of each other, and triangle clusters. The latter
can only occur in the hexagonal and close-packed
lattices. It is not difficult to see that simple cubic
(sc), body-centered cubic (bcc), and face centered
cubic (fcc) lattices can all be decomposed into A clus-
ters in such a way that no spin belongs to more than
one cluster and every spin belongs to some cluster. The
fcc lattice can also be decomposed into triangles.
Examples of such decompositions are shown schemati-
cally in Figs. 1-4. As it happens, the two decompositions
shown for the sc lattice in Fig. 1 lead to the same
approximate free energy, but it may well be that other
decompositions, leading to lower free energies, can be
found. The density matrix has the same form for any

8 B. Strieb, H. B. Callen, and G. Horwitz, Phys. Rev. 130,
1798 (1963).
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1
-— --8
I
Fic. 1. Two equiva-
lent decompositions of
the sc lattice into A
- 8——8 __ 8§ clusters.

8 s —e——p.
—e——8 __ 8

@—SPINS IN BASAL PLANE
O-=-SPINS IN NEXT PLANE

decomposition into A clusters, namely,

p= 11 exp[G)/Z", (Iv1)
clusters
where the cluster partition function is
Z=Trias{exp[Gr(1, 2, 3) ]} =exp[ -3B8], (IV2)

also defining the cluster free energy per spin F,. The
most general form for G\ which we shall consider is

G\(1, 2, 3) =24S;- (Se+Ss) =St~ (S2,5+Ss.2)
(1IV3)

where we have used the facts, easily verified, that the
optimum coefficient of the exchange term is the actual

Fic. 2. A decomposi-
tion of the bcc lattice
into A clusters.
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coupling coefficient j=8J and that the optimum coeffi-
cient of the Ising term is zero, precisely as it happened
in Sec. II. It follows directly from Egs. (IV2) and
(IV3) that the mean z components of the spin of atoms
at the center and ends of the cluster are given by

(Se,2)=3B0F\/0hy, (Se,.)=3B0F\/0h\', (IV4)

respectively. We are now in a position to treat the
three lattices in turn. The corresponding free energies
differ only in the coefficients of the terms describing
the exchange interaction between spins in different

clusters.
A. sc Lattice

Inspection of Fig. 1 shows that each center spin
interacts with the two end spins in its own cluster and
four end spins in other clusters, while each end spin
interacts with the central spin in its own cluster, with
three end spins in other clusters and with two central
spins in other clusters. The corresponding mean ex-

4
’

d o] /'/
XAy
0//8//d
/ .,X// )(
‘S o
X 2/ /7 x
g

©—SPINS IN BASAL PLANE

F1c. 3. A decomposition of the
fcc lattice into A clusters.

C---SPINS IN PLANE BELOW
%-—SPINS IN PLANE ABOVE

change energy per spin is
N—1<Gcexch> =jaF}\/aj_%]<Se,z><Sc,z>—2]<S¢,z>2
LOF, . OF, 0F), 6F)\)2
=7 ——=128] — ——3(8)) ([—) .
J a7 &l UNE @) <3h>\'

The first term corresponds to exchange within the
cluster and the others to exchange between clusters.
The corresponding approximate free energy is

Fr= (/’L —h) aF)‘/a}b\'-{— (b —h) OF\/dh\'+Fy

(IVs)

~126 52 2035 (5. (v
Again, the conditions for & to be a minimum are
TN/l = 0%/ M =0, (IVT7)
of which the solutions are
In=h—12B3j0F\/oh\’
=h—85(S.,.), (IV8a)
and
I =h—12B370F)/3h— 9870 F»/dhy'
=h—47(Se,s) =65 (Se,s). (IV8Db)
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It should be noted that, in general, the two mean z
components of spin will not be equal and Egs. (IV8a)
and (IV8b) will lead to results different from those
found by Oguchi, who assumed that they were the
same. In particular, the value for the critical coupling
constant 7. is slightly different in this theory.

In general, Egs. (IV8a) and (IV8b) are coupled,
nonlinear, equations for the effective fields A and
k. However, the critical value of j can be located
simply in terms of a series expansion of Fi(%; /') in
powers of its arguments, namely,

F)\(h)\; h)\/) ==F)‘(0; 0) +%‘F11h)\2+F12hhh)‘l

+3Fph\? -+, (IV9)
and where higher powers can be neglected at tempera-
tures near and/or above the Curie point. The mean
spin over all atoms is then

(S,)=BF)/In+BaF> /'
=B(Fu+Fr) 4B (Fit+-Fau)y'. (IV9a)

In this region of small effective fields, the defining
Egs. (IV8a) and (IV8b) reduce to the coupled linear
equations

[1+1285F 15+ 128jFashn’ =1,
[128jFu+987F 1 )n+[1+4128jF15498iF2’ 1’ =h.
(IV10)

The critical value of j is that for which the determinant
of the coefficients vanishes, and the equation defining
Je s thus

(128)[FuF 12— F1?]—24BjF1,—98jF»=1. (IV11)

In practice, the calculation is done by way of an expan-
sion of the cluster partition function Zy(f; &') in
powers of its arguments,

Zn(In; ') = Zo+ 320+ ZahIn! + 5 Zoohy/* -+ « «
The equation for j, is then
(165%/ Z) [ZuZon— 21?1+ 87 Zno/ Zo+35Z0s/ Zo=1.
(Iv12)

Convenient expressions for the coefficients Z;; can be

oo,
R
i

O SPIN FROM CLUSTER ABOVE
vV SPIN FROM CLUSTER BELOW

X ISOLATED SPIN

FiG. 4. A decomposi-
tion of the sc lattice
into BPW clusters and
isolated spins.
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TasiE I. Values of j, for ferromagnets with So=1%
Lattice

Method sc bee fce, hep
Molecular field 0.333 0.250 0.167
Oguchi 2-spin 0.357 0.269 0.169
Oguchi 3-spin 0.356 0.260 0.170
Present A cluster 0.355 0.259 0.170
Triangle cluster oes cee 0.155
BPW 0.541 0.344
Present BPW ..o 0.262
Constant coupling 0.549 0.347 cee
High temp. expansion 0.529 0.379 0.245

found in the paper by Brown and Luttinger”. The value
of j. for So=% is included in Table I.

B. bcc Lattice

The decomposition of this lattice into A clusters is
perhaps most easily analyzed by viewing the lattice
along a body diagonal. The projection onto a plane
normal to this axis shows a hexagonal pattern, with
three distinct sites (Fig. 2). Six (111) atomic planes
cut across each unit cell, and the decomposition can be
represented by the following scheme which tabulates
the location of spins in these layers for the three sites:

Site Occupation

€ ¢ ¢ € ¢c € ¢ c € e ¢ € € ¢
a +++6123456123456123456123456123456123456123

Cc € ¢ ¢c e e c e e ¢ ¢ ¢ ¢ ¢
b 16123455123456123456123456123456123456123

e € ¢c e € c e € c € e ¢ e
¢ 16123456123456123456123456123456123456123

The nearest neighbors of a spin at an a site in plane
n are as follows:

3 on b sites in plane (r—1) Mod 6,
3 on ¢ sites in plane (#+1) Mod 6,
1 on a sites in plane (#=43) Mod 6.

Inspection of Fig. 2 shows that the center spin in a
cluster, taken without loss of generality to be at an a
site in plane IV, has as its nearest neighbors the two end
spins in its own cluster, three end spins from other
clusters at b sites in plane (#—1) Mod 6. The nearest
neighbors of an end spin at an ¢ site in plane # are the
center spin of its own cluster, also on an a site, one end
spin of another cluster at an ¢ site, three other ends at
b sites, and three center spins from other clusters at ¢
sites. The mean exchange energy per spin is then im-

“H. A. Brown and J. M. Luttinger, Phys. Rev. 100, 685 (1955).
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mediately seen to be
(1/N) (scexch> =.7'aF)\/aj_4J<Sc-t><Se.z>—' (87/3) <Se.t>2
=70F\/9j—18Bj0F\ /M’ — 687 (dF)\/om)2,

(1Iv13)
and the corresponding free energy is
Frn=(h—h) (‘)F)\/ah)‘-l— (}l —m) an/ah)\/-{—F)‘
—18B70F»/0hn+0F)/0k\' — 6837 (0F /o' )2.  (IV14)

The solutions of the minimum conditions (8F»/0k) =
(8F»/0m") =0, are

In=h—188j9F/dh’

=h—12(S..z), (IV15)

and
h'=h— 12['3]'(9F)‘/ah)"— lSﬁjaF)‘/ah)\

=h_8j<Se,z>_6j<Sc,z>- (IV].SB.)

As in the case of the sc lattice, the mean spin com-
ponents {S,.) and (S.,,) will not be equal in general.
The critical value j, can be found in exactly the same
way as before, and the corresponding equation is

( 18;8]) 2[F11F22—F122] —SéﬁjFlz— 12ﬂ]F22 = 1 (IV16)

In terms of the coefficients in the expansion of the
cluster partition function, this becomes

365%/ 2 [ ZuZow— 2121125219/ ZoA-45 2/ Zo=1. (IV1T)
The value of 7, for So=% is included in Table I.
C. fcc and hep Lattices

A decomposition of the fcc lattice into A clusters is
shown in Fig. 3. [The hexagonal close-packed (hcp)
lattice possesses a similar one which yields the same
free energy.] The nearest neighbors of a center spin
are the two end spins in its own cluster, four other end
spins in the same plane, two end spins in the planes
above and below, and lastly, a center spin in the planes
above and below. The nearest neighbors of an end spin
are the center spin of its own cluster, two other center
spins in the same plane, and a center spin in the plane
above and below, three end spins in the same plane and
two end spins in the planes above and below. The mean

exchange energy per spin is
(1/N) (Bexen) =7jOF»/8j =3 (Se.
—(167/3) (Sz,:)(Se,s)— (147/3) (S 2 )*

=70F/3j—60j (0F)/0Mn)*

— 2487 (0F\/0h) (9F>/ ") — 26 (3F>/0m)?,

and the approximate free energy is

Fr= (B—M\) OF\/ o+ (h—Mn') 0F5/ 0l +F

6FA)2__24 L0 0F\ 21 (an

2
—687 | — — ———]). (IV19
087 (0}1); A o oh 2 6k)") ( )

(IV18)
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The solutions of the minimum conditions (0%/0/) =
(0F/om') =0, are

Tin=h—128j0Fy/ln—2480Fy/dhy’
=h—45(S...)—16§(S...),

and
I =h—24B70F\/dh\—21B3j0F,/oh

=h—8j(Se.e)—145(S...). (IV20)

Using these equations and the notation Secs. I-III,
it is easy to show that the critical coupling coefficient
Je is determined by

324(87) [ FuFau—F1*]—128jF 1 —488jF1,—218jF =1,
or the alternative form

3652 .2 e, . Lo

— [ZuZo—2Z12 |+4j —+16] —+7j —=1.
Z02[ 1Za— 2y 444 0+ 7 Zo+ W] Z

The solution for Sy=3% is given in Table I. These lattices
clearly also possess decompositions into triangles, and
the corresponding value of j, is included in the table.

(Iv21)

V. BETHE-PEIERLS-WEISS (BPW) CLUSTER

Clearly, any cluster theory will become more ac-
curate as the size of the cluster increases, and, in par-
ticular, it will give a reliable approximation to such
physical quantities as the magnetization over increas-
ingly wide ranges of temperature. The difficulties of
calculations using large clusters are, first, that the
cluster free energy itself can become quite hard to
evaluate and, second, that it may be necessary to
introduce several molecular fields, satisfying nonlinear
coupled equations.

The first obstacle in attempting to construct a theory
using the BPW cluster of (#-}-1) spins,®*° that is a central
spin plus # nearest neighbors on the periphery, is that
of finding a decomposition of the lattice into these
clusters, We have not been able to find such a decom-
position for the sc or fcc lattices. The latter is in any
case not a very suitable lattice for BPW calculations
since each peripheral spin has four other peripheral
spins in the same cluster as nearest neighbors and the
cluster partition function itself is hard to evaluate. The
best decomposition of the simple cubic lattice that we
have been able to construct is shown schematically in
Fig. 4. In this decomposition, § of the spins are in
BPW clusters and % are isolated single spins. A theory
using this decomposition can be constructed along the
lines developed in this paper by using two effective
fields, one for the peripheral spins and one for the iso-
lated single spins.

The bec lattice (#=8) does possess a decomposition
into BPW clusters as shown in Fig. 5. The density

8H. A. Bethe, Proc. Roy. Soc. (London) A150, 552 (1935).
?R. E. Peierls, Proc. Cambridge Phil. Soc. 32, 477 (1936).
1o P, R. Weiss, Phys. Rev. 74, 1493 (1948).
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matrix corresponding to this decomposition is
o= TI explGu/ 2201,

clusters

(V1)

where the cluster partition function Z, is given by
Zo=Tr1,... na{exp[Ga(1,+++, n+1) 1}

=exp[—B(n+1)F], (V2)
and this equation defines the cluster free energy per
spin F,. The most general form for the operator Ga
which we shall consider is

241 ntl
Ga=2]'Sc-Z Sp—haso.s_hal f: Spons (VS)
=2

p=2

and it then follows directly that the mean s components
of spin are (S.,.)=8(n~+1)0F,/dk, for the core spins,
and (S,,.)=8[(n+1)/n]oF,/dh, for the peripheral
spins. Each core spin interacts only with its own periph-
eral spins, whereas a peripheral spin interacts with its
own core spin and (#—1) peripheral spins on other
clusters. The mean exchange energy per spin is

NY(FCoxon) =j0F o/ dj—T[n(n—1)/ (n+1) ](Sp,)?

=joFa/0j—Bj[ (*—1)/n](0Fa/0ka’)?, (V4)
and the corresponding free energy per spin is
Fo=(h—ha)0F o/ Ohet (h—ho ) OF of Ohs'+Fo
—BjL(n*—1) /n](8Fa/0ks')2.  (V5)

The minimum value of &, occurs when 0F,/0k,=
9Fa/0hs’ =0 and the solutions of these equations are

ho=h,
and
ha! =h—2Bj[ (n2—1) /n]F o/ Ohs!

=h—2j(n—1)(Sy.»)- (Vo)

It will be noted that these constraints are not generally
equivalent to those imposed in the BPW method,
namely,

BPW: ha="h,
(Se,)=(Sp.e), (V7)
or in alternative form
BPW: ha=h,
OF ,/0ha=n0"19F ./h, . (V7a)
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Fi16. 5. A decomposition of
the bee lattice into BPW clus-
ters.

o] O O O O
¢ PN
i
o O O : o o

The critical coupling coefficient can be located in
exactly the same way as before, and the equation
determining 7, is found to be

—[26j(n*—1) /n]Fn=1,
or, alternatively,
2j[(n—1)/n]Zsn/Zy=1.

For comparison, the equation determining the critical
coupling coefficient in the standard BPW approxima-
tion is, using the same notation,

BPW:

(V8)

(V9)

(V10)

The solution of Eq. (V9) for Sy=% is given in Table I
and is seen to be only marginally better than that for
the Weiss molecular field model. The reason appears
to be that the peripheral spins and their interactions
among themselves dominate the partition function, and
if the core-contribution is neglected, then Eq. (V6)
reduces to the Weiss molecular field equation for a
lattice with (»—1) nearest neighbors. A formal advan-
tage of the present model is that it does not manifest
an anti-Curie point, in contrast to the standard BPW
approximation.

Fy=nFy, or Zp=nlp.
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