
find once again

«= C exp( —E/2Vsp). (29)

Here, how'ever, there is no question that the series is
logarithmic, we have been able to calculate it ex-

plicitly.
The full implication of our performing-perturbation

theory with a limited basis set is still being investi-

gated. The calculation is, however, a strong indication
that our assumption of a geometric series in Eq. (24)
is more than wishful thinking, but reQects correctly
the basis dynamics of the problem.
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A systematic discussion is given of the approximate free energies and Curie temperatures that can be
obtained by using trial density matrices (which describe various possible decompositions of the ferro-
magnet into clusters) in a variational calculation of the free energy. Single-spin clusters lead to the molecular-
field model (as is well known) and two-spin clusters yield the Oguchi pair model. The relation of the
"constant-coupling" method to these approximations is clarified. A rigorous calculation using three-spin
A. clusters is found to give results diGering from those of Oguchi. Finally, the Bethe-Peierls-Weiss approxi-
mation is considered within the framework of this paper.

l. INTRODUCTIOH

~
~

N exact calculation of the free energy, and con-

.g sequently of the thermodynamic properties of a
Heisenberg ferromagnet, appears to be beyond the
reach of present mathematical techniques, except at
high temperatures where an expansion in powers of the
exchange constant gives accurate results and at low

temperatures when spin waves (possibly renormalized
and weakly interacting) give a good description of the
system. Assuming isotropic exchange between nearest
neighbors, which greatly simplides all the calculations,
the Hamiltonian of the system of interacting spins is

X=—2J Q,S;.8;+gprrH Q S„,. (I1)

The exact density matrix is

p=exp[P(EP —K)j, TrI pi =1, (I2)

where P=1/k2' and the free-energy-per-spin P is de-

6ned by

exp( —PEP) =Z= Tr f exp( —PX) }. (13)

The essential diQiculty in the way of an exact evalua-

tion of Z is that there are important contributions to

*Work performed at the Ames Laboratory of the U.S. Atomic
Energy Com~ission. Contribution No. j.975.

f Present address: University of Sussex, Palmer, Brighton,
Sussex, England.

it from very large rings of spins coupled by the nearest-
neighbor interaction. Many approximate theories in-
troduce some relatively small clusters of spins, tretead
exactly, whose interaction with other clusters is simu-
lated by an CGective Geld, so that the density matrix
factorizcs. A detailed account of many of these theories
can be found in the book by Smart'. These elective
fields have been chosen on an intuitive ad hoc basis. It
will be seen that in some cases these Gelds are not the
optimum ones ln thc scnsc that they do not minimize
the corresponding free energies. It must, however, be
borne in mind that they may well lead to better descrip-
tions of particular aspects of the properties of a
ferromagnet, for example the location of the Curie
temperature.

Calculations of the type given here can be done
equally well using spin-wave variables. In these terms,
the theory of Bloch' corresponds to employing an
approximate density matrix diagonal in the spin-wave
occupation numbers which automatically eliminates
the OG-diagonal parts of the truncated Holstein-Prima-
koff Hamiltonian. Brooks et al.s have used the present
technique to treat the temperature dependence of
crystal-field CGects in. terbium.

' J. $. Smart, Effective Field Theories of 3/Iaggetisrl (W. B.
Saunders Co., Phila. , j.966) .' M. Bloch, Phys. Rev. Letters 9, 286 (1962).' M. S. S. Brooks, D. A. Goodings, and H. I. Ralph, Proc. Phys.
Soc. (London) (to be published).



J. M. RADCLIFPE

II. VARIATIONAL PRINCIPLE AND CLUSTER
DENSITY MATRICES

belongs to some pair. The corresponding density matrix
IS

The well-known variational principle to be employed
is that the mean-free-energy per spin 5 given by where

= II p(G )/z.
pairs

P= (1/Ã) Tr
Ipse}+(1/EP)

Tr fp Inp},

&= (1/+) (&)+(IPP) (in p) (II1)

with TrIp} =1, is an absolute minimum for the true
density matrix. Although a familiar case, it is conveni-
ent to begin with the single-spin cluster, since the form
of the corresponding free energy will be needed in
Sec. III.

Z =Tr~,s[expLG (1, 2)j}=—expL —2' j, (II9)
which de6nes the cluster free energy per spin, Ii . The
most general form for G which we shall consider is

G (1, 2) =2j'Si.S,+2XS,,,S, ,—h (Sg,.+Sm, ,). (II10)

It follows from Eqs. (II9) and (II10) that the mean
spin in the s direction is

Is
p= II exp( —h,S;,,)/ZP,

A. Single-Spin Cluster (S.).=PBF./Bh. . (II11)
The density matrix described by this decomposition

The mean energy per spin for the entire crystal can

(II2) then be written as

with

Ipine i
(1/A) (X)= —J(Sg Sm) —J(n —1) (S,) '

BS./Bh. =0, (II6)

and the solution (or more precisely a solution) of this

equation is

h h, =2Pjn(BF,—/Bh, ) =2je(S,),. (117)

This is just the Weiss formula for the molecular field,

and its properties are well known. We note here only
that in this model a phase transition occurs when the
parameter j takes the value j.=2nSO(SO+1), where

50 is the spin of an individual atom.

B. Two-Spin (Pair) Clusters

Any ferromagnet with spins on the sites of a Bravais
lattice can be decomposed into pairs of nearest neigh-

bors so that no spin belongs to two pairs and every spin

So

Z, =Tr&(exp( —h,S...) }= + exp( —~h )
m Sp

—=exp( —PF ) . (II3)

This last equation defines the cluster free energy per
spin F, and it follows directly that the mean s corn-

ponent of the spin is (S,),=PBFo/Bh, . It is then clear
that the two terms in the approximate free energy per
spin for the entire crystal, when each spin has e nearest
neighbors, are

(I/X) (X).= —rn(S, S,)+g&,a(S,).
Jn(S, ),'+gpsH(—S,),

and
(1/&0) (inp). = —(1/0) h. &S ) +F

and that the complete expression is

P,= (h h, )BF,/Bh, +—F, Pjn(BF /Bh—,) 2, (IIS)

where h=Pgps8' andj =PS.

The condition for F to be a minimum is that

=j BF /Bj
'—Pj (n 1) (BF /Bh—)', (II12)

since only spins in the same cluster are correlated. The
corresponding free energy per spin is

F = (j j')BF /Bj —'—MF /N. + (h —h )BF /Bh +F
—Pj(n —1) (BF /Bh )' (II13)

The conditions for F to be a minimum are

with the solutions

X=O,

h =h —2Pj(e—1)BF /Bh =h —2j(e—1) (S,)„. (II14)

These are in fact just the equations de6ning the Oguchi
pair model, ' and they yield a somewhat lower free
energy, and also a lower value forj„than the single-spin
model. This pair model also shows some short-range
order even above the Curie point.

At this juncture, rather than going on immediately
to discuss clusters containing three or more spins, it is
appropriate to consider the relation of the "constant-
coupling" approximation' to these models.

III. CONSTANT-COUPLING APPROXIMATION

In Secs. I and II, two approximations to the free
energy of the real ferromagnet were obtained by using
trial density matrices including clusters of one and two
spins, respectively, and the free energies were expressed
in terms of the cluster free energies per spin F (h.) and
F (h ).With those results available, consider the func-

4T. Oguchi, Progr. Theoret. Phys. (Kyoto) 13, 148 ($95$).
'P. W, Kasteleijn and J. Van Kranendonk, Physica 22, 317

{1956).



165 HEISENBERG FE RROMAGNETS 637

tion P(S) de6ned by

P(S) =aF (S) —bF.(8), (III1)

Using Eq. (III2), this reduces to

TS=jBF/Bj P—+ (1/P) (a—b) h(S, ),

where the arguments of the Ii's are chosen to be

h =h —2j bS, h, =h 2j—aS . (III2)

It then follows immediately that

BP/88 =a BF./88 bBF—./88

2abjT—BF /Bh BF,/—Bh,]
(III3)

The condition for P to be a minimum, or at least sta-
tionary, is that

(III4)

an equation which determines S as a function of p
and h. There remains the question of how to choose the
parameters a and b so that P is in some sense a good
approximation to the true free energy of the real ferro-
magnet and can also be analyzed into components
which have a natural interpretation in terms of entropy,
mean exchange energy, and magnetic moment. Ex-
pressed in terms of the F's, the function P is

P=a% bP.—2Jab—SE(S.) (S,).j-
+JLa(n, —1) (S,) '—be(s, ),'$. (IIIS)

At the minimum of 5',

and there,

&.;.=~.—».+Jta(e —1) —b ]&S,&.

The last term vanishes if

a(e—1) =be, (III6)

and this vriQ be used as one condition on u and b.
As the 6rst step in analyzing P we de6ne the entropy

Sby
S= BP/BT. — (III7)

Now F depends on T both explicitly and through the
temperature dependence of S. Explicitly,

8= BP/BT= aF +—bF. BP/B—S(BS/BT).—

But at the minimum, BP/88 =0, and. there,

TS=uTS —bTS . (III8)

TS =jBF /Bj+h BF /Bh F, —

TS.=qBF./aq+h. BF./Bh. —F..
Combining Eqs. (III8) and (III9),

TS=jBP/Bj —P+ (1/P) (ah, —bh, ) (S,).

(III9)

Using the results of Sec. II, and putting j'=j, w'e know
that

so that, using (III6), the coeKcients are determined
to be

The function

a=n, b =n —1. (III11)

(III12)

is in fact the free-energy function in the constant-
coupling approximation. It should be emphasized that
it is not in. any sense a rigorous upper bound to the
free energy of the physical ferromagnet (or any system
of interacting spins with Heisenberg interactions).
However, it does have the useful stationary property
of Eq. (III3), and, as shown here, it also has a self-
consistent thermodynamic interpretation. It is perhaps
also worth noting that the 6rst term in P,., is the exact
free energy for a pseudocrystal with sheaves of n spins
at every lattice site, each spin interacting with only
one spin in a sheaf at a nearest-neighbor site. The
function 1,., was also obtained by Strieb et a/. ' in the
second order of a graphical cluster expansion of the
free energy. For a pseudocrystal of sheaves of n spins,
this second-order term is the exact result.

IV. THREE-SPIN CLUSTERS

The natural way to extend the work of $ec. II is to
consider clusters containing three spins. There are only
two essentially distinct types of cluster, namely, h.
clusters, having end spins which are not nearest neigh-
bors of each other, and triangle clusters. The latter
can only occur in the hexagonal and close-packed
lattices. It is not dificult to see that simple cubic
(sc), body-centered cubic (bcc), and face centered
cubic (fcc) lattices can all be decomposed into 4 clus-
ters in such a way that no spin belongs to more than
one cluster and every spin belongs to some cluster. The
fcc lattice can also be decomposed into triangles.
Examples of such decompositions are shown schemati-
cally in Figs. I—4. As it happens, the two decompositions
shown for the sc lattice in Fig. j. lead to the same
approximate free energy, but it may well be that other
decompositions, leading to lower free energies, can be
found. The density matrix has the same form for any

e S. Strieb, H. 3. Callen, and G. Hovvitz, Phys. Rev. 130,
1798 (1963}.

and, alternatively, to

P =j BP/Bj + (1/P) (a b)—h(S, ) TS— (.III10)

This equation has a direct, natural, and self-consistent
physical interpretation, with (3C, ,h& =j (BF/Bj), for
instance, if it is arranged that
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FIG. j.. T%o equiva-
lent decompositions of
the sc lattice into A
clusters.

coupling codEcient j=pJ and that the optimum coeffi-
cient of the Ising term is zero, precisely as it happened
in Sec. II. It follows directly from Eels. (IV2) and
(IV3) that the mean 8 components of the sp1n of atoms
Rt thc ccntcI' RIK1 ends of thc clustcl RI'c glvcQ by

(s...) =3paF,/ah„{s.„)= ;paF, /a-h, ', (Iv4)

respectively. %C are now in a position to treat the
three lattices in turn. The corresponding free energies
diGer only in the cocKcients of the terms describing
the exchange interaction between spins in diGerent
clusters.

A. Scratbce

Inspection of Fig. I shows that each center spin
interacts with the two end spins in its own cluster and
four end spins in other clusters, while each end spin
lnteI'Rcts with thc ccQtI'al spin 1Q its own cluster with
three end spins in other clusters and with two central
splQs ln othcI' clusters. Thc corrcspoQdlQg QlcRQ cx-

~SPINS IN BASAL PLANE

0 —SPINS IN NEXT Pi ANE

decomposition into A. clusters, namely,

P= II exILG j/~~~",
clusters

where the cluster paxtition function is

Zj, =Trg, 2,3{expPGg(1, 2, 3)jI —=expL —3PF),j, (IV2)

also dc6ning thc cluster free cncI'gy pcr spin ~x
most general form for Q which we shall consider is

Gx(&, 2, 3) =2jsi. (S2+Ss) —4R,.—K(Ss,*+Sr..),
(IV3)

where we have used the facts, ea,sily veri6cd, that the
optimum coe5.cicnt of the exchange term is the actual

Flo. g. A deconIposz-
tion of the bcc lattice
into A, clusters.

FIG. 3. A decomposition of the
fcc lattice into A clusters.

~SPINS IN BASAL PLANE

O—-SPINS IN PLANE BEL0%

~—SPINS IN PLANE ABOVE

change cnclgy pcl spin ls

11'-~{X...)=qaF, /aj —@{S...){S.„)—u{S...)2

. ~~a ~x='
a "'ah;ah; ""'

ah.

The erst term corresponds to exchange within the
cluster and the others to exchange between clusters.
Thc corresponding apploxln1Rtc free cncrgy ls

&g = (h h),)BFg/aha'+ (h——hg') BFg/aha'+F),

—12Pj—,——;(Pj),. (IV6)
Bkg &kg &kg

Again, thc conditions for $q to be a minimum arc

Bag/aha =aug/ah), ' =0, (IV7)

of which thc solutions are

hg =h 12pj'BFg/ah), '—
= h —sj(s...),

hg' =h 12pj BF),/aha 9pj BFg/ak)—,'—
=h —4q{s, ,)—6j{s,..).

(IVSa)
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It should be noted that, in general, the two mean s
components of spin will not be equal and Eqs. (IV8a)
and (IVSb) will lead to results different from those
found by Oguchi, who assumed that they were the
same. In particular, the value for the critical coupling
constant j. is slightly diferent in this theory.

In general, Eqs. (IV8a) and (IV8b) are coupled,
nonlinear, equations for the effective 6elds hz and
h&'. However, the critical value of j can be located
simply in terms of a series expansion of F&(hz, hz') in
powers of its arguments, namely,

F) (4; 4') =F),(0; 0)+gFu4'+Fiick'
+-',F2)hp+ ~ ~, (IV9)

and where higher powers can be neglected at tempera-
tures near and/or above the Curie point. The mean
spin over all atoms is then

(S,) =PBFg/Bhg+PBFg/8h), '

=P(Fu+Fn) 4+P(Fu+Fms) h),
' (IV9a)

In this region of small effective 6elds, the defining
Eqs. (IV8a) and (IUSb) reduce to the coupled linear
equations

L1+ 12pjF„jhow+ 128jF,2hg' ——h,

[12pjFn+9pj Fg2]kg+ tI 1+12pj Fg2+9pj F2g' jhow' =h

(IV10)

The critical value ofj is that for which the determinant
of the coefBcients vanishes, and the equation defining

j, is thus

(128j)'t F»F» —F&22j —24pjF~& —98jF22 ——1. (IV11)

In practice, the calculation is done by way of an expan-
sion of the cluster partition function Zq(hq, hq) in
powers of its arguments,

ZX(hid 4 ) —ZO+ 2Z114 +Z12hkhX + 2Z22hX + ' '

The equation for j, is then

(16j'/Zo') [Z11Z22 Zlm j+SjZm/Zo+3jZ22/Zo 1.

(IV12)

Convenient expressions for the coefficients Z;, can be

TABLE I. Values of j, for ferromagnets with So= &.

Method

Molecular 6eld

Oguchi 2-spin

Oguchi 3-spin

Present A. cluster

Triangle cluster

BPW
Present BPW
Constant coupling

High temp. expansion

sc

0.333

0.357

0.356

0.355

0.541
~ ~ ~

0.549

0.529

Lattice
bcc

0.250

0.269

0.260.

0.259

0.344

0.262

0.347

0.379

fcc, hcp

0.167

0.169

0.170

0.170

0.155

0.245

found in the paper by Brown and I uttinger7. The value
of j, for So= ~ is included in Table I.

Site Occupation

e c e e c e e c e e c e e c
~ ~ ~ 6123456123456123456123456123456123456123

c e e c e e c e e c e e c e
16123455123456123456123456123456123456123

e e c e e c e e c e e c e
16123456123456123456123456123456123456123

The nearest neighbors of a spin at an a site in plane
n are as follows:

3 on b sites in plane (e—1) Mod 6,

3 on c sites in plane (e+1) Mod 6,

1 on a sites in plane (e+3) Mod 6.

B. bcc Lattice

The decomposition of this lattice into A. clusters is
perhaps most easily analyzed by viewing the lattice
along a body diagonal. The projection onto a plane
normal to this axis shows a hexagonal pattern, with
three distinct sites (Fig. 2). Six (111) atomic planes
cut across each unit cell, and the decomposition can be
represented by the following scheme which tabulates
the location of spins in these layers for the three sites:

Fzo. 4. A decomposi-
tion of the sc lattice
into BPW clusters and
isolated spins.

0 SPIN FROM CLUSTER ABOVE
v SPIN FROM CLUSTER BEI OW

X ISOLATED SPIN

Inspection of Fig. 2 shows that the center spin in a
cluster, taken without loss of generality to be at an a
site in plane X, has as its nearest neighbors the two end
spins in its own cluster, three end spins from other
clusters at b sites in plane (n —1) Mod 6. The nearest
neighbors of an end spin at an a site in plane n are the
center spin of its own cluster, also on an a site, one end
spin of another cluster at an a site, three other ends at
b sites, and three center spins from other clusters at c
sites. The mean exchange energy per spin is then im-

7i,H. A, Brown and J.M. Luttinger, Phys. Rev. 100, 685 (1955).
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mediately seen to be

(1/~) «:..)=~BF./Bj-4J&s. ..)(s...)-(»/3) &S...)
=j BF&/Bj 18P—jBF&/Bhz' 6Pj—(BF&/Bhz') ',

(IV13)
and the corresponding free energy is

F),= (h —h),)BFg/Bhy+ (h hg')—BFg/Bhg'+Fg

18Pj—BF)/Bhg BFg/Bhg' 6Pj (B—Fg/Bhz')o. (IV14)

The solutions of the minimum conditions (BFq/Bhq) =
(BF&,/Bhq') =0, are

The solutions of the minimum conditions (BPq/Bkq) =
(BFq/Bhq') =0, are

h), =k 12—Pj BF&/Bhz 24—Pj BF),/Bh),
'

=h —4j(s...)—16j(S...),
and

h),
' =h 24P—jBF),/Bh& 21P—jBF&/Bhp'

=h —8j(S.,)—14j(s...). (IV20)

Using these equations and the notation Secs. I—III,
it is easy to show that the critical coupling coefEcient
j, is determined by

hg =h 18Pj BF—g/Bhg'

=h —12j(S„,),

hz' =h 12Pj B—F&/Bk&' 18Pj B—F&/Bhz

324(pj) 'p'»F22 F12 7—12pjF» —48pj&o —21pjF22

(IV13) or the alternative form

36j~ .Z11 .Z12 .Z22

, $Z»Z» —Z&o')+4j —+16j—+7j—=1. (IV21)
Zp Zp Zp Zp=k—gj(s, ,,)—6j(s, ,). (IV15a)
The solution for Sp =-, is given in Table I.These lattices
clearly also possess decompositions into triangles, and
the corresponding value of j, is included in the table.

As in the case of the sc lattice, the mean spin com-
ponents (S, ,) and (S, ,) will not be equal in general.
The critical value j, can be found in exactly the same

way as before, and the corresponding equation is

(18Pj)'LF»Foo —F&o']—36PjF&o—12PjFoo ——1. (IV16)

In terms of the coefGcients in the expansion of the
cluster partition function, this becomes

36@/Zo'PZ»Zoo —Zio'7+ 12jZio/Zo+4jZoo/Zo = 1 (IV1/)

The value of j, for Sp=-', is included in Table I.

V. BETHE-PEIERLS-WEISS (BPW) CLUSTER

Clearly, any cluster theory will become more ac-
curate as the size of the cluster increases, and, in par-
ticular, it will give a reliable approximation to such
physical quantities as the magnetization over increas-
ingly wide ranges of temperature. The difhculties of
calculations using large clusters are, Grst, that the
cluster free energy itself can become quite hard to
evaluate and, second, that it may be necessary to
introduce several molecular Gelds, satisfying nonlinear
coupled equations.

The Grst obstacle in attempting to construct a theory
using the BPW cluster of (oo+ 1)spins, ~"that is a central
spin plus n nearest neighbors on the periphery, is that
of Gnding a decomposition of the lattice into these
clusters. We have not been able to 6nd such a decom-
position for the sc or fcc lattices. The latter is in any
case not a very suitable lattice for BPW calculations
since each peripheral spin has four other peripheral
spins in the same cluster as nearest neighbors and the
cluster partition function itself is hard to evaluate. The
best decomposition of the simple cubic lattice that we
have been able to construct is shown schematicaQy in
Fig. 4. In this decomposition, —, of the spins are in
BPW clusters and 8 are isolated single spins. A theory
using this decomposition can be constructed along the
lines developed in this paper by using two eGective
6elds, one for the peripheral spins and one for the iso-
lated single spins.

The bcc lattice (n=8) does possess a decomposition
into SPW clusters as shown in Fig. 5. The density

C. fcc and hcy Lattices

=j BF),/Bj 6Pj (BF&/Bh), )'—
—24Pj(BF&/Bhz) (BF&/Bh), ') ~Pj (BF)/Bh&') ', (IV18)

and the approximate free energy is

Fg ——(h hg) BFg/Bh), + (h hg—') BFg/Bk), '+Fo, —

~()l~. )l

] I ~(IV19)
&Bkz/ Bh), Bhz' 2 Hh), '/

SH. A. Bethe, Proc. Roy. Soc. (London) A150, $52 (1935).
~R. E. Peierls, Proc. Cambridge Phil. Soc. 32, 477 (1936).
'o P. R. Weiss, Phys. Rev. V4, 1493 (1948).

A decomposition of the fcc lattice into h. clusters is
shown in Fig. 3. t'The hexagonal close-packed (hcp)
lattice possesses a similar one which yields the same
free energy. ) The nearest neighbors of a center spin
are the two end spins in its own cluster, four other end

spins in the same plane, two end spins in the planes
above and below, and lastly, a center spin in the planes
above and below. The nearest neighbors of an end spin
are the center spin of its own cluster, two other center
spins in the same plane, and a center spin in the plane
above and below, three end spins in the same plane and
two end spins in the planes above and below. The mean

exchange energy per spin is

(1/x) (~, ~)=~'BF&/Bj—p (s...)'
—(16~/3) &S,.)(S...)- (14J/3) &S...)'



matrix corresponding to this decomposition is

p= II exp[G-3/Z-""""',
clustera

(V1)

where the cluster partition function Z is given by

Z =Tr( ... „+ifexp[G.(1, ~, »+1)]I
—=exp[ —P(v+1)F j, (V2)

and this equation dehnes the cluster free energy per
spin Ii . The most general form for the operator 6
which we shall consider is

Pro. 5. A decomposition of
the bcc lattice into BPW clus-
ters.

0 0

r T
I I

I

I I

))—--&)
~'
I 0

(

i~--- -9
r

I

0 I
C:

l

I ~ ««««««J~p

0 l 0
Lt~ ~

G =2j S, g S„—h S„,—h ' g S,„, (V3)

and it then follows directly that the mean s components
of spin are (S...)=P(m+1) BF /Bh for the core spins,
and ($~,,)=P[(m+1)/»/BF /Bh ' for the peripheral
spins. Each core spin interacts only with its own periph-
eral spins, whereas a peripheral spin interacts with its
own core spin and (e—1) peripheral spins on other
clusters. The mean exchange energy per spin is

N '(&„,h—)=j BF /Bj Jgn (e—1)/(e+—1)$($„,,)'

g ~

I

0 ' 0
I

p «

The critical coupling coefBcient can be located in
exactly the same way as before, and the equation
determining j, is found to be

(V8)

or, alternatively,

=j BF~/Bj —Pj P(n' —1)/n] (BF~/Bhl') ' (V4)
2j [(I—1)/e]Z»/Zo ——l. (V9)

and the corresponding free energy per spin is

F = (h h) BF /B—h + (h h') BF /Bh—'+F

The minimum value of 8 occurs when BP,/Bh =
BF /Bh '=0 and the solutions of these equations are

h =h,

h '=h —2Pj[(e'—1)/e)BF /Bh
'

=h —2j(e—1) (S,.). (V6)

It will be noted that these constraints are not generally
equivalent to those imposed in the BPW method,
namely,

BPW:

For comparison, the equation determining the critical
coupling coeKcient in the standard BPW approxima-
tion is, using the same notation,

SPW. ~22 +P12p ol Z22 =ÃZ) 2. (V10)

The solution of Kq. (V9) for So ——-,'is given in Table I
and is seen to be only marginally better than that for
the Weiss molecular Q.eld model. The reason appears
to be that the peripheral spins and their interactions
among themselves dominate the partition function, and
if the core-contribution is neglected, then Eq. (V6)
reduces to the Weiss molecular Geld equation for a
lattice with (n —1) nearest neighbors. A formal advan-
tage of the present model is that it does not manifest
an anti-Curie point, in contrast to the standard BPW
approximation.

or in alternative form
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