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and by using the thermodynamic relation~

T(BM/BT)yP
X&=X~+

where Cq is the specific heat at fixed field.
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The dc conductivity of the "excitonic insulator" recently discussed in the literature is calculated in the
semimetallic region. The calculations are based on recent work on the description of the excitonic phase
in the presence of impurities. It is shown that the conductivity decreases below the transition temperature
to the excitonic state. For low impurity concentrations the system acquires insulating properties. For
higher impurity concentrations the conductivity is still nonzero at T=0. Thus, metallic properties prevail
in the excitonic phase. It is pointed out that this behavior depends essentially on the form of the excitation,
spectrum of the system, i.e., the presence or absence of a gap. At the transition temperature the conductivity-
versus-temperature curve has a finite slope.

I. INTRODUCTION

ECENTIY, several papers have discussed the
properties of an excitonic phase which is expected

to occur in solids with small energy band gap. ' ' The
phase can be described as a condensate of bound pairs
of electrons and holes due to an effective attractive
interaction between conduction-band and valence-band
states. In the normal state one considers both a positive
band gap (semiconductor) and a negative band gap
(semimetals). The most extensive study of the prop-
erties of this phase has been given by Jerome, Rice,
and Kohn. ' Besides the question of experimental
observability, they have discussed in detail the ordering
phenomenon which takes place in the new state.
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While the thermodynamic properties of the excitonic
phase are similar to those of a superconductor, the
electromagnetic properties are perhaps more interesting
from an experimental point of view. According to the
work of Jerome, Rice, and Kohn' the excitonic phase
turns out to be an insulator. This is especially interest-
ing in the case where the underlying two-band model
has a negative band gap (semimetallic region) and
therefore would conventionally have metallic properties.

This paper deals with the electrical conductivity of
the excitonic phase at low temperatures where the main
scattering mechanism is due to impurities and imper-
fections. Jerome, Rice, and Kohn' have calculated the
frequency-dependent complex conductivity for the pure
system and have derived the dc conductivity by using
Kramers-Kronig relations and a simple ansatz for
taking scattering into account. The more rigorous
calculation in this paper does not confirm their results.
The reason for this is that the impurities play a rather
intricate role. In a former paper' we have considered
the irdiuence of randomly distributed impurities on the
excitonic phase. We found that the situation is very
similar to the case of magnetic impurities in super-
conductors, i.e., the impurities have a pair-breaking

3 J. Zittartz, Phys. Rev. 164, 575 (1967). This paper will be
referred to as I.
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CGect. In I we have applied the theory of Abrikosov
and Gorkov' to our case with only minor modifications.
The main property is the fact that there exists a critical
concentration of impurities beyond which the excitonic
phase cannot exist. Secondly, there is a region close to
the critical concentration where the excitation spec-
trum of the system does not have a gap.

In the present paper we apply the theory of I to the
calculation of the electrical conductivity. %C shall see
that the formalism is rather similar to calculations of
transport properties in superconductors with magnetic
impurities. Therefore, we can ta,kc advantRgc of the
work of Ambegaokar and. Griflin' and KadanoQ and
Falko' on thermal conductivity and ultrasonic attenua-
tion in superconductors, respectively.

In Scc. II A we discuss briefly the model and the
results of Paper I necessary for our calculations. In
Sec. II 3 we set up basic formulas for the electrical
conductivity. Sections III and IV contain the main
calculations. We derive a 6nal formula for the conduc-

tivity which is evaluated in several limiting cases in
Sec. V. %C shall see that the behavior of the dc conduc-

tivity is mainly determined by the excitation spectrum
of the system and not by the order parameter. Thus,
the dc conductivity goes to zero at T=0 only for small

impurity concentrations where there is a gap in the
excitation spectrum. At higher concentrations the gap
vanishes, and the conductivity remains finite at T=o,
though. smaller than the corresponding conductivity of
thc normal stRtc. NcRI' T, thc system ls always ln thc
gapless region. I'rom this fact it follows that the slope
of the conductivity-versus-temperature curve is 6nite
at T, in contrast to the infinite slope reported in Ref. 1.
The results are summarized and discussed in Sec. VI.

II. BASIC FORMULATION

A. Discussion of the Model

while the density of (conduction) electrons or (valence
band) holes is related to the Fermi momentum pp in
the usual way: p= po'/3m'. Using a Nambu notation

u(e) = Z4'(p+e) 4(p) (4)

The interaction part of the Hamiltonian is then given
by

&'=kZ~(a)~(a)u( —a)+ZU(e)~(a), (5)

where the first tern1 describes the mutual interaction
via screened Coulomb forces. As discussed in I and also
in Ref. 1, the effective potential V(r) becomes more
and more short range in the sen1imetallic limit
(large po); thus its Fourier transform e(g) may Anally
be replaced by a constant V. The second term in (5)
describes the interaction with random impurities at
sites 1;. such that

U(r) =QN(r —r;), (6)

the summation going over all impurities.
The thermodynamic properties of the model follow

from the matx'ix Green. 's function

I'G,
I
= —PV(p&) P(p&') ),

&~ G.)
where t, t' are imaginary times, 0& k, 3'(P, the brackets
indicate a thermal average as well as an average over
impurity sites, and

In I wc have considered thc following two-band

model in the semimetallic region. The noninteracting

part of the Hamiltonian is

~.=XI"(p)~, b,+.(p)~,~,

whcI'c thc summation goes over thc 6rst Brillouin zone.
For simplicity we assume that the conduction band (b)
has a single minimum and the valence band (u) a
single maximum. I'urthermore, we assume a spherical

shape for both bands near their extrema and n1easure

momenta relative to the extremal momenta in both
cases. Thus near the extrema we have

~~(p) = (p' —po')/2~»

"(p) =(p"—p')/2
~ A. A. Abrikosov and L. P. Gorkov, Zh. Eksperim. i Teor. Fix.

39, 1781 (1960) I EngIish transl. : Soviet Phys. —JETP 12, 1243
i 1961)g.

5 V. Ambegaokor and A. Gri%n, Phys. Rev. 137', 1151 (1965).
& L. P. KadanoQ and I, I. I a,lgo, Phys. Rev. j.36, 11/0 (1964).

The Green's function 6 has been derived in I and
discussed extensively. We shall confine ourselves to
the simple case of equal masses m, =m~=m in the
explicit calculations in the next sections. Therefore,
it is suScient here to give the result for 6 only in this
simple case:

G(p, io)„) =— (9)
Rd„—6

where 6=+= f~) co~=—(2N+ 1)'rP . Furthermore, we
have the relations dc6ning 5„and co„ through the order
parameter d, and e„.

~„=~„+k&t~„/(~„+~„')I j,
~—-rLQ /(~ ~+g 2)1/21 (10)

~ This is only done for mathematical convenience. As there has
been no indication in former calculations that any property de-
pends essentially on the mass di8erence m —mf„me feel that the
simpli6cation is not important.



EXCITONIC INSULATOR: ELECTRICAL COND VCTXVXT Y 607

where I' is the inverse collision time (see I)

I'=1/r=(2 s') 'p ~Po dQ
I u(e) I' (11)

The analytic properties of G and the functions dined
in (10) are further explored in the Appendix.

B. Electromagnetic Resyonse

In order to calculate the current generated by an
electric field, we introduce a time-dependent vector
potential

A(t) = ko A(a)) exp( —i(at).

where t, t' are imaginary times and J(t) is the electric
current operator. Fourier transforming E~(t t')—in
the usual way,

E (t f)—=P 'gE (iv) expL —ii (t—f)$,

i =2m.P ' (17)

we continue analytically into the complex energy
plane: ir +s—Th. e retarded response function E~(~+i8)
is then given by Ei'(s=~+ib).

The diamagnetic contribution to E(ai+i8) is simply
a constant which is given for general band structure by

E = —3a'ZIL& 'a. (p) 3~.(y)+9' '~(p) j~~(y) I,

For general band structure this means we have to
replace the band energies e, ,q by

a. ,~(p)~a. ,~(p —eA), (13)

where e is the electron charge. The linear response
current may then be written as

j ((v) =E(ar+ib) A(aa), (14)

where we have anticipated spherical symmetry. The
infinitesimal b indicates that the response is "retarded. "
Finally, we have the frequency-dependent complex
conductivity

a (co) = (1/i(u) E((o+ih) . (15)

There are two contributions to E. First we have the
paramagnetic part E~(cu+i3), which is most easily
calculated in the following way: We consider the causal
correlation function

E'(~—~') = l O'J(~) J(~') ) (16)

where the velocity matrix v is explicitly

( (p)
!v(p) =

I

0 v. (P)j v. ,~(y) = (~/~y) ",~(y) .

(20)

Introducing (19) into (16) we can easily express the
total expectation value through the Green's functions
and an appropriate vertex function. ' Fourier trans-
forming according to (17), we finally get

(18)

where e, (y) and ni(y) are the occupation numbers of
u and b electrons in momentum space.

Turning now to the calculation of the current-
current correlation function (16), we first note that
the spatially uniform current operator J(t) is given by

J(~) =aZP(p~) v(p) 4 (p~), 0«&P, (19)

E~(iv) =—,e'P-'g TrLv(y)G(p, ~„)W(p; ~„,~„iv)G(—p, ~~„~')j, — (21)

(23)
p(0

which is the desired form.

For free electrons, e= (p —p0 )/2m, expression (18) reducesto the familiar result, E =—(e /m) p, where p is the density.
J.R. SchrieGer, Theory of Superconductivity (W. A. Benjamin, Inc. , New York, 1964), Chap. 8.IThe integrated term vanishes because of the periodicity of band energies over the Brillouin zone.

where the summation over frequencies co„has to be performed 6rst; the "Tr" in this expression comes in because
the Green s functions and velocities are given in matrix form. W is the vertex-corrected velocity matrix which
replaces the zeroth-order velocity v and will be considered in the next section.

Finally, we rewrite the diamagnetic contribution En (18) in a form similar to expression (21). We perform a
partial integration over the Brillouin zone. This gives for one of the terms in (18), for example, "

gl v,', (y)]e, (p) = —+LB,(p)/apl (a/ay)n, (p)
P P

Zv. (y—)0'Z(~/&-y) G.(p, ~-) (22)

where in the second line we have introduced the Green s-function representation for n, (y). Using (9) we get,
combining both terms in (18),

E = (e'/3P) QLvP(p)Gq'(y, ua„)+v, '(p)G, '(y, ua„)+2v, (y) vq(y)F'(y, ua„)j
pco

= (a'/3P) Z TrLv(p) G(p, ua„) v(p) G(p, ua„) j,
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III. VERTEX CORRECTION

In I we have calculated the self-energy Z to the lowest order in the interaction, i.e., mutual and impurity inter-
action. To be consistent with this approximation' we have to sum all ladder diagrams in the calculation of the
vertex function W introduced in the last section. Thus W satishes the integral equation

W(y;io)„, io/ ) =v(y) —P 'gs(y —p')G(y', iM ')W(y';i&o„', io)„')G(p', uo ')
pfspI

+Qp„( N(p —y')
~

G(y', ico„)W(y'; iv)„, nu„)G(y', m„), (24)
pI

where 0.3 is the third Pauli matrix in the usual notation.
%C also make the ansatz

W(y; ice, m ) = (y/Nl) h(ia)„, io, ) )

Multiplying expression (24) across with y/P and per-
forming the angular&integration we get the equation

(26)

h. (uo„,i' )
f~ oo

=g2y — d2G(«, ia)„)A(uo„, ice )G(e, ie„), (2/)
2K ~QQ

I"=(2 2)-'p„p2 dQ
i N(8) i'cos8, (28)

assuming that
~

22(p —y') ~2 depends on the angle 8
between y and y' only (see I) .The remaining integrals
in (2/) are easily done by residue techniques. Inserting

whcrc we have used thc abbreviation a)~=au„—u. The
second term on the left-hand side is due to the mutual
interaction whereas the third term describes the
scattering from impurities; p„ is the density of
scatterers.

Restricting ourselves to the semimetallic limit where
the Fermi momentum p2 becomes very large, we replace
2/(y —p') by a constant V as mentioned before. In this
case the second term in (24) does not contribute to
the vertex function, as W(y), like the inhomogenous
term v(y), is proportional to the momentum vector y,
and the angular integration gives a zero result. Using

(2) and. (20) with 2=22= —e, we may write

v(y) =(~ /~p) =(p/~), (»)

the Green s functions from (9), we obtain after some
algebra

/1(2&
&

+0 ) =/4(Qa„, so )/72+/4(ug„, gg )02, (29)

where 02 is the second Pauli matrix and the scalar
quantities A~,2 are given explicitly by

/4 (2(0 2/d )

(g 2+/rl 2) 1/2. (~ 2+g 2)1/2

1.+r'(u„~ +S.E )

(30a)
4%@

Jar

A2(uo„, uo ) =211"," ", (30b)I+I"(Fs„~ +h„h
where

I,—(~ 2++ 2)1/2, (~ 2++ 2)1/2

x f (/d 2++ 2)»2+(~ 2+g 2)l/2j (31)

In order to proceed with the calculation of expression
(21), we have to insert W from (26) and (29). At this
stage we encounter the well-known difhculty that we
are not allowed to interchange the momentum integra-
tion and the co„summation in (21)," as the double
integral converges only conditionally. The difBculty is
resolved by adding the paramagnetic and the diamag-
netic parts L(21) and (23)j. The problematic terms
just cancel out in the combined expression, as may be
checked directly by an expansion of the integrands for
large I„.Thus, adding (21) and (23), we first perform
the momentum integral evaluating the total expression
at the Fermi surface as usual. This leads to

(33)

g2 Qo

K(il ) = ——Q de TrpagG(e) ice„)A(i(0„) ia&~)G(2, ie„)—02G(2, icy„) o2G(2, i10„)j, (32)
P222

where we have used (25) and (26); p is the density of electrons or holes, respectively. Using expression (9) for
the Green's functions and taking the trace in (32), we obtain after simple integrations and after rearranging terms

K(il) = —(2e2p/2/2) (2r//9) Qv(i&0„,'i(o ),

1—(m„co„+h„h )/(co„2+6„2)»2(cu„2+6„2)'/2

(~2+52)»2+(~ 2+~ 2)»2+I"L(uu +~.Z )/(~2+~2)»2 (~ 2+~ 2)»2j'

» p. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Quuntgm Efeld Theory ie StaHstkaI I'hysics (Prentice-Hall, Inc.,
Englewood C1HFs, N.J., 1963), Chap. T, Sec. 3It.
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0 (a&) = (2e'p/m) R (a&),IV. EVALUATION OF THE CONDUCTIVITY
FORMULA

The frequency summation in e pression (33) can be R( ) =(2 ) 'f ttx t ha-'n(it )x
written as a contour integral in the complex plane:

(qr/P) Qt)y(io)„, u0„iv—) XLF(x+i8, x a—) i—8) —P(x—i/), x—/d —Q)

+P(x+iB, x+(o+ii')) 5'(x—iB,—x+/»+ib) ]

The evaluation of expression (33) will be studied in the together we get, using (15) and (33), the frequency-
next section. dependent complex conductivity

= (4i) ' dz tanh-', (Ps) P(z, z —iv), (35)
Cp

where the path Co runs up the imaginary axis on the
right-hand. side and down on the left, just embracing
the poles of tanh-,'(Ps) at z=m„. Using the relations
(A1, 4, 5, 7) of the Appendix, the function P can be
expressed for general complex z and z' as

(40b)

In the following we are interested only in the dc
conductivity which is obtained from (40) by expanding
the whole expression for small co. First we note that the
integrand vanishes at /e=o as the function 5: (36)
vanishes for identical arguments z=z'.

5'(z, s') s(», s) —=o. (41)

1—(uu' —1)/(u' —1) '/'(u" —1) '/'

g(e+ey) +1tyL(uuy 1)/(u2 1)I/2(uy2 1))/2] t
Expanding the third integrand in (40b) for smail /e,

we get in the numerator with u =u(x+Q),

(36) u(x+ca+i8) =u+au)+0(oP),
where primed and unprimed quantities refer to z' and
s, respectively. The integral along the path Co in (35)
is further transformed into an integral over the dis-
continuities of the function P(z, s—iv) across its cuts.
These cuts are

C&.'extending from Mo to ~,
C~. extending from —coo to —00,

C3. extending from &f0+iv to ~+iv,
C4. extending from coo+iv—to —qc+iv, (37)

where ~0 is the gap in the excitation spectrum (A10).
The two cuts C&,2 are due to the discontinuity of the
functions u(z) and e(z) in (36), whereas C3,4 are due
to the discontinuity of u'=u(s iv) an—d e'=e(z iv). —
Using the fact that

F(z, s') =5:(—s, —z'), tanhx»LP(»aviv)]= tanh~(Ps)

(v=2m.P '), (38)

XP(x+o)+Q, x—i8). (43)

The 6rst part of this expression vanishes for small or,

too:

x» tanh2 (P&eo) &(vo+ih, &ai)
—ib) —=0. (44)

ThiS iS ObViOuS in the gapleSS regian (&eo=O) . Zf /e, WO,
we obtain for the numerator of 5: from (36), using the
relations (A8) and (A10) of the Appendix,

u' —1+ awe+0(aP)1— =0( ') (42)
I (u —1) (u' —1+2m~go(a) )]"

Therefore, the contribution of the third integrand in
(40b) vanishes for small cu, and similarly, the second
integrand does not contribute. The integral over the
6rst term in (40b) is transformed to (x—+x+au):

( toO m)
&q &

'
I f +f I

' x«nhl D&tx+.& j
rep &/

1+(i uo p
—1)/i uo' —1 [

—=0.one can easily show that the integral over C4 is identical
to the integral over C~..

(45)

Therefore, we are left with the second part of (43)
and the last integrand in (40b) which at co=0 com-
bine to give~

~

~ ~ ~ ~

~O+s p

ds tanh-,'()9») P(s, z iv+ib) ——5(z, s iv i7'))]- —

CO+'/slav

d» tanh» ()/h) LF (»—iv, »+if/) &(s iv, —s ib)—], —
cop

R=-,'P dx (sech'-,'(&Sx) )X-',P(x+9, x—ib). (46)
400

»~—»+iv. (39) The dc conductivity

Similarly one shows that the two integrals over C2 and.
C3 are identical. Now we combine both remaining inte-
grals and continue iv analytically to s =~+i/). Collecting

0 = (2e'p/m) E (47)

is studied in several limiting cases in the next section.
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V. EXPLICIT CALCULATIONS

We rewrite the function pP(x+ib, x i—8) in expres-
sion (46) in a more convenient form,

In the gapless region (pp) 1) we obtain at T=O

0 h(x)
o

'
2LE Im(N' —1)'"—r j+2r'(1—fp)+ rp,

',P-(x+ib, x—ib)
(57)

(58)h(x=0) =1—n '.

h(x)
2LE Im(N' —1)'~'—rg+2r'(1 —fp)+r&, From (A6) we see that the Erst term in the denominator

vanishes at x=0, whereas
Here we used the relations (AS) of the Appendix to
define the function

~„=2e'pr„/m, (52)

where the factor 2 accounts for the two types of carriers
in the system. We now write

&(*)= lL1+ (~ I I' —1)/I ~'—1
Ij

which has been introduced by Ambegaokar and GriKn. '
The denominator in (48) has been obtained from (36)
by using (49) and (A3) and (AS). Furthermore, we
have introduced the inverse transport collision time

(50)

At or above T„hwich depends on I' (see I), the
system is in the normal state, i.e., 6=0. As in this
case I=

I (x+ir)/A$ (see A6), we get immediately

h=—1, 6 Im(u' —1)'~'=—r. (51)

The remaining integral in (46) is unity (cop=0), and
we obtain the correct "normal" conductivity

Inserting into (57) we have

0& r-O

1—tx

1+(2r'/rp, )n ' ' ~=r/a)1. (59)

This ratio is obviously smaller than unity, but ap-
proaches unity for increasing impurity density (u—+ po ) .
It is interesting to note that the system, though being
in a condensed state of electron-hole pairs, does not
have "insulating" properties, if the impurity concen-
tration is high enough (n) 1). This situation cannot
be explained in simple physical terms, as the descrip-
tion of the gapless region in the quasiparticle picture
breaks down. On the other hand, one might say that
the qualitative behavior of the conductivity is mainly
determined by the existence or absence of a gap in the
excitation spectrum and not by the order parameter h.

,%e finally investigate the transition-temperature
region, where the system is always in the gapless region
(u) 1 as 6-+0). Expanding relation. (AS) in terms of
6' we get

(*)= —5 ' '/( '+ ')'3 (6o)

2)b, Im(u' —1)'I' —rg+2r'(1 —h) +rp, whereas the denominator leads to

Near T=0 we expect the largest contribution to the
integral from the neighborhood of x~oro. Using the
expansion for h, '

i'p = (2/3A) n-"P (1—nPIP)-'I'(x —(op) n= (r/6) &1,

(54) o/p. „=1—A (T,) AP, T&T, (62)

Inserting into (53) and expanding in LV, we obtain
finally

and approximating the denominator in (53) at $=ppp, where the coefficient A is

we get using (A10)

D=2r-»3 —r„, (55) 2I' 1 I"2

0

4 1—nPIP exp( —Pppp)

3 2r/r„— ~P P~p

(63)
T &0. (56)

The inequality follows from the fact that 2I'& F&,. As

This result shows the insulating behavior of our sys-
tem for low impurity concentrations (a& 1). We should
mention that the result conjectured in the work of
Jerome, Rice, and Kohn' does not agree with our
rigorous calculation. The reason for this is that their
treatment of the impurity scattering is not adequate
to the present problem.

FIG. 1. The dc conductivity
as a function of temperature.
Curve a: low impurity concen-
tration, a=(F/d, ) (1. Curve
b: higher impurity concentra-
tions, 0.= (I'/6) &1,where the
gapless region extends to 2'= 0.
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we have from I [Eq. (60)],
6'= const(1 —t), t= T/T, &1; (64)

with
o (z) —(g2 g2) i/2 Ime(z) &0. (A4)

we conclude that the ratio o/&r„has a finite slope at T,: Furthermore, we introduce

a/o„= 1—const X (1—t) . (65) u(z) =z/6, (A5)

VI. CONCLUSION

We have calculated the dc conductivity of the
"excitonic insulator" in the semimetallic limit. This
region is especially interesting as the system is supposed
to change from a metal to an insulator if it undergoes
the transition to the excitonic state. However, we have
seen that the simple scattering mechanism conjectured
by Jerome, Rice, and Kohn' does not hold, as the
impurities of the system have a large eBect on the
description of the excitonic phase itself. We have seen
that only for low impurity concentrations the system
acquires insulating properties. If the impurity concen-
tration is high enough the normal state is stable down
to zero temperature, as discussed in I. For intermediate
concentrations the conductivity decreases below the
transition temperature, but is still 6nite at T=O. This
behavior shows that the conductivity is mainly deter-
mined by the presence or absence of a gap in the
excitation spectrum and not by the order parameter.

Until now there has been no clear experimental
evidence for the existence of the excitonic phase. The
question of experimental realizability has been dis-
cussed in detail in Ref. i. It is clear that conductivity
measurements are very important. We hope that the
results of this paper might stimulate the experimental
work.

APPENDIX

Following the discussion of KadanoQ and Falko6 we
investigate the analytic structure of the Green's func-
tion (9) and related functions (10) in the full complex-
energy plane. Extending the imaginary discrete fre-
quencies ice„we introduce

i +ooz, i(o ~z(z), 5 ~D(z).
The Green's function (9) may be written as

G(z) =—,o' o(z)' (—~ -,) '

(A1)

(A2)

This is in contrast to the in6nite slope conjectured in
Ref. 1. Figure 1 shows a qualitative plot of the con-
ductivity.

z =o[u/(u' —1)"']
8 =c[1/(u' —1)"']. (A7)

The following three statements about the Green's
function are derived from spectral representations'.

(a) G(z) is analytic except for a cut along the real
axis.

(b) ImG(z) changes sign across the cut whereas
ReG(z) does not change.
it. (c) The imaginary part of the diagonal Green's
functions Go,, is negative-semidefinite in the upper
half-plane.

It follows from (a) and (b) that the functions u, 6,
etc., are also analytic, except for the cut. Defining the
values of these functions for z=x+i8 as u(x), h(x),
etc., one can derive that just below the cut we have

z(x iS) =—z(x) *,

a(x —9) =S(x)*,

u(x —ib) =u(x) *,

o(x ib) =—o(x) *, —
[u'(x —i8) —1]U' = —[u'(x) —ly'*. (AS)

Furthermore, adding the diagonal parts in (A2) and
integrating over o, we get from statement (c) the
condition

which via (A6) and (A7) leads to

Imu(x) &0. (A9)

As discussed in I, there is a gap in the excitation
spectrum as long as n& 1.The gap ooo is given from (A6)
as the largest value for which the relation gives a real
solution u=u(x) with

~
u

~
&1.The result is

uo= u(ooo) = (1—n i ) ~,

oo =h(1 n"')ot'— (A10)

which via (A3) satisfies the relation

z/b =u —in[u/(u' —1)"'] n =I'/d (A6)

such that

whereas the relations (10) lead to

z =z+i-', r (z/o),

8=6—i ,'I'(6/c), -

It follows that for
~
x

~
&coo there is no discontinuity

across the cut, as z, 6™,and N are real and i purely
imaginary. If n = I'/6& 1, there is no gap in the excita-

(A3) tion spectrum (see I).


