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It is shown that the zero-frequency magnetic susceptibility de6ned by Kubo is a lower bound for the
zero-6eld isothermal magnetic susceptibility.

I. INTRODUCTIOH

ITH a system on equilibrium, one associates
ensemble averages of operators. If the system

Is cxposcd to a tlmc-varying fleldq thc system may
respond, and the initial ensemble averages may bc
replaced by averages evolving in time. Kubo' has
discussed the evolution of the averages in terms of a
perturbation-series solution to the Liouville equation.
The perturbation parameter is the coupling between.

the unperturbed system and the applied Geld, and
attention is usually focused only on thc first-order
term in the perturbation series —hence, "the theory
of linear response. " The linear term is characterized

by a response function' or equivalently by a double-

time Green's function. ' A Fourier integral of the re-

sponse function determines a quantity coIDmonly

called the frequency-dependent susceptibility.
Prior to thc above statistical-mechanical theory,

there existed a phenomcnological theory' of linear re-

sponse. The phcnomcnological theoly also yields a
frequency-dependent susceptibility which for zero

frequency reduces to the familiar isothermal suscep-

tibility. However, Kubo noted' that the statistical-
mechanical theory gives a frequency-dependent suscep-
tibility which at zero frequency does not necessarily

equal the isothermal susceptibility.
It will be shown in this paper that at zero frequency
Kubo's magnetic susceptibility is a lower bound for
the familiar zero-6cld isothermal magnetic suscepti-

bility.

II. RESPONSE FORMALISM

A concise derivation of the response formalism is
found in a recently published translation of Tyablikov's
book. ' To establish the present notation and the essen-

tial equations, a summary of the derivation follows.

Let the unperturbed system be characterized by a
Hamiltonian Bo and let its equilibrium. behavior be
given in terms of the canonical ensemble density oper-
ator po

——expL —p(FO —Ho) j, where the unperturbed
Helmholtz free energy is F0 —p ' ln Tr exp( ———pH0).
Take the perturbing Hamiltonian

H, (t) =O, for t«,
=Hg(t), for t&to.

' R. Kubo, J. Phys. Soc. Japan, 12, 570 (1957).
2 S.P. Tyablikov, Methods in the Quantum Theory of Magnetics

(Plenum Press, Inc., Neer York, 1967), pp. 237-245.
3H. 3. G. Casimir, Magnetism and Very Low Temperatures

(Dover Publications, Inc., Near York, 1961),pp. 83—84.

with the initial condition

For an operator L(t), de6ne

L(t) = exp(iHot) L(t) exp( —iHot),

so that the Liouville equation is transformed to

(id/«)p&(t)=LE(t) poj+LH~«) pi(t)3, (t&to)

p~(to) =o

The latter differential equation is iterated according
to the scheme

(id/«) p~, i(t) =LE(t)»j+LH~(t), pi, ~~(t) j
p&,0(t) =0,

p&,~(to) =0&

The 6rst iteration gives

fol I+ Q

foI 3= j. 2

pgg(t) =i '
, «g L8~(t)), pop

and the second iteration gives

x dt, LH, (t,), [8;(t,), p,jj;
thus an arbitrary contribution to the perturbation-
series solution is easily generated.

Now the average of an operator Q is written (Q)
and de6ncd by

&Q)=»p(t)Q

=Trpb(t) Q+»PoQ,

With the complete Hamiltonian,

H(t) =8)(t) +Ho

associate the density operator

p(t) =a(t)+po
In the following, 6' will be replaced by 1; consequently.
the Llouvllle cquatlon ls written
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where it is assumed that the traces exist an.8 satisfy
the usual invariance properties. Therefore, with (Q)))
denoting TrpoQ,

(Q)—(Q)0= Tr»(t) Q

=Tr exp( —iHot) p1(t) exp(iH))t) Q.

If, as in the following discussion, only the linear re-
sponse is considered, then p, (t) is replaced by pU(t),
and

(Q)-(Q).=T -".«) Q(h)+O(H")

=i '
Ch1 Tr[81(t1),po]Q(t)+0(Hp)

Ch, Tr[H, (t,), p,]Q(t—t,)+ 0(H;-),

with the understanding that dynamical quantities
evolve according to

L(t) =exp(iHot) 1.(0) ezp( —iHot).

For the present treatment select

H1(t) = Mh(h), —

where h(t) denotes a time-varying magnetic 6eld and
M denotes the component of the system's magneti-
zation along h. Now consider the response of the
average value of M to the above Zeeman energy of
perturbation.

gf) (3E), )'f d(, h((,—)=
to

Idell'tlty (1):
[D, exp( —/HO) ]=exp (—PHD)

X dhexP XH0 H0, D exP —&B0 .
Identity (2):

(8/)))h) exp[—p(HO —hM) ]=exp[—p(HO —I)hM) ]
C) exp[) (H.-hM)]M exp[-&(H. hM)].

Identity (3):For a set of operators I CO, C) ~ ~, C„I,
TrDLC„, [C „",LC„C,]"]]

=T L" [[D C.] C. ,] " C]C
From the definition of

I (t) =—(d/Ch) 1.(t)
=em(~H, t) ~[H., L,(0)]ezp( —~H, t) =t[H„ I.(t)]

and the definition of po, it follows from identities (I)
an.d (3) that

-T Lp., ~(t)]B(h)
=Trpo[B(t), A (h1)]

=Tr[p„B(t)]2(t,)
=Tr[po, B(0)]A (t,—t)

= —Tr[po, 2 (0) ]B(t—t,)
P

i d—)) Trpo exp(&H, )ci (t,) exp) —&HO) B(h)

d)1 Trpo exp(&HO) B(t) ezp( —)),Ho) A (t,)
XTr[M (t1), po]M (t) + 0(Hp)

(1/i) y(t —t)) =Tr[M(h1), po]M(t)

P

dt, h(t, )y(t t,)+0(HP)—,
=i dX Trp, exp())H, )g (t,) ezp( —))H,)B(h),

tp
where the last form was arrived at by changing the

where )t (h—t,) is the response function which is defined integrs, tion variable. The response function and the
by corresponding double-time Green's function' can thus

take on a number of disguises. For this occasion, select
the last one for which

=—Tr[po, M(t1)]M(t).

At this point it is worthwhile to note the following where
identities4:

0 (h —h1) = (d/«) g(~),

4 Identity (3) is established easily by induction, whereas (1) is
established by letting g(X) = exp(XA)B exp( —XA) —8 and.
f(X}= exp( —)A}g()), then g'(X) = exp+A}QA, Bj exp( —)A}
and

g(x) = ~a exp()IA}ga, Bjexp( —)I,A),

which immediately gives the desired integral representation of the
commutator f(P). Identity (2) is established in a manner anal-
ogous to (1).

g(&) =— d)), Trpo exp()WHO)M(0) ezp( —)),H )M( )

In accord with Kubo, ' deQne the frequency-dependent
susceptlblllty

x(co) = llxI1 «exp( —~7 —ET) (C/dg) g(~) .
&~0+ p



+lith ~=0, integration by parts yields the following From the Schwarz inequality,
expression for the zero-frequency susceptibility.

p(~ v)) ))'=p( v)"'v)"'~))'

x(0) = —g(0) + lim o dr exp( —or) g(r).
e~+ P

and we have

~PE v) Z v)) P=sx(0),

III. UPPER BOUND FOR x(0)

Consider the set of eigenstates
I I) of Bo, where

a,
I
I)=z, II).

The trace appearing in g(r) may be separated into
three contributions, so that

g(r) = —sg(0) —so(0) —so(r),

(0) =pp L p( 6«)/—T Po5 I « I
M

I
'& I'

s2(0) =pZ Lexp( —p@)/Truo5 I « I
M

I
~ & I'

(IWm, @=8 ),

&(0) ~ g) o—) »(—0) ~ g(0—) p(—Q v) )) ',

x(0) ~ d~ L(M(-'~)M(0) ).-(M&;-5.

But the right side of the inequality is just the zero-
field isothermal susceptibility yyo, since

x,o=—I
—(8/ah)'I —P-' In Tr exp( —P(ao—hM) )5})-o

)8/Bh) Tr exp) /})K h)—/) ])'—
Tr expL —P(Po—hM) 5

(8/Bh) rr exp['—)i/a —kM'}
j)

'

Tr expL —P(Ho —hM) 5

so(r) = exp( —pR)
exp@,(Z)—E~) 5

p &m Trpp

&&expL —o(Z,—8 )r5 I « I
M

I
~& I' (g,~g ) (8/Bh) Tr expj —P(g)—hM') 5

Apply identity (2) and the cyclic-invariance property
of the trace to see that

Each term is easily integrated, i.e.,
=P TrM expj—P(Po—hM) 5

lim~ dzexp —er sg 0 =sg 0 j (8/Bh) ' Tr exp} —P (Qo —hM) 5}„,
and similarly for so(0) . Furthermore with

(E)—E„)W0,

lim o dr exp( —or) exp(ozr) =0;
&~0+ p

thus so(r) contributes nothing to x(0), and.(0) =-g(0) -"(0)-"(0).
Notice that for non-negative temperature

—so(0) ~0.

Next consider s) (0) in terms of

y)—=exp (—p E))/Trio

p)—=(IIMII);
then

=P dA Tr exPI PPo5M—( 9,)M—(0)

This demonstrates that

x(0) ~xr'.

IV. REMARKS

Kubo has d)scussed) conditions for which x(0) =pro
and a very interesting calculation' of x~(0) for the
two-dimensional Ising model indicates that X~(0) =

for the hexagonal lattice and x~(0) (xro~ for the
square lattice. A physical explanation of this sensi-
tivity to lattice structure is given by the authors.

For $3II, Ho5=0, x(0) =0; whereas the zero-field
isothermal susceptibility x~' and the corresponding
adiabatic susceptibility x, may both be nonzero. An
example of just such a situation is provided by the
exactly soluable X-I' model for which x~ and g, are
readily calculated from formulas given by Katsuras

' G. A. Y. Allen and D. D. Betts, Can. J. Phys. I'to be pub-
lished).

6 S. Katsura, Phys. Rev. 12/, 1508 I'1962).
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and by using the thermodynamic relation~

T(BM/BT)yP
X&=X~+

where Cq is the specific heat at fixed field.
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The dc conductivity of the "excitonic insulator" recently discussed in the literature is calculated in the
semimetallic region. The calculations are based on recent work on the description of the excitonic phase
in the presence of impurities. It is shown that the conductivity decreases below the transition temperature
to the excitonic state. For low impurity concentrations the system acquires insulating properties. For
higher impurity concentrations the conductivity is still nonzero at T=0. Thus, metallic properties prevail
in the excitonic phase. It is pointed out that this behavior depends essentially on the form of the excitation,
spectrum of the system, i.e., the presence or absence of a gap. At the transition temperature the conductivity-
versus-temperature curve has a finite slope.

I. INTRODUCTION

ECENTIY, several papers have discussed the
properties of an excitonic phase which is expected

to occur in solids with small energy band gap. ' ' The
phase can be described as a condensate of bound pairs
of electrons and holes due to an effective attractive
interaction between conduction-band and valence-band
states. In the normal state one considers both a positive
band gap (semiconductor) and a negative band gap
(semimetals). The most extensive study of the prop-
erties of this phase has been given by Jerome, Rice,
and Kohn. ' Besides the question of experimental
observability, they have discussed in detail the ordering
phenomenon which takes place in the new state.

*Supported in part by the Ofhce of Naval Research and the
National Science Foundation.

f Present address: Institute for Theoretica1 Physics, University
of Koln, Koln, Germany.
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While the thermodynamic properties of the excitonic
phase are similar to those of a superconductor, the
electromagnetic properties are perhaps more interesting
from an experimental point of view. According to the
work of Jerome, Rice, and Kohn' the excitonic phase
turns out to be an insulator. This is especially interest-
ing in the case where the underlying two-band model
has a negative band gap (semimetallic region) and
therefore would conventionally have metallic properties.

This paper deals with the electrical conductivity of
the excitonic phase at low temperatures where the main
scattering mechanism is due to impurities and imper-
fections. Jerome, Rice, and Kohn' have calculated the
frequency-dependent complex conductivity for the pure
system and have derived the dc conductivity by using
Kramers-Kronig relations and a simple ansatz for
taking scattering into account. The more rigorous
calculation in this paper does not confirm their results.
The reason for this is that the impurities play a rather
intricate role. In a former paper' we have considered
the irdiuence of randomly distributed impurities on the
excitonic phase. We found that the situation is very
similar to the case of magnetic impurities in super-
conductors, i.e., the impurities have a pair-breaking

3 J. Zittartz, Phys. Rev. 164, 575 (1967). This paper will be
referred to as I.


