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An Abrikosov Quxoid in a pure, bulk, type-II superconductor has been studied by the Green's-function
technique for superconductors, as developed by Gor'kov. An approximate Green's function has been obtained
for the system, and the local densities of states have been evaluated numerically as a function of energy and
position in the Ruxoid. In agreement with the results of Caroli, de Gennes, and Matricon, the calculated
density of states near the Fermi surface is comparable to that of a cylinder of normal metal with radius
(p, the coherence distance. The eftect of Quxoids on the nuclear spin relaxation rate of a superconductor
has been estimated from these results. For fairly high temperatures, the relaxation rate of a superconductor
with Quxoids is less than the rate for the same superconductor in zero Geld, while for very low temperatures,
the rate is increased. These trends are in agreement with the experimental data of Silbernagel.

I. INTRODUCTION

"X the Abrikosov description of type-II supercon-. . ductors, ' an external magnetic field penetrates the
metal in quantized units of Aux, called Quxoids or
vorticies. In the region of the Quxoid, the order pa;
rameter is considerably reduced from its zero-field
value, going to zero at the Quxoid centerline. This
reduction in the order parameter a8ects various physi-
cal properties of the superconductor, for example, the
density of states near the Fermi energy Eg and the
nuclear spin relaxation rate R=—1/Ti.

Caroli, de Gennes, and Matricon' have calculated
the eigenfunctions of the bound-electron states localized
near a single fluxoid in a pure, bulk superconductor.
Except for a small energy gap at the Fermi surface of
order i9/Fs, the total density of states which they
calculate is 6nite and comparable to the density of
states for a cylinder of normal metal of radius $s, the
coherence distance. For certain purposes, what is re-
quired is not the total density of states but the spatial
distribution of the local densities of states. Since this
would be dificult or tedious to obtain from the results
of Caroli et a$., we have considered the same problem
in the Green's-function formulation as developed by
Gor'kov. ' By a slight modi6cation of %erthamer's
theory of local superconductivity, 4 we have obtained
an approximate Green's function for the system which
leads to a total density of states near the Quxoid com-
parable to the results of Caroli et al. and reduces to the
usual expression for a uniform superconductor far from
the vortex. The imaginary parts of the retarded Green's
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functions, G n(r, r) and F„n(r, r), have been evaluated
numerically and these results have been used to esti-
mate the effect of Quxoids on the nuclear spin relaxation
rate of the superconductor.

H. DERIVATION OP THE GREEN'S FUNCTION OP
THE SYSTEM

Gor'kov's equations' for the thermodynamic Green's
functions, G (ri, rs) and F„t(ri, rs), of a pure super-
conductor can be written (with 5= 1)

Is~+ (1/2m) LV,—(~/c) A(r, )j'y) IG.(ri, rs)

+h(r, )F„t(ri, r,) =P(r&—rs),

I soi+ (1/—2m) 1 V,+ (r'%)A( r,) j'+IiI F„t(ri, rs)

—A*(r,)G„(ri, rs) =0. (1)

oi is the disci etc frequency (2'0+ 1)rl T wl th 's an
integer; A is the vector potential of the system; p is
the chemical potential; h(r) is the order parameter,
related to Ii„t by the equation

h*(r) = VT g F t(r r) . (2)

and V is the strength of the electron —electron inter-
action which is assumed to produce superconductivity.

In his theory of local superconductivity, Werthamer'
developed a procedure for obtaining successive approxi-
mations to these Green's functions for systems where
A and A(r) are slowly varying in space. His solution
is essentially an expansion in gradients of the order
parameter. He points out that, at low temperatures,
his criterion of slowly varying A(r) is valid only when

h(r) is not too different from its zero-field value.
Consequently, since A(r) is zero at the centerline of a
vortex, his procedure is not directly usable for a Auxoid.
If one does try to apply it to a Quxoid and assumes A
is essentially zero near the centerline of the vortex,
each term of his successive approximation to 6 indi-

cates a gap in the local density of states at the Fermi
surface equal to &j A(r) ~. Evidently, to obtain a
596
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density of states comparable to Caroli et al. , one would
have to sum an infinite series of such terms.

In general, Werthamer's series cannot be summed
completely. However, by using a slightly diBerent pro-
cedure from Werthamer, a Green's function can be
obtained which amounts to a partial summation of his
infinite series. The lowest-order approximation to this
Green's function gives a density of states comparable
to the result of Caroli et al. , and reduces to the Green's
function for a uniform superconductor far from the
Quxoid. The details of this procedure are outlined below.

Because the vector potential A of an isolated vortex
drops oG rather slowly at large radii, ' it is convenient
to define two new Green's functions by the equations

ie
G„(r,, r,) =G„'(r,, r,) r p — A(s) rr),c rg

where

It„(r,, r,) =P(r,—r2)Li(o+(1/2222) V'22+12]

+&'(ri) G '(r2 —ri) &'*(22). (7)

G„'(r) is the usual Green's function for a uniform
normal metal. Changing variables to the sum and
difference coordinates, expanding the quantities in
Taylor series about the sum coordinates, and taking
Fourier transforms relative to the difference coordi-
nates, one obtains equations similar to Werthamer's
Eq. (7):

8Llt„(p, R) G„'(p', R') ]= 1,

( —p, R)F "(O', R')]=8L~'*(R)G-'(p) ] (g)

where 8 is the differential operator

F (ri, r2) =F„' (r„r2)
ie f rl r2

X exp ——
~ + A(s) ds . (3)

C&p

8—= lim exp Pi(V~ V~. Vs"V„)7—,
RI~R,p~~p

1(.(y, R) r L=+' f—6',(R+-', r) 5'"O(—',r)

(9)

The contours of integration are arbitrary and the lower
limits of the integrals in F„can be any position inde-
pendent of r~ and r2.

We restrict ourselves to conditions where the Quxoids
are widely separated (fluxoid spacing» li, the pene-
tration depth) and the magnetic field (H C)()/X2) is
small. C() is the quantum of flux in a fluxoid=~ hc/2e ~.

The~rQuxoids can then be treated individually. The
vector potential A will be small and slowly varying in
space, and its derivatives can be neglected. With these
limitations, the equations which the new Green s func-
tions LG„'(ri, r2) and F„'"(ri, r2)] satisfy are approxi-
mately

(i+(o(1/2222) Vi'+ 1i]G.'( ri, r2) +6'( ri)

XF '2(ri, r2) =8'(ri r2), —

i(d+ (1—/2221) Vi2+Ii]F„'"(r„r,) —6'*(ri)

XG„'(r„r2)=0, (4)
where

2ie
6'(ri) =6(ri) exp —— A(s) ds .

c p

Following Werthamer, the integral equations corre-
sponding to Kq. (4) can be written

d'r2 E„( ri, r2) G„'(r2, r2)
'= 8' ( ri —r2),

d Y3X (ri rl)F (r2 12) r-i (rl)G (rl r2)

(6)

R. E. Leadon, Doctoral thesis, University of California, San
Diego, Calif. , 1967 (unpublished) .

and
XG„O(—r) exp ( ip —r)d2r, (10)

]„=(P2/2222) —P.

[G-'(p, R)]o=Llt-(p, R)] ', (12)

LF-"(p R)]o=~'*(R)G-'(P)/&-( —p, R) (13)

For simplicity, only these lowest-order approximations
have been used to calculate the densities of states.
For one condition, the e6'ect of the next higher-order
nonzero term on the density of states was estimated
and was found to be quite small compared to the
contribution from the zero-order term. The convergence
of this series should be examined further to see if the

If Werthamer's procedure were followed again, the
order parameters in Kq. (10) would be expanded in
Taylor series about the position R. The four quantities,
8, E„(p,R), G„'(p', R'), and F„'i(p', R'), would then
be expanded in the degree of their inhomogeneity and
substituted into Eq. (8) . The successive approximations
to G„' and F„'~ would be obtained by equating equal
degrees of inhomogeneity on the two sides of the
equations. The approximations to G„obtained in this
way are those which show a gap in the local density of
states equal to the local order parameter &~ d, (r) ~.

The modification which is used herein consists in
2M)) expanding the order parameters in Kq. (10). The
other three quantities, 8, G„', and F„'~, are still expanded
in their degree of inhomogeneity and substituted into
Eq. (8), but the complete form for E'„(P,R) LKq.
(10)]is retained. This modification obviously amounts
to summing Werthamer's expansion for E„and is
therefore a partial summation of his complete series.
In this manner, the lowest-order approximations to
G„'(p, R) and F„'~(p, R) are obtained as
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FIG. 1. Order parameter versus distance from vortex centerline.
Solid curve is 1.6J~(r~/p0), Ref. 5. Dashed curve is arbitrary fair-
ing into A(ry/g0)/d, „=1.0. Q are points calculated by self-con-
sistency equation (Sec. III 3).

smallness of the second term indicates rapid conver-
gence of the series or is accidental. This has not been
done as yet.

In a bulk superconductor, the vortex will be es-
sentially two dimensional, so h(R) will be independent
of z, the distance parallel to the vortex centerline. The
s integration in Eq. (10) can then be done exactly,
glvlng

—= t L, (Rr, rr) i&(Rr, rr) sin8„5—

2' R+
Xexp —— A s ds, 17

C R- )'

E„(p,R) =i&a P„+—,'(im) -3,'(Rr+ ,'rr) 0,-'*(Rr ,' rr)——-

Xexp( —
ipse rr)HO~'(pirr)rzdrrd8„, (14)

where pi —=(p02 —p,')'~' and p02 [2m=—(p ~)7 Rr, r. r,
and pg are the components of R, x, and y in the trans-
verse plane, that is, perpendicular to s. 0„ is the angle
of ry in the transverse plane, measured from Ry, and
H0~2~ is the zero-order Hankel function of the second
kind. The region of phase space with p,') po' contributes
little to the density of states' so only the condition

p,'&p,' has been considered in deriving Eq. (14).
For simplicity, the vectors R+ and R are defined as

R+ ——R&+-,'rr,

R =Rp ——,'rp.

The reference angles of these vectors in the transverse
plane are denoted as 8+ and 0, respectively.

Since the phase of the order parameter 6( r) changes

by 2x in going around a Quxoid centerline, ' it can be
written

h(r) =h(r~) exp( —i8„), (16)

where A(rz) is a real function of the magnitude of r~.
Thus, the order parameters in Eq. (14) can be written

6'(R+) 6'*(R ) =h(~) d, (IL) expL —i(8+—8 )5
2ie R+

Xexp —— A s .ds

&0 =Sss/~A, (19)

where w& is the Fermi velocity. The functions Li(Rr, r&)
and L2(Rr, rr) were then calculated and plotted versus
r~ for several values of Ep and 0„.In the region of main
interest' (Rg&to) these curves are practically inde-

pendent of e„so it is adequate to replace them with
their averages over 8„ that is, by Ii(R&, rr) and
L2(Zr, rr). The integrals over 8„ in Eq. (14) can then
be done, giving

E (p, R) iM g=„+i—zm.ttL, (Rr, rr) Jp(prrr)

L2(Rr rr) Ji (pyre—) sin8 5Hp@~ (piro') rr dry (20).
Jo and J~ are Bessel functions of orders zero and one,
0„ is the angle of pp measured from Rz.

To obtain the density of states, the imaginary part
of the retarded Green's function G„'"(p, R) must be
integrated over d p. In this integration, the important
range of the variables is pi pi, and both of these
momenta are a sizeable fraction of the Fermi momen-
tum p~. It is therefore adequate to replace J,, J„
and Ho&') by their asymptotic expressions for large
arguments. The product of these exponentials gives
terms of the form expL —i(pi&pe)rr7. Those terms
with (pal+pi) will oscillate very rapidly with rr and
the integral over rz in Eq. (20) will be nearly zero.
Therefore, these terms can be neglected and only the
terms with (pr —pi) are retained.

It is convenient to integrate by parts relative to r&

in Eq. (20). At the lower limit (rp=0), Ii(Er, rr) =
ZP(Ez) and L2(Rr, rr) =0. The upper limit (rr= ~)
gives zero because exp[i(pr —p, )rr5 decays exponen-
tially due to uv in pi. Since pr is nearly equal to p, in

' J.Bardeen, L. N. Cooper, and J.R. Schrieffer, Phys. Rev. 108,
&175 (195&).

where

L (Rr, rr) —=L~(W) ~(2L)/(W) (2L) 7t:&+—(-:")'5
Ls(Rp, rr) =—Lb.(~)A(2L)/(~) (R ) 5[rrRr5 . (18)

For vortices where X»$0, the effect of A is small and
can be ignored. 5 At small radii where the order pa-
rameter is changing rapidly, A is very small and the
exponential of A is practically unity. For larger radii
where h(R) is nearly constant, the effect of A produces
only a very slow change in the integrand of Eq. (14),
and has a negligible effect on the Green's functions.

To numerically evaluate the densities of states for a
fluxoid, the functions Li(Rr, rr) and L2(Rr, rr) are
approximated in such a manner that the space inte-
grations in Eq. (14) can be done in closed form. Based
on an approximate solution of the first Ginzburg-
Landau equation, a variation of h(rr) with rr was
assumed for all temperatures (see Fig. 1).The reference
length $0 was assumed to be related to the zero-field
order parameter 6 by the equation'
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the important part of its integration range, it is permissible to replace Pi by Pi everywhere except in the
difference (pr —pi). With these approximations, Eq. (20) becomes

LP(Rr) "exp[i(pr —pi) re d
IC„(p, R) =us —$ —. — . —[Lt(Rr, rr)+i'(Rr, rp) sin8~7drp. (21)~+$t 0 ( ttet+ hatt)

The lowest-order approximations to the Green's functions are then, from Eqs. (12) and (13),
00 d

[G '(p R) j,= —[e +t )( '+t '+6'[ter)+ erp[e[pr p)rr] —[t,(ttr)+r', I [Zr rr) eire ]rtrr
~

0 dry )
(22)

I', Oct -1
[I'„'t(p, R)70=t t'*(Rr)

~
aP+$~'+6'(Rr)+ exp[i(pr —pi)F7 [Lt(Rr, rp)+t'Im(Rr, rr) sin8„7drr

0 rr

(23)

When Lt(Rr, rr) and L&(Rr, rr) vary extremely
slowly in space, these equations reduce to the lowest-
order terms of Werthamer's local theory. The difference
between the present method and Werthamer's approach
results from considering the finite gradients of L~ and L2.
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Fro. 2. Density of states for 6ve radial positions.
Symbol: O 4 C3 V
Rz/$p ".,=:,". 0.0 0.5 1.0 2.0 3.0

Flagged symbols from digital integration method. UnQagged
symbols from integration by residues. Curve A is BCS density of
states for uniform superconductor. p (Ep) is density of states for
uniform normal metal at the Fermi surface.

III. DISCUSSION OF RESULTS

A. Density of States

To obtain the density of states, the functions
Lt (Rr, rr) and I2(Rr, rr) were approximated by ana-
lytic functions which permitted the integrations over
rr in Eq. (22) to be done in closed form. The thermal
Green's function G '(p, R) was then converted to the
retarded Green's function G„'~(p, R) by replacing uo

by (&o+ib), and the imaginary part of G„'"(p, R) was
integrated over d'p.

Two diferent methods were used to perform these
integrations. In the first method, L~ and I2 were ap-
proximated very well (for each Rr) by a single Gaussian
and the derivative of a single Gaussian, respectively.
The integration over P& was done step-by-step on the
digital computer for fixed values of p, and 8„.The final
integrations over p, and 8~ were done graphically. This
method is good for energies t0«d (Ri), for then the
integrand is never too sharply peaked.

The second method was used for energies ~ of the
order A(Rr) and larger, where the integrand sometimes
approaches a 8 function. In this method, the functions
L~ and L2 were approximated somewhat more roughly
than in the 6rst method, L& by a simple exponential and
L2 by rz times a simple exponential. The advantage of
these approximations is that the subsequent integration
over pr could be done by a contour integral in the
complex pr plane, using the theory of residues. The
integrations over p, and 8„were again done graphically.

The resulting local densities of states, normalized to
the density of states for a uniform normal metal at the
Fermi energy [p„(Et;)7, are plotted in Fig. 2 versus
energy for five radial distances from the Quxoid center-
line. The Qagged symbols at low energies are from the
step-by-step digital integrations, while the unQagged
points are from the integrations by residues. In spite
of the rather difterent accuracy in approximating L& and
L2 in the two methods, the two sets of results agree
quite well. For comparison, the BCS result for a uniform
superconductor is also plotted in Fig. 2.

Far from the Quxoid centerline, the e6ect of the
Quxoid should vanish and the calculated density of
states should approach the BCS curve. The curve
for Rr/$0 ——3.0 (the largest value of Rr considered)
confirms this trend. As the Quxoid centerline is ap-
proached, the calculated curves depart from the BCS
result and approach the value for a uniform eormal
metal.

When the densities of states at the Fermi energy are
plotted versus E~ and integrated over the cross section
of the fluxoid, the result is tr(1.15)0)'ttt„(Ett) . Thus, for
energies near the Fermi surface, the total density of
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metal at the Fermi surface.

states due to one Quxoid is comparable to the density
of states for a cylinder of normal metal with radius
1.15]0.This agrees well with the result of Caroli et al

The reader is reminded that these results are based
on just the zero-order approximations of the Green's

functions. The one calculation which was made to
estimate the eGect of the next nonzero term was done
at the vortex centerline and at the Fermi energy (~=0) .
The increment in the density of states due to this term
was about 0.03p„(E&), which is quite small compared
to the result from the zero-order term at the same
condition, about 0.64p„(Ep). Of course, this one point
is not a proof that the series is really convergent.

9. Self-Consistent Order Parameter

The order-parameter curve in Fig. i is basically an

assumption, based on an approximate solution of the
6rst Ginzburg-Landau equation for a Ruxoid. ' It is

theoretically possible to substitute the calculated
Green's function [Kq. (23)$ into Eq. (2), determine

h(r), and repeat the computations until a self-con-

sistent curve for h(r) is obtained. Such an iteration
has not been performed. However, the 6rst step in

this process was done, namely, d, (r) was calculated

from Eq. (2) and compared to the assumed curve in

Fig. j..
By converting the sum over e in Eq. (2) to a contour

integral in the usual way, warping the contour to
enclose the poles of F„t(r, r), and dividing by the

same equation for a uniform superconductor, one ob-
tains'

mean one-half the jump across the cut of the retarded
Green's function FP t (r, r) in the co plane.

Curves of ImFPt(r, r) are given in Fig. 3 versus
energy for the five distances from the vortex centerline.
These curves were obtained by the same procedure
used to obtain ImG„'~(r, r) for Fig. 2. The BCS result
for a uniform superconductor is also shown for compari-
son. This curve is used in the denominator of Eq. (24) .

For evaluating Eq. (24), two further items are
needed: (1) a value for au~/6 and (2) a prescription
for estimating the portion of the upper integral in Eq.
(24) from the maximum energy in Fig. 3 (a&/6 =3.0)
to con/5 . Since coD enters only logarithmically into
both the numerator and the denominator, its exact
value is not critical, so a typical value of &oD/5 =40
was selected. From Eq. (23), the calculated curves in
Fig. 3 should approach h(Rp)/6 times the BCS curve,
for each Ry, at large energies. Therefore, it has been
assumed that the area under each calculated curve
from &o/6 =3.0 to co~/6„ is h(Rp)/6 times the area
under the BCS curve over the same range. The integrals
from co=0 to M/6 =3.0 were done graphically.

In this way, Eq. (24) was evaluated for three tem-
perature ratios, T/T, =0, 0.5, and 0.8. The 8CS relation
for 6 versus temperature was used. In this temperature
range, the eBect of temperature was almost undetect-
able in the computed results. The average points for the
three temperatures are plotted in Fig. 1 for comparison
with the assumed curve for d(Rr). The maximum
difference between these points and the assumed curve
is about 15%. However, a curve through the points
would be very similar in shape to the original curve.
The difference in slopes probably indicates that the
reference length ]0 used. for the curve in Fig. 1 and given

by Kq. (19) is not quite right and should be adjusted.
However, the dimensionless curve of 6(Rr)/6 versus

Rz/]0 is apparently almost independent of temperature
over a wide temperature range. To the extent that it is

I.p

0.8—

Rs/Rq

0.4

( AD )—1

6(Rp)/6„= I
do) tanh-', (Pa)),

Z 2~1/2)

&D —2
do tanh-', (p~) ImF„+r(R„R&) I. (24)s.p„Ep

The Upper limits of the integrals have been cut oG at
the Debye energy co& to avoid the usual logarithmic
divergence of these integrals. By ImFPt(r, r), we

0.2

0
l.p 2.p

R,/(,
3.0

FIG. 4. R/R„versus radial position. R, is relaxation rate in
superconductor. R is relaxation rate in normal metal.

Symbol: 0 A U
T/Tc

Theory for uniform superconductor (see Ref. 7):
T/T, : 0 0.5 0.8
R,/R„ : 0 0.6—j..0 2.0-3.0.
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independent of temperature, the dimensionless curves
in Figs. 2 and 3 also apply to all temperatures.

C. Nuclear Syin Relaxation Rate

The nuclear spin relaxation rate, E= 1/—2'q, is pro-
portional to the probability 8'„ofQipping the nuclear

spin from the state
~ e) to the state

~
m). For the usual

spin-Qip interaction between the spins of the nuclei
and the conduction electrons, ' this probability can be
written in terms of the single-particle thermal Green's
functions, G„and F„~, of the unperturbed electron
system as'

C ~[(n )I;) m) (m [I@[n)+c.c.j
25,,, L1—exp( a)j

XI2' 2 LG (*)(RARE)G (.) (~)(»' Rf)+~ &.)(Rh»')~ (~) &*) (R, RJ)j expL~(~)gj}. (25)

C= ( —Sx/3) y,y„5'; y, and y„are the electron and nuclear gyromagnetic ratios; T is the temperature in energy
units; I; is the spin of the nucleus at the position R, ; Ogm(g)~+i8] is an operator which changes ice(g) to
{co+i8);&0(p) and cv(s) are discrete frequencies, &u (&1) =2Ifs 2' and co(s) = (2s+1)~T, with q and s integers; p and
g are small positive quantities; and ~ is the difference between the Zeeman energies of the nuclear states

~
~)

and j m).
Equation (25) can also be written in the form'

)(DmGxa(R;, Rp) 1m' a(Rp, Ry)+1m'" (R;, Rp) ImP„xa t(Rg, Rp) 7, (26)

where f(g) is the Fermi function and. the superscript
E. indicates the retarded Green's functions.

The terms with j/ j' are usually much less important
than those with j=j', so they have been neglected. ~

Therefore, the ratio of the relaxation rate E to the
rate for the corresponding normal metal E„ is just
proportional to the ratio of the energy integrals in Eq.
(26) for the superconducting and normal systems. The
di6'erence in the Zeeman energies co is usually quite
small and can be set equal to zero when the imaginary
parts of the Green's functions are not too sharply
peaked. The calculated curves in Figs. 2 and 3 meet
this criteria.

The ratio R,/E„was computed for three temperature
ratios (T/T, =O, 0.5, and 0.8) by performing the energy
integrations in Eq. (26) graphically for each temper-

7 L. C. Hebel and C. P. Slichter, Phys. Rev. 113, 1504 (1959).

ature. The BCS relation for d as a function of temper-
ature was again used. The results are plotted versus
radial distance from the Buxoid centerline in Fig. 4.
At large distances from the Quxo~d, the curves should
approach the results for a uniform superconductor.
Hebel and Slichter~ have calculated and measured this
ratio for uniform superconductors. The probable range
of their values for each temperature is indicated in
Fig. 4. The curves in Fig. 4 tend in the proper direction
to approach these limits. At fairly high temperatures,
the effect of the Quxoids is to reduce the ratio E,/R„
compared to the zero-6eld value, while, at very low
temperatures, the Quxoids increase this ratio. Both of
these tendencies are in agreement with the experimental
data of Silbernagel. ~

83. G. Silbernagel, Doctoral thesis, University of California,
San Diego, Calif. , 1966 (unpublished),


