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that the above ratio will drop continuously to zero
when ~~1/v2, whereas the experimental ratio levels
off at a constant value similar to our ratio R(H,+) /R„.
The theoretical model due to Rothwarf et al."assumes
after Fink and Kessinger, a sheath of thickness t with
a constant order parameter over a normal bulk. A
complex conductivity is assumed in the sheath, and
the boundary-value problem is solved exactly in the
local, twoguid dassical limit. At low ~ the model
fails before these last conditions are strongly violated
because the model ignores depairing. For large
Fink and Kessinger'have shown that t P in the—entire
sheath regime since, for «))1, $«X=8, one has t«5.
This thin sheath at H,2 does not contribute much ab-
sorption by depairing, but also it does not much atten-
uate the microwaves, which easily reach the normal
bulk. With its short mean free path this bulk absorbs
strongly, and therefore R(H.2) is very large even
though it is almost entirely dominated by carrier-
motion absorption. Note that R„ is very large too.

As A: becomes smaller, t at H, 2 becomes larger. The
contributions to absorption by depairing and carrier
motion reverse in relative importance. At the same
time, R„decreases. When ~&1, the sheath thickness
at H, 2 or H, is very large (t))8) and absorption by
carrier motion becomes negligible. To explain the
persisting large ratio R(H,+)/R, one must assume
absorption by depairing, and this, in turn, is possible
only if the necessary depairing energy has been reduced
by a large amount 2evzA 0/ c.

In conclusion, we believe that we have provided
strong experimental evidence that a magnetic Geld re-
duces the observable optical energy gap (i.e., the energy
necessary for depairing by electromagnetic radiation)
at the free surface of a superconductor by a large linear
term 2ev~A 0/c, and that we have explained the mech-
anism of this eGect. We have also indicated in what
sense the gaplessness in the excitation spectrum of the
surface sheath is to be understood when a is not very
large.
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Some mechanisms are investigated for the coupling of the surface plasma mode in a semi-infinite medium
with a Qat or almost Qat surface to incident electromagnetic waves. In a classical approximation the mecha-
nism of surface roughness (the departure of the surface from a perfectly Qat, smooth plane) is studied.
Using Green's-function techniques, the coupling of light to the surface plasmon assisted by phonons or
impurities is considered. With phonons, the change in the reQectivity due to the mode may be on the verge
of measurability at room temperature, while the change in reQectivity with coupling to an irregular surface
or impurities near the surface is found to be measurable.

I. INTRODUCTION

N this paper some mechanisms are investigated for
„„the coupling of the surface plasma mode in a semi-

inGnite metal to normally incident electromagnetic
waves. Classically, direct coupling of light to the sur-
face plasmon in a slab with perfectly smooth, Qat
surfaces occurs only in thin samples. ' In this case the
branch of the surface plasmon that describes "tan-
gential" oscillations for small wave vectors couples to
electromagnetic radiation if the incident electric Geld

has a component of polarization parallel to the plane
of incidence. The magnitude of this effect vanishes in
thick samples as e &", where d is the thickness of the
slab and p is the wave vector of the mode parallel to
the surface. Quantum mechanically the surface plasma
mode in a thick sample possesses a small transverse
component which couples to light when the electric

* Work supported in part by the U.S. Air Force OQice of Re-
search, Air Research and Development Command.

~ R. A. Ferrel, Phys. Rev. 111, 1214 (1958).

Geld is polarized parallel to the plane of incidence. '
However, this will contribute to the reQectivity only
to order (k/kr)', where k is the wave vector of light
and k~ is the Fermi wave number. For light which
strikes the surface at normal incidence, neither of the
above mechanisms contribute to the reQectivity. In
addition, Ritchie' has shown that the surface plasmon
can couple to light through the intermediary of an
intraband transition. This mechanism yields an ab-
sorption edge rather than a peak. or resonance. The
magnitude of this edge is not very large.

In this paper the coupling of the surface plasmon
in a thick sample to normally incident light through
surface irregularities, phonons, and impurities is stud-

~ P. A. Fedders, Phys. Rev. 153, 438 (1967).' R. H. Ritchie, Surface Sci. 3, 497 (1965).
4 The coupling of the surface plasmon to light by means of

roughness has been proposed as an explanation for the peak in radi-
ation from surface plasnions produced by electrons incident very
obliquely to Ag films by E. A, Stern, in Optical Properties and
Electronic Structure of Metals and Alloys, edited by F. Abeles
(North-Holland Publishing Co,, Amsterdam, 1966),p. 397.
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ied. The magnitude of the effect is characterized by
the dimensionless quantity hR,

QR =Q)0 de) R CO Ro GO

where R(o)) is the reflectivity of the metal as function
of frequency, Rp(o)) is the reflectivity of the metal in
the absence of the surface plasmon, and ~0 is the reso-
nant frequency of the surface plasmon. It is roughly
estimated that AR can be of order 10 ' for Ag because
of surface roughness or impurities near the surface.
This brings the theory into rough agreement with the
experiments of Jasperson and Schnatterly. o An accu-
rate calculation would require a more detailed knowl-
edge of the surface structure and a better knowledge
of the structure of the surface plasmon for moment a
which are not very small compared with the Fermi
momentum. The coupling due to phonons contributes
only about 10 ' to AR for Ag at room temperature.

The ef'fects of a slightly rough surface on the surface
plasmon are investigated classically in Sec. II. Instead
of the perfectly smooth surface described by s= 0, the
surface in this section is de6ned by the equation

z+ g a„sin(q„y+n„) =0,

where q„ is a wave vector in the x-y plane and cylin-
drical coordinates r= (t), s) have been used. The sur-
face plasma mode is studied to 6rst order in the surface
roughness components and it is found that the mode
acquires a partially transverse character which allows
it to couple to light.

In Sec. III (and the Appendix) the coupling of the
surface plasmon in a semi-indnite metal to normally
incident light through impurities and phonons is calcu-
lated using Green's-function techniques. A symmetric
set of diagrams is used. which yields the same bulk
absorption as obtained by Hopkeld' ~ if one uses the
random-phase-approximation (RPA) dielectric constant
in his results. For phonons these diagrams describe the
creation of a surface plasmon and phonon from an
electron-hole pair excited by the incident 1ight. The
results of Secs. II and III are discussed in Sec. IV and
are used to estimate hR for real metals. Since only
impurities very close to the surface effect the excita-
tion of surface plasmons, impurities are equivalent to
surface roughness in many ways. The units used in
the paper are cgs units with 5,= i.

~ S. N. Jasperson and S. E. Schnatterly, Bull Am. Phys. Soc.
12, 399 (1967); and (private co~~unications) .

e J.J. Hop6eld, Phys. Rev. 139, A419 (1965).
~ These diagrams also yield the expression for a quantum plasma

obtained by A. Ron and N. Tzoar, Phys. Rev. 132, 2800 (1963).
The connection to our work can be seen by examining diagrams 4
and 5 in Fig. 1 of their work. In the quantum»~&t, the contribu-
tion to the conductivity from both electron-electron and electron-
ion interactions comes when one wavy line represents screened
electronMectron interactions only and the other wavy line repre-
sents screened electron-ion interactions.

II. SURFACE ROUGHNESS

The method used to investigate the eSects of an
irregular surface in this section is an extension of the
method used by Ferrell' for perfectly smooth surfaces.
The model consists of a metal characterized by the
frequency dependency dielectric constant o((d) below
the surface de6ned by Eq. (2) and free space above
that surface. The electric scalar potential @ satisdes
Laplace's equation everywhere except at the surface
in the absence of free charges. The normal modes of
the system are obtained by 6nding the frequencies at
which V.D =0 and EWO.

Because of the irregular boundary, there is no con-
venient orthonormal set of functions to express Q in
terms of. Instead it is convenient to solve Laplace's
equation by transforming to a new coordinate system
(denoted. by the subscript zero) defined by

xo x~

sp=s+ P a sin(q„. )o+(),„)o.

The sum in Eq. (3) includes components of surface
roughness with wave vectors q„ in the x-y plane. These
waves have amplitudes c„and phases n„. Because the
new coordinate system is not orthogonal to the original
one, (f. is not the solution to Laplace's equation in the
new system. Instead it satisles the equation

(V,o+a (r,) ]y(ro, t) =0,

except at sp
——0. A (r) is the operator,

& (rp) = Q 2a.(f, cos(q t)o+n„)a'/»o»ot

—2 a.V.t »n(q- up+(x. )&/»o

+ Z LZ a-e- cos(q-' t)o+& ) ]'&'/»o'. (5)

The index j tak.es on the values 2 and 2, where x~= x
and x2 =y. The quantity q„, is the j'th component of

These last two equations are obtained from the
Jacobian of the coordinate transformation described
by Eq. (3).

Equation (4) can also be written in the integral
form

4(r„p=A(r, , p+ f de(r„r')A(r')4(r'),

Vo'G(rp, r') = —i)o(rp —r'),
Vo'yo(ro, t) =0.

The quantity 6 is the Green's function for all space
and its Fourier transform is G(p) =p '. The zero-order
solution @0 solves the problem when a„=0 for all n. It
is -given by the equation

(t o(ro, t) =8 exp( —k
~

sp
~

+ik t)o—io)t),
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where k is a wave vector in the x-y (xp-yp) plane, a& is
the frequency of the mode, and J3 is an arbitrary coefB-
cient. The solution for p can be obtained by iterating
Eq. (6) to any desired order. However, the second
iteration is already horribly complicated and it ap-
pears feasible to iterate only once. For only one Fourier
component of surface roughness additional iterations
are less complex. However the inclusion of only one
component of surface roughness is not very physical.
To lowest order the resonant frequency is still given
by p((o) = —1.

The last term of A, as defined by Eq. (5), is of
order e' and is neglected since other terms from the
second iteration are just as large. Thus only terms
which are first order in u„are kept. It is now straight-
forward to obtain the lowest-order solution for p. After
transforming back to the original coordinate system,
the solution can be written as

Q(r, t) =8 exp( —uut) {exp(ilr y) exp( —k
~
s, } )

+p(sp) g exp{'i(lr+oq„) .pjC„.

&(Lexp( —k [ sp [ ) —exp( —k., ] sp [ )]}, (7)

where sp is given by Eq. (3), p(s) equals +1 if s) 0
and —1 if s(0, and the quantity 0- takes on the values
~1. The wave vector h is the wave vector of the
unperturbed surface plasmon and the rest of the quanti-
ties are defined as

k..= }1+oq„f,

Cog p iaoko exp (iau. )

In order to estimate the validity of the perturbation
expansion, first consider only one component of surface
roughness so that the surface is described by the equa-
tion s+a sinqy=0. It is expected that the perturba-
tion theory has some validity if the slope of the rough-
ness is small, i.e., if aq is small compared to i. This,
and the condition that aq'& k, guarantee that } Agp } &
~

Vp'Pp ~. In order that P be a solution of Maxwell's
equations, the electric displacement vector D derived
from it must have a vanishing divergence everywhere.
By another straightforward exercise one can verify
that this occurs when p(~) = —1 only if lr and q are
parallel (or antiparallel) and

~
k

~

)
~ q ~. However, for

the absorption of normally incident light, only those
modes for which k=~q contribute. In order to make
the divergence of D vanish otherwise, the 8's for differ-
ent values of k must be related.

When one combines various components of surface
roughness the condition that the slope is small becomes

} Bsp/cjx; } &1.

What this implies about the a„and q„depends on the
phased 0.„.One might impose a sort of rms condition,

that the quantity

G=LZ (a-q-)'j"'

H'= —c ' A Jd'r,

where A is the vector potential of the incident light in
the gauge V A=O and J is the current due to the sur-
face plasmon. Since J= (p—1)E/4s and E=—VP, one
finds that the current in the x direction of a surface
plasmon with original wave vector k is

J,= (coB/2s) exp( —ia&t) {k,exp{'ksp+ilr yl

+ g C (k+oq„), exp[k„,so+i(ir+oq„) yj
S,d

+ g {"—C„(k+oq„), ,'ia„q„,,k exp(—io—n„)g

XexpLi(lr+o q„) p+ksp] } (10)

for so(0 and zero for so&0.
The normally incident light is taken to be polarized

in the x direction. A pulse of light is described by the
vector potential

A (r, t) = des exp( icot) A (pp) e—xp(icos/c), s)0

Ao exp —icof A co exp coo c, z(0

pointing in the x direction. Since the calculation is
only for the lowest-order contribution to hE from the
surface plasmon, the effect of the mode on A is ne-
glected. The A(pp) is nonzero only in a small range

not be large. However, this may be a very poor approxi-
mation and, indeed, Eq. (3) may be a poor way to
represent the surface of any metal. Nevertheless, it is
within the spirit of this calculation to use some cri-
terion such as Eq. (8) for the degree of the surface
roughness. This point will be further discussed in Sec.
IV. The fact that the 8's should be coupled when more
than one component of surface roughness is present has
been neglected.

The contribution of the surface plasma mode to the
normal incidence reQectivity of the sample is now cal-
culated using first-order time-dependent perturbation
theory. The effect of the roughness of the surface itself
on the incident light is neglected since (a&a/c)' is as-
sumed to be very small compared to 1. (It is of order
10 if u is of the order of an atomic spacing and co is
near the surface plasma frequency in metals. ) The
interaction of the surface plasmon with an electro-
magnetic field is



around coo, the resonant frequency of the surface plas-
mon,

Mo —Cd&/V2 = Cko

The quantity ko is the wave number of the light, where
c is the speed of light. It has been assumed that

(12)

FD-. 2. The dynamically screened
Coulomb potential.

trarily narrow and

the total contribution to AR is

+ re w +mme

where (v~ is the plasma frequency. EGects due to the
imaginary part of e(co) (such as the Drude tail) could
be included as another perturbation, In fact in the
present calculation the surface plasmon is arbitrarily
narrow. This calculation does not obtain the mode's
line shape but only its contribution as dered in Kq.
(1) (a sort of "oscillator strength"). By erst forming
Poynting's vector one easily 6nds 8', the incident en-

ergy of the pulse.

AR= Q 2~a„'g,'ko/
~
(1„(.

The reason why 0 E. is proportional to ko is that, except
for extremely small wave numbers, the surface plasmon
is localized in a distance much nearer the surface than
the skin depth. Thus the surface plasma mode can
take advantage of only a small part of the penetration
of the electric field.

W= (2(:) 'I.'~02 d&v
I A(~)

where the surface plasmon is excited to its Nth state.
Since the calculation is classical, e»1. From Eqs. (9),
(10), (11), (14), and (15), one obtains

hW= o)o'n.a 'q.,'I.' i
2 (coo) i'/2c'k (16)

as the contribution from the mode with wave vector k,
where k= +q„. It has been assumed that ko&&q„.

The reQectivity is the ratio of the power absorbed to
the power reQected. Since the surface plasmon is arbi-

Fxo. 1. One of the four dia-
grams contributing to the ab-
sorption: represented in dif-
ferent ways.

(~/////i)

(b)

for a sample enclosed in a square of side L in the x-y
plane.

The energy from the incident pulse lost to the sur-
face plasmon can be calculated by treating the surface
plasmon as a harmonic o:cillator. ' The energy stored
in the electric scalar field can easily be computed and
is just —,

' of the total energy of the oscillator. To zeroth
order in the roughness, this energy is

UI, k
i
8 pl.'/2——s =no)0,

where units with 5=1 are used. On the other hand,
the energy transfer to the surface plasmon, 58', is

III. IMPURITIES AND PHONONS

In this section the coupling of the surface plasmon
to light through the intermediary of impurities or
phonons is treated using the techniques of quantum
6eld theory. The basic model is the interacting electron
gas con6ned to a slab 0&s&d with perfectly smooth
surfaces. ' Some of the effects of bands can be added
phenomenologically. The contribution from the surface
plasma mode to 0., the complex polarizability of the
system, is calculated from a symmetric set of four
diagrams. One of these diagrams is shown in Fig. I,
where the solid lines indicate single-particle propaga-
tors or Green's functions, the wavy line indicates a
phonon or an interaction with an impurity, and the
x's indicate the incoming and outgoing phonons. The
dashed line with the circle represents the dynamically
screened Coulomb interaction as shown in Fig. 2. The
other three diagrams for 0. are the same except that
the directions of the pairs of arrowheads on the bubbles
are permuted. These diagrams yieM the results ob-
tained by Hop6eld6 ~ for the bulk case if one uses the
RPA dielectric constant in his result and the screened
phonon interaction in ours.

Since in metals the frequency of the surface plasmon
is much greater than any characteristic phonon fre-
quency, the contribution to 0. from phonons and from
impurities is similar. The calculation is carried out for
impurities of concentration c and a screened potential.
The mean free path for electron impurity scattering,
l, can also be expressed in terms of these quantities
and the Anal answer will depend only on 1. The results
are equally valid for phonons if / is taken to be the
mean free path for electron —phonon scattering.

It is convenient to calculate separately the portion
of the diagrams which includes the screened Coulomb
interaction (and thus the surface plasma resonance)
since it is the same for all four diagrams. This quantity
is a correlation function which is called I. and is shown
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x0. 3. The Pa&of thediagr ms where or=cko and 8 is the skin depth. The energy ab-

mode.
that includes the surface plasma sorbcd by the surface plasmon is

diagrammatically in Fig. 3 where it is represented by
the shaded box. In terms of L, Pig. 1(a) becomes
Fig. 1(b). That part of I. which is due to the surface
plasmon is calculated in thc Appendix. The resonant
frequency of the surface mode and its decay rate into
the continuum depend linearly on p, the momentum
of the mode parallel to the surface of the slab. Thus
the mode will degenerate as p increases from zero and
a cutoR' is assumed to exist as some value g, that is
small enough so that an expansion in terms of (q,/kr)
is reasonable. The subject of this cutoG is to be further
dlscusscd 1n Scc. IV.

Consider the case of normally incident radiation with
the electric Geld polarized in the x direction. 0 thc
only absorption is due only to the surface plasmon, then

E(r, t) = E0 exp( —kyi) exp(ikos),

= Eo exp( i(A)—exp( —s/b), s&0,

Xexp( —s/8) exp( —z/8) d'rd'r, (18)

where the integrals extend over the range 0&z, S&d.
The conductivity 0 is given by the real part of —~0..
Aftcl dividing by thc 1ncldcnt Qux, one obtains thc
reBcctlvlty duc to thc Diode.

R.(o&) = (4nu)/c) a"(s, z, co)

Xexp( —s/8) exp( —z/8)dhdz, (19)

where n" is the imaginary part of n and n(s, z, s&) is

equal to e(r, F, au) integrated over p—y.
The part of n„(written as n from now on) repre-

sented by Fig. 1 is

4@2 d'p d'p' d'p" Au' da)"
Ag (s$80%) dssds3' .— (2d') ' Q (mg+n2+na+e4)

5$ OP (2m-)' (2~)' (2m)'2si 2si

XG(y", kg, (e+(o")G(y"+y, k2, a&")G(y", ke, cv")G(p'+y, kg, cu' —~)

XG(p', k4, (o') G(y', kg, cs' —(o) p, 'p,"
~ N(y, kg) ~' cni'I (yco, k,k,kak4) j

XslQkys1 slQk651 slQk4z2 slIlk5sn slllk2sg slIlk6s3 coskz(ss ss~) slIlkgsp smklsa~~ (20)

where thc summation is over ki through k7 and. the z integrations extend from 0 to d. The impurities are charac-

terized by their concentration c and potential N(q) while e is the density of electrons. The rest of the quantities

are de6ned in the Appendix. The contributions from the other three diagrams are similar.

To a very good approximation, the integral in Eq. (19) is given by

(21)

where the s integrals run from zero to d. The reason is that 1/8 is much less than any characteristic momentum

in the system (such as q, and k~) . In other words, the electromagnetic Geld penetrates much further into the metal

than the surface plasmon does. The factor of ~~ comes from the fact that only one surface is exposed to the light.

This approximation may also be verified by a direct integration of o.. After adding the contributions from the

other diagrams and performing the co and z integrations, one obtains

Pp Pp& dip«
n, (co) = ——.. . ;,(2d') 'Q Ieg+m2+e8+e4} cnP,'

X i N(p, kg) i'L, ( (e,ykgk2kak4) (dh(kg+kg —k)) db(k7+kg —k4)

+4kyt'(kg+k4) ' kP] '[(ky—+k,)'— kvmy'I tta+—s,+IT+1}Ie,+~+my+1} )8(E(y", ky) )8(E(y', k8) ), (22)

whc1c thc suDlIDatlon ls ove1 Ny) s2~ se& @4& and sv
This is the contribution to n(s&) from the surface plas-
mon as discussed in the Appendix.

After substituting L, in the equation from Eq. (A10),
one can perform the e3 and @4 sums. Then using the
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one obtains

4e4k', d'q, qi 9—e(~) 7'
, (~) = I'(q) —cn (23)

v'co' (2v ) ' q' 8e(~) D(~gqi)

where qi= (qg'+q„') 'I'.
Since this is the contribution from the surface plas-

mon, set e(~) = —1. The integration in Eq. (23) is
now performed with a cutoG in the q~ integration at
q, . Terms of order (q,/k~) are neglected. The concen-
tration c is expressed in terms of the mean free path
for electron-impurity scattering l.undei. the assumption
that N(q) is a screened potential with a screening
momentum of approximately kf. Then, after integrat-
ing over co, one uses Eqs. (1), (19), and (23) to obtain

AR= koqP (or */coo) 43v'/2k''l (24)

(co~*)'= 47rme'/m, (25)

where n is the density of electrons and orp is the reso-
nant frequency of the surface plasma. ~„*is not neces-
sarily the observed plasma frequency. The quantity
kp is the wave number of the incident light,

Gap= Ckp,

where c is the speed of light. The eGect on the reQec-

tivity due to the surface plasmon obtained from Eq.
(23) is

R(a)) —Ro((o) = (3v.kgvog/2v 2k''1) ((a„~/a)0) '

I2 1nL((a)0+v,q,—(u)'+g')/(((o —(oo)'+g'H

—tan '((coo+v,q,—co)/g)+tan '((coo—&o)/g) )},

where the surface plasmon frequency is a»+v, qi and
the Inomentum dependence of the decay rate is ne-
glected with respect to g, the intrinsic decay rate which
is independent of q~.

If a is of order (1/k~) and q~q„ this gives hR 3X10 '
for Ag. However, the only restriction that was placed
on u was that uq&1. For eq equal to one and q~q„
one obtains BR~3)&10 '. These numbers give the
order of magnitude that one might expect for hR
under somewhat favorable conditions of surface rough-
ness.

In order to describe a surface realistically, one prob-
ably has to take into account a large number of surface
components. Another crude estimate of AR can be
generated by taking a large number E of surface com-
ponents along the x direction and spacing them equally
so that

q„=eykg/X, (26)

where e runs from 1 to 1V and pe is the maximum
wave number of the components. Further, assume that
all a„are equal and that the sum in Eq. (17) is re-
stricted to q„(q,. The quantity P given by Eq. (8) is
taken to be the measure of surface roughness. From
Eqs. (8), (17), and (26), one obtains

of the integrand in Eq. (23) actually contains these
real and imaginary terms depending on qz.

In order to estimate numbers for Ag a value of

q.=0.3kf is chosen and, of course, the results are un-
certain to the extent that they depend on q, . Since
silver has a density of about 5.8)&10"cm ' its Fermi
momentum in the free-electron model is 1.2)(10 cm '
and ~„* is 8.5 eV. The unshifted surface plasma fre-

quency orp is about 3.4 eU.
The contribution from the surface plasmon to the

reRectivity through the coupling of surface roughness
is given by Eq. (17). For only one component of sur-
face roughness the contribution to the reBectivity for
light polarized along that component is

d R= 2xu'qkp.

IV. DISCUSSION hR= (3v.P/y') (koq '/kg') (27)

The surface plasma mode has arbitrarily been cut
off at the momentum (or wave number) q, . The con-
tribution to the reflectivity from phonons or impurities
depends on the square of this quantity. The quantity
AR due to surface roughness must also depend on this
quantity since the sum in Eq. (17) must be restricted
to values of n such that

~ q„~ (q, . For a summation
over many components of surface roughness, the sum
may also depend on q,'. The mode becomes broader
and more degraded as p, the momentum of the mode
parallel to the surface, increases because both the dis-
persion and decay rate increase linearly' with p for
p((k~. The behavior of the mode for p not much less
than k~ is not known and the cutoA is introduced as a
convenience. Thus the quantity is not terribly well
dehned and any value we choose for it is somewhat
arbitrary. Also, the shape of the line should not pe
Lorentzian since the quantity D in the denominator

For /=1 and p=-'„ this yields 62~10 ' for Ag. It is
quite sensitive to the values of p and q, .

Equation (24) gives the contribution to the reflec-
tivity from the surface plasmon due to impurities or
phonons. Any number obtained from it is uncertain
to the extent that it depends on q,'. For Ag, with

q, =0.3k~, one obtains

hR 0.2/le. (28)

For phonons at room temperature DR~10 '.
Since only the properties within a few atomic spac-

ing really determine hR, the relevant mean free path
for the electrons is the mean free path very near the
surface. In other words, only the concentration of im-
purities near the surface contributes to n(co) as defined

8 A value for q, of about 0.5kf has been measured for surface
plasmons in alkali halides by electron energy loss experiments by
O. Sueoka, J. Phys. Soc. Japan 20, 2226 (1965).
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by Eq. (21). Thus l can be thought of as the mean
free path due to surface impurities and irregularities.
In other words as far as the surface plasmon is con-
cerned, there is little difference between impurities and
surface roughness and, indeed, impurities very near the
surface are a form of surface roughness. If the Grst few
atomic layers of a surface were doped with impurities,
the surface plasma absorption would be enhanced with
very little change in the bulk optical properties. Of
course as the doping increases the surface plasmon
becomes more degraded. However, for a concentration
of impurities near the surface such that the imaginary
part of the bulk dielectric constant would not be
greatly changed with the same concentration of im-

purities in the bulk, the width of the resonance would
probably remain unchanged. By controlling the doping,
and thus l, a determination of an eGective g, might be
made.

The quantity hE can be brought into agreement
with the data of Jasperson and Schnatterly, 4 who 6nd
38~10 ', by choosing l, due to impurities near the
surface, equal to 20 X. However, because of the de-
pendence on q,', the same answer could be obtained
for l= 80 A if q, were 0.6k'. In addition, the maximum
value of R(o)) —Rp((G) given by Eq. (2.6) is about
0.03 if 2), is of order o)p/kr, q,~0.3k', and g, as determined
from measurements of e2(o)), is about 0.1(pp. This, and
the slightly non-Lorentzian line shape expressed by
Eq. (2.5), are compatible with the measurements of
Jasperson and Schnatterly' on some samples.
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APPENDIX

In this Appendix a brief derivation is sketched for
the correlation function L used in Sec. III, which is
shown diagramatically in Fig. 3. The techniques used
to deal with the surface and derivation of the single-

particle Green's functions are obtained from Ref. 2.

The single-particle Green's9 function is de6ned as

whose arguments n stand for the space-time coordi-
nates (r„, t„). The symbol T indicates time ordering
and the angular bracket (x) means that the expecta-
tion value at zero temperature is taken. )id+ and 2P are
the electron creation and destruction operators. From
Eq. (A2) of Ref. 2, the Green's function is obtained:

do) d'p
G(rr', t—t') = — d ' g expLip)(t —t') ]

22r (22r) 2

Xexpiy(y y'—) sinks sinks't'G(p, k, (4)) j,
G(p, k, o)) = $4G

—E(p, k) +i»gn(
I q I

—e)3 '

(A2)

where 8 is a vanishingly small positive quantity and

qr is the Fermi momentum. The values of k are n /2dr

and the cylindrical coordinates (r= y, s) and q= (p, k)
are used. The single-particle energy E(q), given by
(q' —qr')/2ns, is measured from the Fermi surface.

The integral equation for L is

4 (31', 22') = f d3d4G (13)G (31')w(34) G (24) G (42')

—2i d3d4G 13 G 31' v 34 L 44, 22', A3

where e(34) is the Coulomb potential multiplied by a
delta function in time and de denotes the space-time
integration d'r„dt„. In. order to obtain L(11', 22'), one
must first obtain L(11,22'), which satisfies the equation
L(11, 22') =L'(1, 22')

d3d4G 13 G 31 v 34 G 24 G 42'

—2i d3d4G 13 G 31 v 34 L' 4, 22' . A4

In order to solve this equation, L is Fourier trans-
formed according to the prescription

d'p d'p' d(G dh)' 1
L'(1, 22')=, — ——, Q I n+n'+n" }L'(ypd, p'o)', kk'k") expL"—i(G(ti —ts) —i(G'(ts —t2 )

(22r) ' (22r) 2 22r 22r d' „,„4,„44

+iy (t)i—gs) +ip' (p2 t32 )]cosksi sink'ss sink"ss, (AS)

where the curly brackets In} restrict the summation to even values of n. As in Ref. 2, the method of obtaining
L is straightforward but tedious. It is somewhat simpli6ed here because only the limit pd-+do is being considered.

The solution for L' is

L'(p(G, y'4G', kk'k") = iG(p' —p, k', (G'—4G) G(p', k", p)') I (y(d, kk'k"), (A6)

The definition of G and its Fourier transform in time is the same as that used for zero temperature in A. A. Abrikosov, L. P.
Gorkov, and I.E. Dzaloshinski, Methods of Quantum I'ield Theory ie SttJtistk al 3IIechunics, translated by R. A. Silverman (Prentice-
Hall, Inc. , Englewood Cliffs, New Jersey, 1963).
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where L is the solution to the equation

L(kk'k") =[{8(k)v(k) (d/S) L8(k+k' —k")+8(k—k'+k") ]
——,'v(k' —k")} 8(k) p(p'+k') '—C(k) +-,'8(-,' (k—k'+k"), —,

' (k+k' —k") )+-',8(-,'(k+k' —k"), —,'(k —k'+k") )]}

—{same with k"~ k"}——2R(kk'k") —2C(k) S(k'k") —2S(k'k") 8(k) p(p'+k') '](1—28(k) v(k) ) ', (A7)

where the p and co dependence of the quantities have been suppressed where possible, and where

S(k'k") =d—' Q L(kk'k") v(k) {23+23'+23"},

v(k) =42re'/(P'+k'),

R(kk'k") = (2d) ' Q 8(k, 0+k) v(2k+k) I (2k+k, k', k"),

C(k) = (2d)-' Q 8(k', k'+k) pfp'+(2k'+k)']

and

8(k) = (2d) —' Q 8(k'+k, k'),
nl

(AS)

8(klk2) = d'p' f(p+p', ki) —f(p', ks)

(2m.)' E(p'+p, kl) —E(p', ks) —40—ih
'

with j(p, k) =f(q) the Fermi factor which equals 1 for
q& qf and zero for q& q~.

Since the surface plasma resonance is cutoff at a
value of p small compared to kr, it is suflicient to
solve these equations to lowest order in (p/kq). They
are also solved. only for

~
k

~

and
~

k'&k"
~

small com-
pared to k~ since this will give the largest contribu-
tion. The surface plasma resonance is contained in the
function S. To lowest order, the only parts of I that
contributes to the determination of S given by Eq.
(AS) are the term with the Kronecker delta, the term
vBp{ p'+k'] ', and the term 2SBp(p'+k') —' in Eq.
(A7). Using these, one obtains

S(k'k") =L1—e(cv) ]{v(k' —k")

—v(k'+k") ]'4L1+4(ar) ] ', (A9)

where e(44) is given by Eq. (12). The quantity
B(q) v(q) = 2(1—4) and the wave number dependence
of e has been neglected. R contributes only to higher
order so

L,(kk'k") = 3} 1—e(a))]}v(k' —k")

—v(k'+k")]4—'(44) Li+4(44) ] ' (A10)

The subscript s denotes that this is the lowest-order
part of L that contains the surface plasma resonance.

Now L is Fourier transformed according to the pre-

scription

d pllkdi 1
i 1 (22r)3 d4

X Q {'„1+232+'~3+234}L(pl&1)ps&2) P$003 ) klksksk4)

L(11', 22') =

XexpL s'il(31 fl ) ——LG&2(fl —'t2) —1„3($2—32 )

+2Pl' (IPl l91')+ZP2' (gl i/2) +ZP3' (g2 g2') ]
Xsinklsl sink, sl sinkss2 sink4ss. , (A11)

L,(p,~,pl, ps~2, klksksk4)

=G(P+P» k» ~+401)G(P» ks, &1)

XG(P2 pp k3y cps 44) G(ps) k4p cl)2) 1/a(klksksk4),

I,(kl, ks, ks, k4) = t 1—e(40) ]sp{ —Ss(a)) D(ar) 43-e'] '

X f v(kl —ks) —v(kl+k, )]}v(ks —k4) —v(ks+k4)],

(A12)

for the contribution to L from the surface plasmon.
The quantity D is the factor which contains the

surface plasma resonance, If the wave-number depend-
ence of the mode is neglected, D(40) is given by

D((v) = 1+4(40) .

Actually D contains real and imaginary parts propor-
tional to (p '+p„')'»

where the summation is over ng s2 %3 s4 ~ The quantity
L can easily be obtained from I.' through Eq. (A4).
Since only the surface plasmon part is of interest, the
first term on the right-hand side of Eq. (A4) is irrele-
vant. To lowest order, one obtains


