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Solution of the Boltzmann Equation for Electrons Interacting
with Acoustic Waves in Strong Electric Fields
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We have solved the Boltzmann equation to obtain the conductivity tensor for electrons interacting
with acoustic waves in the presence of strong electric Gelds. The presence of the dc electric Geld leads to
two new eBects: the introduction of a drifted distribution function for the electrons, and of a complex
electron temperature which depends on both the electric field and the acoustic wavelength. It is shown
that it is the drifted distribution function which leads to the amplification of acoustic waves in the short-
wavelength limit ql»1, while in the long-wavelength limit ql«1, it is the complex temperature which gives
rise to the amplification.

I. INTRODUCTION

N recent years there has been quite a bit of interest,.. both theoreticaP and experimental, "in the ampli-
fication of acoustic waves through their interaction
with conduction electrons in the presence of dc electric
Gelds. Most of the experimental work up to now has
been done in the region where the acoustic wavelength
is longer than the electron mean free path. In this
frequency region the interaction can be viewed as that
between the acoustic wave and a space charge wave.
However, Nill' ' has recently done experiments involv-
ing both attenuation and ampliGcation in InSb in the
10-gigacycle region, where the acoustic wavelength is
shorter than the mean free path. Here the amplification
process can be viewed as a phonon maser with the
electric field acting to invert the electron population
so that emission of phonons exceeds their absorption.
In addition, Solymarv has proposed a new mechanism
for amplihcation of acoustic waves which should occur
in strong Gelds for which the electron drift velocity
exceeds the mean thermal or Fermi velocity of the
electrons. Theoretically, the treatment of this problem
requires the solution of the Boltzmann equation for
the electrons interacting with the acoustic waves in
the presence of the dc electric Geld. We previously
solved this problem to terms linear in the dc electric
6eld. In our present work, we have solved the Boltz-
mann equation for arbitrary dc electric Geld, assuming
of course that we can still use the relaxation-time
ansatz' ' for the collision term in the Boltzmann equa-
tion. We have also made use of a drifted distribution
for the electrons. We then use our solution of the
Boltzmann equation to calculate the relevant compo-

nents of the conductivity tensor. We used nondegener-
ate statistics for the electrons since in most cases am-

pliGcation is observed in materials where the electron
density is low enough for the electrons to obey classical
statistics. In the limits of long wavelength q/((1 and
short wavelength ql»1, we obtain the same results as
previously, ' taking into account the modiGcations im-

posed because of the use of degenerate statistics in
the older work. However, it becomes clear from our
calculation that the amplification of the acoustic wave
in the region q/&(1 arises because of a held-dependent
imaginary electron temperature while in the region
gl&)1 it arises because of a drifted electron distribu-
tion. In addition, in the limit where the drift velocity
is greater than the average electron velocity we com-

pare our results to those of Solymar. ~

II. CALCULATION

The Boltzmann equation for electrons interacting
with an acoustic wave of frequency cu and wave vector

q in the presence of a dc electric Geld 80 is

df df e h' v df (f f,)——+v ———
i so+st+ —XBr ————,(2.1)

dk dr m I, c dv

where 81 and 81 are the electric and magnetic Gelds

induced by the acoustic wave, r is the electron re-
laxation time, and f, is the distribution to which the
electrons relax in the presence of the wave. This dis-

tribution is

f, (v) =fo(v d(/dt, rip+mr) —fo(v)
—(dg/dt) ' (dfp/dv)+ny(dfp/dan) . (2.2)

Here fo(v) is the equilibrium distribution of the elec-

trons, ( is the amplitude of the acoustic wave, and the
second and third terms on the right side of (2.2) arise

from the collision-drag effect and from the fact that
the scattering is local "and therefore does not change
the electron density. In semiconductors where the inter-
action of the wave with the electrons is either via the
deformation potential or piezoelectric coupling, the
second term can be neglected. ' We also take the elec-
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tric 6eld 8& induced by the wave to be a longitudinal
6eld so that Bi=cd/~oX8i=0. This is valid since in
semiconductors where deformation potential coupling
dominates, the induced electric field is longitudinal
regardless of whether the acoustic wave itself is longi-
tudinal or transverse. Also, when piezoelectric coupling
dominates, the interaction is strongest for those waves
which induce longitudinal electric fields. The solution
of (2.1) can be written as

where we have expressed v in cylindrical coordinates

oo n-—peor/m, n= a+2bve, a= (1—i&or)/ve)

b=iq, r/2ve, P= (q,r)/ve, c=m/2keT,

u= I (n+ipvi cosp) /[2(c —b) 'I'] }—(c b)—'I'( .v v~—),
v= f( + ~"-~)/[2( -b)"']}-(—b)"".,

and

f=fe, (v)+g(v) expi(q r—opt), (2.3) F(u) = expu' erfc(u) = (2/pr'~') expu' dt exp —t'.

where the Grst term represents the electron distribu-
tion function in the presence of the dc electric field,
but in the absence of the acoustic wave, while the
second term represents the part of the distribution
function which is induced by the wave. The dc distri-
bution can be found to first order in 80 by solving the
dc part of (2.1).' However, it can be seen that such a
solution is given by the first two terms in the expansion
of fp(v vd) fo—r small vq where vq= —(er/m) So is the
drift velocity of the electrons in the dc fieM. We there-
fore take fd, (v) =fo(v ve). The—part of the distribu-
tion function which is directly proportional to the am-
plitude of the acoustic wave obeys the equation

L '+v(q v )+(v/) (dldv)]—g(v)

= (e4/m) ~ (de./dv) + (n,/r) (dfo/dno) . (2.4)

If we take the direction of the dc electric field, and
therefore also v~ to be the s axis of our coordinate
system, then (2.4) has the solution

To first order in v~, (2.7) reduces to the result derived
in our previous work. The ac current induced by the
wave is

j=—e dvvg(v) =d Si—Rniev„ (2 g)

o;,= (2dp/vd) (x/n)'I (P'x/c) [1—or'~'xF(x)]

+2m'"(b/c) (c b) F(x) }—, (2.9a)

2 (Px ' (Px)'a„= a——
l

—(a+be) +
2bve (c b) —c ka Co.

2ir'/'b(c —b) xl'
xL'1 —'"~p(~)j+ O' -I p(*)}, (2»)

c~ aj

where d and R can be evaluated by using (2.7) to-
gether with (2.8). The integrals necessary to obtain

and R are evaluated in the Appendix. The expres-
sions obtained are

tig

g(v) = — ds exp
" dt—[i(il v —ip)+r —']

/equi de, ni dfpl
xl — +

dv r dnpJ

idoP (xl' (Px)'
cr„=

l
—

l
a+ [1 x'I'xF (x)]

b~v I,aj co.

b x—2or'" —(c b) —F(x—), (2.9c)
We take the general case where q lies in the xs plane

and treat the electrons as obeying Boltzmann statis-
tics, i.e.,

fo(v) = no(m/2irk& T)oi' exp( —mv'/2k& T) . (2.6)

Then the ac distribution g(v) has the form

d.,= — 1—c 'l — [1—-n'~'xF(x) ]idop x' t'px—o

vd(c b) n &—a

b (c-b)—2or'i' — xF(x), (2.9d)
c u2

c'
g(v) = exp —[ci'v+ (v, —vd) ']

en.v„(c—b) 'I' &,= (—iP/cv, v&) (y/a) '[1 rr'roy F(y) ], — (2.9e)

&~s
X Gi*v& cospF (u)—

v'I'(c O'I'—
„,(n+iPvi cosy)

2(c b) 'I'—
eg c'~'

+ „,exp —c(vi'+v, ') F(y), (2.7)
2' 8g C—5

& = (2v bv.) 'L1—c '(8/a)']l:1 —~'"yF(y)], (2.9f)

where

1 i(pp qv&)r- —
x=

qj(1 iego q/q'AT)—'I' '

1 zMT
y=

qi(1—jeep rl/q ke T) ilo

and &= ( 2gkT/m)' 'rIis the mean free path. The com-
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ponents of 6 and R which are important in determin-
ing the interaction of acoustic waves with conduction
electrons in semiconductors, where deformation poten-
tial coupling or piezoelectric coupling of acoustic waves
to a longitudinal electric 6eld are the dominant mech-
anisms, are the components along the direction of
propagation. of the wave, which wc denote og and Ej.
The relation between these components and those de-
rived in (2.9) can be obtained by rotating our coordi-
nate system;

»=~* «/q)'+ -(q /q)'+(q*q. /q') ( -+~.*),

fi~= R.(q /q)+Ii. (q./q) . (2.10)

Eg (—i/a r) L1———m'I'yF (y) $. (2.11b)

The effective conductivity tensor which comes into
the calculation of the acoustic absorption coeS.cicnt
Rnd the change in the velocity of sound is

2i~«ott1 —~"xF(x)j
(ql) 't 1 iso rl/q—'k~T)$1 v'12yF (y—)/(1 icuv) j—

(2.12)

The c8ect of the dc electric 6cld comes into the ex-
pression for the effective conductivity tensor (2.12)
in two ways, 6rst in that the use of a drifted dc elec-
tron distribution introduces a Doppler-shifted frequency
~,gg=cv —q-v~, and second in that a Geld-dependent
effective temperature T,n= T—ie8o q/q'ke is intro-
duced. When qt«1, x, y»1 and F(x) (1/v'~'x)g
(1—1/2x'), so that (2.12) reduces to the form

(2.13)

This is just the result obtained by using the phenomeno-
logical approach. In this case, the terms leading to a
negative absorption coeKcient (ampli6cation) arise
from the imaginary part of the elective temperature.
When qt»1 and vq«vv+v„where vr= (2keT/m)'I' is
the mean thermal'';velocity of the electrons, then x,
y«1 and F(x) 1, so that (2.12) reduces to the form

'= —i (qlq)'If+i '"L( —0 v)/q lI (2 14)

where q~ ——(roe'/keT)'~' is the Debye wave number of
the electrons and we have taken e80 q/q'keT«1. Here
the terms leading to acoustic amplification arise from
the use of a drifted dc distribution function. The third

After R lengthy but straightforward calculation we find
that

2 (1—i'm) do
an —— , , ;„f 1—v'I'xF(x) I, (2.11a)

case of interest, which was treated by Solymar, v occurs
when ~d&&eq and cd&&1. Under these conditions x&&1

and y«1, so that (2.12) reduces to the form

o.n' ——uvmpe'/m(co —q ve) '. (2.15)

This is exactly the same result derived by Solymar
using degenerate statistics and a drifted dc distribu-
tion function for the electrons. In this limit, the sta-
tistics which the electrons obey are irrelevant to the
calculation of the conductivity since the phase velocity
of the wave in the rest frame of the electrons is q v~

and thus exceeds the average electron velocity. The
conductivity can then be calculated just by taking
moro. ents of the Boltzmann equation since the indi-
vidual electrons cannot reach resonance with the wave
Rnd there is no Landau damping. In fact, this third
case is the one which is least likely to be observed in
practice since the electrons must be given a drift veloc-
ity which cxcccds thc Rvcl'Rgc clcctlon vcloclty iIl the
semiconductor.

III. DISCUSSION

&1 D. Pjggg a,pe J. R. Schgjggey, PhyS. Rqy' 124, $387 I'$96$).

In this paper we have solved the Boltzmann equa-
tion for electrons interacting with an acoustic wave
in the presence of strong dc electric Gelds. Kc have
calculated the components of the conductivity tensor
which come in to the calculation of the absorption
cocfGcicnt RIll thc chRQgc 1n thc souQd vcloclty. Thc
advantage of our present calculation over our previous
solution of the Boltzmann equations is twofold. First,
we have made our calculations using classical statistics
for the electrons, which is more realistic than using
degenerate statistics in most high-resistivity semicon-
ductors, where experiments have been done. Second. ,
we have not limited ourselves to a solution which is
only correct to 6rst order in the dc electric 6elds. The
presence of the dc electric 6elds leads to the introduc-
tion of a drifted dc distribution for the electrons and
a complex, 6eld-dependent CGective temperature. This
agrees with the predictions of Pines and SchrieGer"
in treating a similar problem concerning the two-stream
instability in solid-state plasmas. In the limit ql&&i,
our result agrees with that derived previously. s How-
ever, from our treatment it. becomes clear that the
terms leading to acoustic ampli6cation arise from the
Geld-dependent CGective temperature. %hen qt&&1, our
results reduce to that derived previously as long as
e8v g/q'«AT and ve(vr. Here the terms leading to
acoustic ampli6cation arise from the use of a drifted
dlstllbutlon function. The condltlon e80'rl/q AT«1
can be rewritten in terms of ve and vr, i.e., 2rl- ve/qlvr«1,
where q is a unit vector in the direction of q. It can
therefore be seen that for ql&&j. and e~(~~, the 6eld-
dependent part of the effective temperature can be



neglected because it plays no important role in deter-
mining the ampliGcation coeflicient. The only effect
it has is to reduce slightly the value of the conductivity.
The limit ~v&&1 and vq)~ was discussed above and
is a limit which would be very dif6cult to obtain in
practice. It therefore seems that the present theory
which takes account of arbitrary electric 6eld is in
good agreement with our earlier linear theory. Thus
any anomalous phenomena arising in the acoustic am-
pli6cation in strong electric 6eldse must result from
eGects other than the direct effect of the dc field on
the ac conductivity. The most serious approximations
we have made is to take the dc electron distribution
to be a drifted Soltzmann distribution for all dc electric
6elds and to use a relaxatioo time in treating the colli-
sion term in the Soltzmann equation. The 6rst ap-
proximation is commonly made. It is certainly a valid
approximation at low electric 6elds, while for high
6elds Frohlich and Paranjape" have shown that it is
valid when the electron-electron collisions are more
effective than the electron-lattice interactions in estab-
lishing the energy losses of the carriers. Some of the
criteria for using a drifted Maxwellian distribution in
semiconductors like InSb are discussed in Ref. 11.
The second approximation should become unimportant
when dealing with ampli6cation of high-frequency pho-
nons where q/»1. However, a 6eld-dependent relaxa-
tion time couM explain anomalous behavior in the
region q/«1 and the division between the regions ql«1
and ql»1 might be diferent in the presence of strong
Gelds than in their absence.

The reason why the linear theory agrees with the
present theory is that the electric 6eld only introduces
a Doppler-shifted frequency ~,fg, and an effective tem-
perature T,gf. In the limits gl«1 and ql»1, with e~&ez,
the terms containing the electric 6eld come in only to
6rst order, yielding an exact agreement with the linear
theory.

Note also that the expressions for the components
of 0 in strong dc 6elds derived in this paper are valid
for any excitation which generates longitudinal electric
6elds in nondegenerate semiconductors. Therefore, these
expressions could also be used in describing the inter-
action of conduction electrons with optical phonons
or plasma waves in semiconductors. The only diGer-
ence would be in the initial dispersion of the wave,
i.e., the dependence of cv on q.

APPENDIX

To obtain the expressions for d and R in (2.9) from
(2.7) and (2.8) we must evaluate integrals of the

'4 H. Frohhch and 3. Paranjape, Proc. Phys. Soc. (London)
369, 2i (1956),

following form:

Ii= dx exp —cx I' X—Bx, (A1)

dx a exp —cxsF (h —()x), (A2)

+co
dpi e& exp —cei2 d(j F(h+if/si cosy), (A3)

()/y cos(t)F (A+it/r i co~},

(A4)

I5= dN. DJ.I exp —cvz2

0
~ cos'$F (h+i()r)4. cos(t)) .

To evaluate these integrals we use the following inte-
gral form for F(s)":

I3=
c1/s(c+ hs) I/2 (1+/)2/c) 1/

(A9)

~»9 X
I4

c(c+&') (1+&'/c)'" (1+&'/c)'"
F (A10)

~»2x
I6,—— F

c(c+II')' (1+8/c)" {I+II'/c)"')

2C1/2 (C+g2) 4/4 (]+/)s/C) (/2 j (A11)

The evaluation of the integrals I~—Is allows us to write
down the results (2.9) for d and R.

IIcs4500k ofMGIh8pscf'LZQI FQÃcfsOss e(Htecl bg M Abramovitz
and I. A. Stegun (U.S. Department of Commerce, National
Bureau of Standards, %ashington, D.C., 1964), Appl. Math. Ser.
55, p. 297.

F(s) =s—' dP Ch exp —/' exp —(s+i/) P (A6)
0 QO

Using (A6) in (A1) and (A2), and performing the
integrations over x, i, and (// in that order, we obtain

Ir——Ls/(c —()') J/'F P/(1 —{)'/c}'/s j, (A7)

I2—— 1—— Ii
c"'{e—r) {( p/c—) '"(l.—r/~)"')

(A8)

To obtain I(), I4, and Is we use (A6) in (A3)-(A5) and
perform the integrations over P, p, r)i, and i in that
order. %e then get the result


