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The results of an experimental study of the superconducting transition temperature T„ the magnetic
susceptibility g, and the electronic specific heat yT in noble transition metals are discussed in terms of the
existing theory for the interactions which affect these parameters. Particular attention is paid to the possible
presence of virtual ferromagnetic spin fluctuations in these paramagnetic metals, using the recent theory
of Berk and Schriefkr. The existing data do not prove that the spin Quctuations are suppressing the super-
conducting transition temperature; however, this seems to be the most reasonable explanation for the
strong correlation between the decreasing T, and the increasing ratio of x/y. %'e present calculated values
for the variation of the bare density of states, the phonon interaction, the Coulomb interaction, and the
spin susceptibility in these metals.

I. INTRODUCTION

N this paper we would like to make a quantitative.. study of the behavior of the superconducting transi-
tion temperature T„ the magnetic susceptibility y„
and the electronic specilc heat y in the fcc (noble)
transition metals on which we reported in the preced-
ing paper' (hereafter referred to as AJ). In particular,
we would like to determine whether the presence of
the virtual spin Quctuations which appear to play such
an important role in palladium' is required to explain
the rapid decrease of T, as one alloys past iridium
toward rhodium, platinum and palladium (increasing
the electron density). As we have already pointed out
in AJ, the increasing enhancement of the spin suscepti-
bility with electron density indicates the presence of an
increasing Coulomb repulsion between electrons. This
repulsion will decrease the pairing interaction, but since
the instantaneous Coulomb repulsion is not very
e6'ective in reducing the pairing caused by the re-
tarded phonon attraction, we must determine quantita-
tively whether this reduction is sufhcient to account
for the observed rapid fall of T, (see AJ, Fig. 11).

Below in Sec. II, we present the theory which we
will use in the analysis. The basic integral equations
for the pairing interaction and the mass enhancement
including phonon, spin Quctuation, and Coulomb inter-
actions are given in Sec. IIA. In Sec. IIB, we display

~ The work at the University of Pennsylvania was supported by
the Advanced Research Projects Agency.' K. Andres and M. A. Jensen, preceeding paper, Phys, Rev.
165, 533 (19@'),hereafter referred to as AJ.

~ N. F. Berk and J. R. SchrieGer, Phys. Rev. Letters 1'7, 433
(1966).S. Doniach, in Proceedings of the Manchester Many-Body
Conference, September, 1964 (unpublished) .

simple derivations of the expressions for T, and y
without the presence of spin Quctuations. In Sec. IIC
we discuss the Coulomb pseudopotential. In Sec. IID
we present the expressions for T, and y obtained by
Berk and SchrieGer, including spin Quctuations. Finally,
in Sec. IIE we discuss the magnetic spin susceptibility.

We then carry out two diferent analyses of our
experimental data. First we investigate what one would
conclude if the spin Quctuations were absent. It will be
shown in Sec. IIIA that this analysis seems insufhcient
to explain the experimental results. Then we carry out
an analysis in Sec. IIIB of the data using the Berk-
SchriefFer theory to account for the effect of the spin
Quctuations on the pairing interaction and on the mass
renormalization. Although this point of view seems to
give the most reasonable qualitative picture with which
to understand our experimental data the quantitative
agreement is not good. Some possible explanations for
this disagreement are discussed. Finally, in Sec. IV, we
state the conclusions one can draw from this work.

II. THEORETICAL FORMULATION

A. Basic Equations

Although the metals of interest are weak-coupling
superconductors (T,/8~((1/100), we use the retarded
BCS theory of superconductivity developed for strong-
coupling superconductors by SchrieGer, Scalapino, and
co-workers from the original work of Nambu and
Eliashberg. ' This theory allows one to include the

3See, e. g., J. R. SchrieGer, The Theory of SNperconductivity
(%. A. Benjamin, Inc. , New York, 1964) p. 1808., and references
cited therein.
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effect of the phonon interactions (and spin-fluctuation
interactions) in a self-consistent way on both the super-
conducting pairing interaction and on the electronic
mass. It is found that the mass enhancement from the
phonon interaction is typically 50% or more and so
represents an important eGect.4 This enhancement or
energy renormalization as a function of frequency

p„ is represented by the renormalization parameter
Z(pa) where, if A„(0)' is the density of states at the
Fermi surface (taken as the zero of energy) obtained
from specific-heat experiments and E(0) is the bare
density of states (phonon and spin-fluctuation inter-
actions turned off), then

Z(0) =E„(0)jE(0).
The integral equations for the gap function h(po)

and for the renormalization parameter Z(p~) can be
written at temperature T assuming particle-hole
symmetry' ' as

E(0)
~(po) = ~po'L&+(po po') —~.3

Z(po)

~(p.'), p.'(.' —A(. ))1 '
2kT' (')&Re tanh

soc

Z(po) jpo=&(0) dpo'& (pr p-o')

I I

(po"—6'(po') )"' 2kT'

where the kernels are given by

2k@

&~(p., p(') =
2k, d Lz Lg.~Z I ImD~(% ~) I~1m~($ ~)r(p~'+No+~+@) '+(po' —p~+ +&) 'j (3)
2k'~ p

1m'(q, co) is the phonon spectral weight function,
Imt(g, &u) is the spin-fluctuation spectral weight func-

tion, g~~ is the screened electron-phonon matrix element

Lq is momentum transfer, z0 is frequency (fz'—=1), X is

polarization], U, is the Coulomb pseudopotential
(discussed below), kz is the Fermi momentum, po

(and p0') are frequencies, r and cu, is a cutoff somewhat

larger than the phonon frequencies.
We see that Z(po) enters the gap equation in the

denominator. This can be explained by the following

argument. In calculating the matrix elements which
enter E+, one should not use Bloch waves since the
electron-phonon interaction mixes some phonon states
with electrons. The actual wave functions are renor-
malized by Z '".Then if one uses the dressed density
of states Z(po')E(0) and the Bloch matrix elements

squared with factors I Z(po)Z(po') 1 ' one finds the

Z(po) ' factor shown in Eq. (1).
Numerical solutions of the above equations have been

carried out by MacMillan' and by Garland' Lboth
with t(g, a&) =0( and also by Berk and Schrieffer''0

L&(q, &o) W0]. All of these authors use a linearization
procedure in which for T—T, one sets the gap to zero
in the square root and in the lower limit of integration.
One then finds from Eqs. (1) and (2)

E(0) " dp,
'

~(p.) = , I &+(po, po ) —~. I &(po')
Z(po) g pp'

Xtanh, (4)
C

COg

p
/

E1 Z(po) jpo=E—(0) dpo'& (po, po') tanh
0 2kT,

(5)

B. Model Solutions without Spin Fluctuations

We now study the case with t(q, co) =0. Inserting
Eq. (3) into Eqs. (4) and (5) and reversing the order
of integration yields

X(0) '"' gdq

Z(,) 0 2k'' 0
d LZ LR.~V I 1m'(a ~) Ij2

"'

dpi',

po po +~+&
, A po' tanh

p Pp' 2kT, (po'+co+z8) '—poz

Ns dp
~ I

, A(po') tanh, (6)
0 po' 2kT, '

2kp "' dpo'2 tanh(po'/2kT, )
1—Z(p() = —X(0), dM g Lggi, ]' I 1m'(q, z0) I

o 2&s' o p (po'+a)+Q) '—po'

4 In Pd the enhancement from the spin fluctuations may be a factor of 2 or 3 (Refs.2 and 25).
' That is, p=-', Hkz'E~(0), where the electronic speci6c heat at low temperatures is pT.
' The assumption of particle-hole symmetry is not necessarily a good approximation in the transition metals, as we will discuss later.
' The momentum variables have already been integrated out.
' W. L. MacMillan (to be published).
9 J.W. Garland (to be published).
Io N. F. ger/ and J. R. Schrie8er, in Proceedings of the Tenth International. Conference on Lou-Temperature Physics, moscow,

1967 (Prozvodstrenno-Izdatel'skii Kombinat, VINITI, Moscow, USSR, 1967). See also S. Doniach and S. Englesberg, Phys. Rev.
Letters 17, 750 (1966).
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The main contribution to the first po' integral in Eq. (6) comes from small Po', thus, we neglect Pq' compared to
Oi (=&o~h). The po integration can easily be done for the first iterative solution

fol' pg (cosh

yielding

=0 for PO +&ph

Z(p, ) co&h kT, co&h
—

pp ] kT6
'

where we have assumed ImD~(g, &o) to be independent
of q and sharply peaked for co=~» with g,&

—g. We
de6ne V~h=2g'/roach, then solving for T, (taking pq

—&0

limit) we have

kT,=co~a exp( —1/g), (9)

g—=[E(0)Vi g 1V(0) U ]/Z(0) (10)

X(0)V,h is generally between 0.3 and 0.7, we see that
u and b are not varying very much. Bucher et al. did
not find c=b, but their estimate of the Coulomb inter-
action was only approximate.

In passing, we note that from Eq. (6) we have an
approximate expression for 6(po), which is

We can easily solve Eq. (7) for Z(0) by replacing
tanh(po'/2kT, ) by unity since here the large po' give
the main contribution (more phase space). The in-
tegration is then trivial, yielding

~(Po) Z(0) &(0)VP~[1—(Po/~ h)'] ' —&(0) U

6(0) Z(po) 5 (0) Vph —5"(0) U,

(13)

Z(0)—1+X(0)Vi,h,

where V» is dined above.
Thus Eq. (10) becomes

g=[E(0) Vpg —E(0) U,]/[1+)V(0) V~h]. (12)

This expression for g is not in agreement with Mac-
Millan's' solution because we have taken a simpler
approximation for 6(0) in Eq. (4). The differences
are of no quantitative importance for the metals with
which we are concerned.

The presence of Z(0) [=1+1V(0)V,h] in the expres-
sion for T, has some experimental support. Bucher
et al." studied the properties of many superconducting
elements, alloys and compounds and found that after
estimating the Coulomb repulsion, they obtained a
general empirical formula for the phonon interaction
of the form

Itch =aS,(0)/[1+bE, (0)j,
where a and fi were constants. Since from Kq. (12), we
expect an expression of the form

Eph ——X(0) Vpg/[1+$(0) Vpi,].
We see that the right-hand sides of these two equations
are equal if

a=b=X(0) V,g/cV~(0) = V~h/[1+X(0) Vpi,].
We have already shown that V» const"" for much
of the region investigated by Bucher et al. and since

"E.Bucher, F. Heininger, J. Muller, and J. L. Olsen, in Pro-
ceedings of the Einth International Conference on I.ozv Temperuture
Physics (Plenum Press, Inc. , New York, 1965),

"M. A. Jensen, Ph.D. thesis, University of California, La
Jolla, 1965 (unpublished) .

'~ M. A. Jensen and J. P. Maita, Phys. Rev. 149, 409 (1966).

Similarly, we can determine Z(po) by integrating Eq.
(7), yielding

Z(po) =1+1V(0)V~h ln
' . (14)

2po 1—(po/(upi )

We have plotted Z(P0) and 6(PO) from Kqs. (13) and
(14) in Fig. 1 as a function of po/co~q for E(0) V~h=0.5
and $(0)U.=0.2.

C. Coulomb Pseudoyotential

One of the important points in Eq. (1) is the presence
of the Coulomb pseudopotential U, instead of the larger
matrix element V,."This replacement occurs because
in obtaining Eq. (1), the momentum coordinates have
already been integrated over and the frequency vari-
ables po' and p0 are for electrons in the Fermi-surface
energy shell (of width 25&0~h). The phonon inter-
action is for electrons in this shell but the Coulomb
repulsion remains large for interactions far outside the
shell. That is, electrons which reside in the shell can
virtually scatter outside it and feel a strong Coulomb
repulsion. In second-order perturbation theory, one
would expect these virtual scatterings to lower the
energy of the electrons inside the shell. Physically, the
virtual scatterings allow the electrons to stay farther
apart in space and so to reduce their net Coulomb
repulsion, which is short range in space and time. Since
the phonon attraction is long range in time (i.e., re-
tard. ed) it can still be effective even if the electrons are
physically instantaneously not close together. One

'4 This was first shown by V. V. Tolmachev in the book by N. N.
Bogoliubov, V. V. Tolmachev, and D. V. Shirkov, . A Eem 3lethod
in the Theory of Superconductivity (Consultants Bureau Inc., New
York, 1959), p. 80, and later developed by P. Morel and P. W:
Anderson {Ref. 18) .
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This model is shown schematically in Fig. 2, where
mph is some characteristic cutoff energy for the phonon
interactions and roe is the bandwidth LO(L~'p) j. The
solutions to Eq. (15) in this model have been worked
out before""" and one obtains I assuming 6(0)=
1.75kT,j the same result as given in Eqs. (9) and (10),
with U, given by

2.0

I.O

V.
1+Nt V, ln(con/ronh)

(17)

0 g ~ ~ I

- I.O—

-2.0—

-3.0—

-4.0—

1.0
I

I

Po/' ph—
'
~ g ~ ~

2.0 3.0

As one approaches Pd, the bandwidth ~~ for excitations
above the Fermi surface should decrease and a decreas-
ing roir should increase U.. For example, if N(0) V,
is 0.5 and Nr=N(0) with roe ——50cooq (1 eV), we find

N(0) U, = (1/2.9) LN(0) V,7—0.17, whereas, if coii=
10rooh (0.2 eV), then N(0) U, = (1/2.2)N(0) V.—0.23.
However, even for a metal like Pd where co~~10Mph
for the particle excitations (those above the Fermi
surface), the hole excitations have a large roe (~100ro,h)
and thus we should not assume particle-hole symmetry
in solving Eq. (15). In this case we find

50 r I t I l

FIG. 1. The variation of the pairing strength 6(po) and the mass
renormalization Z(po) for the linearized (T—T,) equations given
in the text. The first iterative solutions are shown with the para-
meters N(0) V~h=0. 50 and N(0) 0',=0.20. The dashed horizontal
lines indicate the asymptotic values for S(~) (=I) and

~(-)/~(0) =--:.

electron just "follows" the other suKciently far behind
to not feel the Coulomb repulsion but close enough to
make use of the phonon attraction. "To estimate the
size of U„we go back to the original BCS integral
equation (where momentum is the variable) with the
renormalization included. We then have" " the follow-

ing integral equation where we have taken

e =FPks/2m,

N(0) U, =N(0) V,

N(~) =N(~) = N, -V
~- C

GO

X 1+—,'Ni sV, ln
' +-',Ni ~V, ln '", (18)

ph

which for Mp y
= 10')ph M» = 1000)pp and Ey, I V.=

Ni, „V,=0.5 gives N(0) U, =N(0) V./2. 72; where roe, ~
and co~,~ are the bandwidth for particle excitations and
hole excitations, respectively, and where A"&,„and

A(e) =L2Z(e)] ' —,, ' „„, de'. (15)
N (e') E (e, e') 6 (e')

LV e +e
First, we take a square-mell model with particle-hole

symmetry represented in the following way:

E(e, e') = Vni, —V.,
N(e') =N(0),
~(")=~(o),

N(c) =N (e') = N(p)

-Vc

IC(e, e') = —V„
N(e') =Ni

z(")=s„ ~»& I
~

I
and/or I

e'1&~e'

E(e, e') =0, either
I

~
I
or I.' I)~,. (16)

"This simple picture needs some qualifications because the
electron is not localized at one point but is spread out over a
large part of the crystal.

FrG. 2. Schematic of the two-square-well model for the inter-
action kernel which enters the integral equation for the pairing
strength. Only when both electrons are near the energy shell

(~ e ~, ~

e'
~
(cuss) does the phonon attraction V,h enter.

"G.Rickayzen, Theory of Superconductivity (Interscience Pub-
lishers, Inc. , New York, i965).



XI,q are the density of states for particle and hole
excitations, respectively.

Up to now, we have neglected all but the d-band
electrons. We have assumed Nq{0)))E,{0) (which is
gcllcI'ally R good appl'oxl111R'tloll), hilt wc CRI1 tl y R

simple calculation of E(0)U, for the following over-
simpli6ed model of Pd. Ke assume all the hole excita-
tions fall in the d band and all the particle excitations
fall in the s band. Then Eq. (18) becomes

$(0) U, =X(0)V,

QP~ s
X I+,'El,gV.-,g ln

' +2IEI,,V„.„ln
k f

where, e.g., V, ,~ is the Coulomb interaction between
two d-hole excitations. Ke have had to assume that
the Coulomb interaction between a d-hole and a s-par-
ticle is (V...V, ,q)1"."Since from Morel and Andersonl
one expects EI,,V...=0.3 and taking co~,, 500co~h,

100~1,h, and EI,qV, ,q=0.5, we have E(0) U,—
(1/3.0)E(0) V.

Although none of the above calculations could be
expected to give more than a crude estimate of X(0) U„
we 6nd they aH seem to convince one that a reasonable
estimate for E(0) U, is given by

FIG. 3. (a) Lowest-order phonon scattering process and (b)
the lou&est-order particle-hole exchange scattering @which @&hen

included to all orders cause the critical spin fluctuations.

E(0)U,=-',E(0) V,.

D. CI'1tlCI.I SP1Q F1QCtllRtlOQS

(20)
particle-particle (phonon) t matrix in the usual theory
of superconductivityg and we can solve for the particle-
hole t matrix from the integral equation shown in Fig. 4.
One obtains

Up to now we have not included the spin-fluctuation
interactions, t(q, co) in Eq. (3), in the equations for
a(p, ) and Z(po). Square-well calculations with spin
fluctuations and phonons are possible but since the
frequency dependence of Imt(q, co) is not a simple
fllllctloll (It was replaced by R 8 fullctloll 111 thc pllolloll
case) such a model calculation is not very realistic.
Numerical calculations have been carried out by Berk
and SchrieGer' '0 using an expression which they obtain
for t(q, u&) by summing a certain class of diagrams. They
assume that the major contribution to t(q, Io) comes
from the following physical process. A singlet-state
pair initially occupies the k f and —k $ states. An
exchange scattering occurs in which the kt' electron
exchanges places with a q 't electron in the Fermi sea. In
the intermediate state (when qt' has scattered to
kt' but the k't electron has not fallen into the q$
llolc) thc llolc 111 tllc splIl-up sca Illllltlply-scattcl s wl'tll

the —k J, electron {particle). In Fig. 3(a), a normal
phonon scattering is shown in lowest order and in
Fig. 3(b), the spin-fluctuation interaction just de-
scribed is shown. Thus it is the particle-hole I, matrix
f(q, co) which enters the pairing /just as it was the

+ 2,4-.(a )VG(P, p)G(P —q, po —) (»)
d p

from which, using

d4p
G(P, pg)G(P —q, po —a&) =E(0) U(V, co), (22)(2s)'

one obtains

(23)

U(g, ~) is the momentum- and frequency-dependent
I.indhard dielectric function" which approaches unity
as q and ~0(~/qVI((I). In considering the inter-
actions between the electrons of the Cooper pair one
must be careful not to overcount. The pseudopotential
U, already includes certain multiple particle —particle
scatterings and thus using t(g, co) above overcounts,
hence Berk and Schrieffer sum only the terms involving
more than single p-h scatterings. Then the f(q, c0) which

This inay be an overestimate due to the orthogonahty of s and
d wave functions.

'8 P. Morel and P. %'. Anderson, Phys. Rev. 125, 1263 I'1962).
's J. Lindhard, Kgl. Dans' Videnskab. Selskab, Mat;Fys.

Medd 28s 8 (1954).
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t I q, ~)
~g/ )Vc

t+ Vc Vc Vc t
t

j
w j

Vc, ) Vc
I—

t

E. Magnetic Spin Susceptibility

s

ances the spin suscepti-Th article-hole t matrix en an pepRl 1

Il fol'
~ Ip) w Icbl lty) yle ln D

'
ld n an integral equation

can be so ve or1 d f r constant interaction I/'„g g

x t1 ~ =m -) &(t1, ~)/L1 —&(0)V.~(ci, ~)j, (29X Qs & —~su)i

e I;=2tts'E(0) and the other quantities have
bo . h h tatic uniform suscepti-been dined abo . hbove. Then t e s a

blllty g 0 0) has a contribution rom e e e
paramagnetism given by

t (q, ~)
/y8

6 (pt po)c'

ivc &i ttq, ~)

they put into (3) for E~ is

tp-h('%~ IP) =+=&(0)V'~(t1 ~)/I:1—&(0)V.U(t1, ~)j
(24)

E . (24) into Eqs. (3), (4), and (5), Berk
an c rie f erical integration thatand Schrieffer20 6nd after numerica
(with k=fr=1

sFig. 4, (a) DeGnition of e p - as an kn6nlte
sum of multiple scatterings of a partic e m
spin). {b) the integral equation w c can

X(0, 0) =2tttt'E(0)/$1 —N(0) V,j.
b Kolff inThis is slmi ar o the expression derived y

Eq. (30) &iOCS n.Ot lnVO1VC Vspin Iie6neti 111 Eq

sees t a ec
is tied independently t
spin ll ec iont n it does not increase e
caused by a Inagnetic Geld. 22

—10

)
T.—Ip, exp(- 1/g),

E(0) Vph —E(0) U, —E(0) V,p,„
1+%(0)Vph+E(0) Vspip

Z(0) =X„(0)/E(0)
= (-', m'EI)') Iy/E(0)

=1+X(0)Vph+E(0) Vspt~s

V,p,,=aVs in/1 —X(0)Vsj I,

a=1, X(0)V.&&1;

n 2, E(0)V—s~1.

(25)

(27)

1.00—
0.80—
0.60—

0.40—

0.$0—

0.10—
f- 0.08—

0.06—

0.04—

0.02—
numerical integration that ~,

—'ko~ n the folio g
for a compromise with the usua — yp

uch Rn R pl oxlDla ionp t has no lm-'which leo, $9~. Such p
uantitative effects on our resu s, sportant qu Q our resu s) s

deal only with weak-coup lng sup

I

6.7 6.6
tl

00160 61 62 63 64 65 66
A (10&3 ELECTRONS//CC)

transition temperature T, total mag-5. Superconducting transi ionIG.
i and electronic speci cnetic susceptibility x~,t,,i

in unl s 0't of states (eV atom) i.e., pre p o
Ref. 1.The data are taken from Re .

"N I' Berk Ph.D. thesis, University of P y"N I' Berk . . ', '
Penns lvania, 1966

(unpublished) .
e' P. A. %0K, Phys. Rev. 120, 814 I960)."M. A. Jensen (to be published).
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m. COMI~mlsoz WITH EXpERrMEmTS

A. Without Syin Fluctuations

From Eqs. (20), (25)-(28), and (30), we have
expressions which relate the experimental parameters
T„en, y, and x to the parameters E(0), V„V~h, and
V.. We Grst propose to analyze our da, ta assuming that
V,~; =0 in Eqs. (26) and (27); that is, we use the
solutions for g and Z(0) derived above and given in
Eqs. (11) and (12). We later study the case where
V,~;„/0. The data are shown in Fig. 5.

We take" ce,h—-', en, U, =V,/P and solve Eqs. (11),
(12), and (30) and E(0) obtaining

E(0) =-', (1+P)E„(0)
4N~(0) (I—1)

&x(0)I.PL1+ (1/0) 7

0.5—

O. I—

Ir

6.4

Uc

Rh I Pf

65 66 67

p (IO ELECTRONS/ cc )

6.8

2.0
E

cK

l.5

V)

I.0
O

~I

05 o

where

&x(0)—=x/»s'; &v(0) —=»/2~'&s"

I.—=lnen/3T, .

I'10. 6. Behavior of calculated parameters V~h, V„U„and
E(0) obtained using the theory given in the text without the
presence of critical spin Quctuations (i.e., V,~; =—0}.The experi-
mental data for x, y, and extrapolated T, data are from a large
number of alloys as given in Ref. 1 and described, in the text.

From Eq. (20) we expect P &3, so erst we take P=3,
glvlng

r(0) =2M„(0) I1—L1—3E,(0) (I.—1)/E„(0)I/I'I.

Before we solve numerically for X(0), let us discuss
the limit when I))1 (i.e., T,(&1'&) and E~(0)&(
E„(0), which is appropriate past Rh, then Eq. (32)
reduces to

X(0)=-,'X,(0) .
Also from Eqs. (30) and (11) one Ends

&(0)V =1—49'v(0)/&x(0) 3

E(0) Vph =0.33,

Vnh=K&v(0) 3 '.

(33a)

(33b)

(33c)

(33d)

Thus, since as one nears RhXx(0) )X~(0) while
both X„(0) and E„(0) are rapidly increasing )T,~o
(«1'K) j, if we neglect spin fluctuations, we can only
explain these results by requiring a rapidly decreasing
phonon interaction.

In the alloy region where T, is large enough to be
experimentally observable (see Fig. 6), neither ap-
proximation, I-))1or Xx(0)))E~(0),is a very good one
and so we now go back to Eq. (31) and solve for 3T(0),
V., and V~h, using the experimentally determined
parameters T„en, E~(0), and X„(0).However, we
have an additional complication in that the suscepti-
bility which should be used Lsee Eq. (30)j in Eq. (31)
is not the total measured susceptibility but only that
part which is due to the spin paramagnetism. All metals
have diamagnetic contributions to the measured sus-

ceptibility both from Landau diamagnetism and from
the diamagnetism of the core electrons. Also, in transi-
tion metals with unGlled d shells, an "orbital" con-
tribution to the susceptibility x„b arises because d-band
widths are small enough so that excitations caa occur
in which M„ the angular momentum component in
the Geld direction, changes without a very large change
in the energy. Kubo and Obata" have shown for a
simple model (in the tight-binding approximation)
that the orbital susceptibility x„b in transition metals
should be of the same order as the d-electron Pauli
susceptibility L2ps~E(0)$. Unfortunately there is no
way at present to make even a reasonable calculation
of the actual size of x„b in real metals. Since x„b is not
expected to be very temperature-dependent~ '4 one
can, use the temperature dependence of x ~(T) and
the temperature dependence of the NMR Knight
shift to try to sort out the various contributions to the
total measured susceptibility. This procedure has been
applied to Pt, Pd, and Rh by Clogston, Jaccarino,
Yafet, and co-workers, " who Gnd that for these ele-
ments the diamagnetic and orbital (which is para-
magnetic) susceptibilities just about cancel so that the
total measured susceptibility is essentially all d-spin
susceptibility. The s spin susceptibility is almost
negligible since the s density of states is quite small.
With this in mind, we will assume that the measured
susceptibility of alloys near Rh (see Fig. 8 in AJ) is
equal to the spin susceptibility and use the experimental

~3 R. Kubo and Y. Obata, J. Phys. Soc. Japan 11, 547 (1956}.~ Calculations for Ni metal indicate there may be some tempera-
ture dependence of y„bLx„b(T=O'K} 0.8X,b(10' K}; N.
Mori, J. Phys. Soc. Japan 20, 1838 (1965).
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TABI.R I. Experimental data' and the values of theoretically computed parameters calculated using the equations derived in the
text with the assumption that V,~; =0. Some of these results are shown in Fig. 6. The data are taken from the Os—Ir—Pt system (bi-
nary alloys only) and extrapolations from these results.

(10o3
electrons jcc) ln (OD/3 T,) "

N, (0)
(states/

eV atom)

Nx(0)'
(states/

eV atom)

N (0)
(states/

eV atom)
Vph V,

$(0) V (eV) N(0) V, (eV)
U,

(eV)

6.50
6.55
6.60
6.625
6.65
6.675

13.19
18.50
29.20
40.57
75.8
24.9

0.85
0.98
1.15
1.24
1.35
1.45

1.00
1.35
1.80
2. 15
2.60
3.20

0.718
0.820
0.961
1.03
1.12
1.20

0.184
0.195
0.197
0.203
0.205
0.208

0.256
0.238
0 ' 205
0.196
0.183
0.170

0.282
0.393
0.466
0.520
0.570
0.630

0 ~ 39
0.48
0.48
0.505
0.49
0.48

0.13
0.16
0.16
0.17
0.16
0.16

~ Reference 1.
Extrapolated from data for n =6.1 to 6.45 &(10» electrons/cc.

Interpolated from existing data. N&(0) =3y/2k''~, Nx(0) =X/2pg2.

values directly in our calculation of N(0). We entrap
olate our T, data into this region, although this extrap-
olation only estimates E, for alloys past iridium (see
Fig. 5).

Then solving Eq. (32) for 1l)'(0) and using Eqs. (11),
(20), and (30) we can determine Vnq, V„and U, for
the alloys from rs=6.45X10ss electrons/cc to rs=6.65X
10" electrons/cc (see Fig. 11 in AJ). The input data
and the results are given in Table I and are shown in
Figs. 6 and 7.25 The general features agree with the
above approximate solutions. The points of special
interest here are the behavior of Vph and V,. We see
that the decrease in T, has to be attributed to a rapidly
decreasing Vnh, the size of which ( 0.4 eV for Ir) is
not in bad agreement with the values found in other
transition metals (0.59 and 0.85 eV) by similar pro-
cedures. '"" While it is true that screening should
increase (and so Vnn should decrease) when the density
of states increases, the screening in transition metals
depends on the band structure far from the Fermi
surface and hence should not be very sensitive to
changes in 1lt'(0)."For example, the changes in V,h in
the range 4&s&6 were found to be small even though
in this region E(0) varies by an order of magnitude. "~s

Thus, the drop in Vph found past iridium in this analysis
would have to be due to some other reason tha, n the
increasing 1V(0). This brings up the main reason why
these results do not satisfactorily explain the experi-
ments. We found experimentally (AJ) that there is a
strong correlation between the rapid decrease of T,
and the increase of x, y, and x/y. If the above analysis
with V,p; =0 is correct, then the decrease in T, is
caused by a dropping Voa while the increase in x/p
is caused by an increasing 1ir(0) (V, const), and the
strong correletiorI, mentioned above would be somewhat
fortuitous. If, contrary to the behavior elsewhere in
the transition metals, the size of V~h does depend

~ The behavior of N(0) and V, is also shown in Figs. 8 and 9,
where it is compared with results of some later calculations.

26 We have a rigid-band model in mind during this discussion.

(inversely) on 1V(0), then it would be the behavior of
E(0) alone which causes the drop in T, and the increase
in x, y, and x/y. However, as we will see, there is a
different explanation for the behavior of x, 7, x/y, and
R, which does not raise the above objections.

B. Including Spin Fluctuations
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FIG. 7 The bare ( Ar (0)j.and enhanced (.1it » (0) g density of
states both from experiment and from calculations described in the
text. The experimental data are given in Ref. 1 (circles) and in
Ref. 31 (crosses).

We now include the effect of spin fluctuations and
we consider two different regions of our data. First, we
study the alloys for which we have T, data; speci6cally,
below we consider the Os—Ir—Pt system. For these
alloys, x,p;„ is not very much exchange enhanced and
so the diamagnetic and orbital contributions to the
measured susceptibility are not small compared with

Since the size of the orbital susceptibility is
unknown, we cannot extract from the measured sus-
ceptibility the size of x.„;„needed in order to make use
of Eq. (30). Therefore, for this region, we use the
experimental values of T„Bn (—410'K) and 7 to-
gether with Eqs. (20), (25)—(28) to obtain 1V(0), V,
(assuming V, =V,), and x„; . If we solve for cV(0),
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TABLE II. Experimental data~ and the values calculated for several theoretical parameters using the theory of Berk and

Schriefterb together with expressions derived in the text. The data are from the Os—Ir—Pt system (binary alloys only).

Z
(electrons/

atom)

n
(10M

electrons/cc)

N (o)'
(states/

eV atom)

N(0) a

(states/
eV atom)

Vph
N(0) V, N(0) U, N(0) V, ; N(0) V (eV)

8.60
8.70
8.80
8.90
9.00
9.10
9.20
9.30

6.107
6.171
6.235
6.299
6.363
6.389
6.415
6.441

0.55
0.61
0.63
0.66
0.69
0.71
0.73

(0.77)'

0.185
0.175
0.165
0.154
0.144
0.133
0.123

(O. 112)

0.373
0.399
0.405
0.416
0.426
0.432
0.437
0.450

0.235
0.224
0.294
0.312
0.345
0.357
0.379
0.392

0.078
0.091
0.098
0.104
0.115
0.118
0.128
0.131

0, 065
0.090
0.105
0.120
0.150
0.160
0.180
0.195

0.412
0.444
0.454
0.468
0.483
0.491
0.501
0.515

1.10
1.10
1.12
1.12
1.13
1.14
1.14
1.14

~ Reference 1.
References 2, 10, and 20.

e N (0) =y/37r2Kgp.

d V =2V&g —Uc=2.0 ev.
e Dc=3 Vc.
~ ( ) means extrapolated value.

5.0—
from X

~c teV)

2.0—

from Tc, g
I.O—

Ir l I Rh~Pt l Pdf

6.I 6.2 6.5 6A 6.5 6.6 6.7 6.8

0 ( IO ELECTRONS /cc)

FIG. 8. The irreducible electron-hole Coulomb interaction V,
(i.e., with correlation phenomenologically included). The curves
labeled with values chosen for V~h (the adjustable parameter)
are calculated using experimental T., eD, and y data and the theory
described in the text, The curve labeled "from x, y" is calculated
directly from the Berk—SchrieGer theory, while the curve labeled
"V,~I =0" .is obtained from the theory developed in the text
without the inclusion of critical spin fluctuations.

eliminating V,~;„ from Eqs. (25) and (26), we find

—1+L1+4E~(0)(1+g) (2Vph —U.)]"'
2 (2V,g —U.)

which can be solved if we fix the parameter V=-

(2V,h
—U,). We then calculate $(0) from Eq. (34)

with V 6xed at reasonable values between the possible
extremes of 1.0 and 2.0 eV, which corresponds to
Vph 0.60 and 1.1 eV, respectively. The resulting
values for N(0) are shown in Fig. 7, curves a and b,
for the region n=6.1 to 6.4X10" cc ' (which corre-

sponds to Z=8.6 to 9.2 in the Os—Ir—Pt alloy series).
The data are also given in Table II, for V=2.0 eV.

Using the above calculated X(0) values, we can
calculate V,. We assume that U, and V, are related by
Eq. (20) and we assume V, =V„and are then able to
solve for V, with only V,z (since V=2V,h

——',V,) as
the adjustable parameter. We have plotted the results
of this calculation in Fig. 8 (see also Table II) for
values of 2Vpl, —~V, =1 and 2 eV. The curves are
labeled by the approximate choice of V».

We also wish to study the behavior of the calculated
spin susceptibility near iridium. We use the x~t, & and
p values again from the Os—Ir—Pt system in order to
maintain as much accuracy as possible, rather than
use some average curves containing the data from all
the ternary alloys plotted versus electron density. The
results of this calculation are shown in Fig. 9, where we
have also plotted y and x„&,~ (total measured suscepti-
bility). The values calculated using the above theory
fall within the hatched region which shows the variation
of x,~;„with possible choices of V~h (also we have
allowed 2U.(V,(3U,). We notice that the width of
the hatched region is small, indicating the relative
independence of x,„; on the assumed choice of these
parameters. Thus, we have a prediction for the spin
susceptibility for the alloys from Irp.@Osp.35 to Irp.spP tp.2p.

The measured susceptibility values for the Os—Ir—Pt
system are given in AJ and are shown in Fig. 9. We see
that the theory predicts a variation of the spin suscepti-
bility in the Os—Ir alloys which is parallel to the total
measured susceptibility. This is as we might expect,
since the difference due to x„b and xq;, '" (as discussed
above) should vary only slowly upon alloying. How-
ever, the theoretical curve does not rise nearly as
abruptly past iridium as does the experimental data.

Insole added in proof (1) We have recently pointed

'7 A. M. Clogston, V. Jaccarino, and Y. Yafet, Phys. Rev. 134,
A650 (1964); J, A. Seitchik, A. G. Gossard, and V. Jaccarino,
ibid. 136, A1119 (1964); J. A. Seitchik, V. Jaccarino, and J. H.
Wernick, ibid. 138, A148 (1965).
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TABLE III. Experimental data' and the values calculated for several theoretical parameters using the theory of Berk and
Schriefferb for the eGect of critical spin fluctuations on the electronic specific heat. The data are from the Rh-Pd system.

Z
(electrons/

atom)
(1023

electrons/cc)

N'7(0) '
(states/

eV atom)

X„(0)~
(states/

eV atom)

N(0)
(states/ V,

E~(0)'/3l'(0) eV atom) E(0) V,~; N(0)V, (eV)

10.0 (Pd)
9.95
9.91
9.82
9.50

6.79
6.78
6.77
6.75
6.67

12 F 1
20.9
16.9
10.4
3.94

1.96
2.07
2.00
1.77
1.42

8.1
10.0
9.5
7 9
4 5

0.24
0.21
0.21
0.23
0.32

7.1
9.0
8.5
6.9
3.5

0.980 4.1
0.990 4.7
0.988 4.7
0, 979 4.25
0.92 2.90

~ Reference 1.
References 2, 10, and 20.

o N (0) &/j~&Kgj

~ &~(0) =X/2ua'
e From numerical calculations by N. F. Berk and J. R. SchrieBer.

out LM. A. Jensen, in Proceedings of the International
Magnetism Conference, Boston, 1967 (to be published) 7
that the rapid increase in x past iridium (i.e. as Pt,
Rh or Pd is added) is due to a breakdown of the rigid-
band model. }

We also wish to study the behavior of the parameters
E(0) and V, for the strongly exchange-enhanced
Pd-rich alloys (x/p))1). If we neglect V~h compared
with V,p;, (since V,~;~)1 eV in this region) then
we have from Eqs. (27) and (30)

&x(0)/&v(0) = IL1—&(0)V.7L1+&(0)V"'-7I '.

(35)

Since Eq. (28) for V,~;„ is not a very good approxima-
tion near X(0)V, 1, we use the actual numerical
results of Berk and Schrieffer' and find the values for
E(0) shown in Fig. 7 (curve c) . The relevant data are
given in Table III.

We see that the above analysis (with V,~;,&0)
predicts X(0) to be a rather slowly varying function of
position in the fcc transition metals which decreases
from Ir to Pd. The very large value of p measured for
Pd-rich alloys is, according to this theory, caused by
many-body eGects arising from the critical spin Quctua-
tions. Claus and Ulmer" have measured what is claimed
to be the bare density of states" in Ir, Rb, Pt, and Pd
by x-ray emission spectroscopy. They cannot measure
an absolute value, but quote the density of states for
Rh, Pt, and Pd relative to that for Ir. If we calibrate
their results with our calculated value for Ir (using
V~h—1.0 eV), which leads to E(0) =0.48 states/(eV
atom) then they predict N(0) =0.33, 0.21 and 0.15
states/(eV atom) for Rh, Pt, and Pd, respectively. These
values are also shown in Fig. 7 and can be seen to agree
qualitatively with the results calculated from the
Berk-Schrieffer theory (curves a, b, and c). Alterna-
tively, we see that E(0) calculated from TP' eD, y,
and x with the assumption that V,~; =0 (dashed curve)
is in strong disagreement with the results of Claus and

~8 x,p; here refers to d-electron paramagnetism; we neglect here
the small contribution from the s electrons.

» Extrapolated T, values.

Ulmer. ' "However, recent photoemission studies on
Pd by Yu and Spicer" do show a peak in the measured
density of states near the Fermi surface and thus dis-
agree with the work of Claus and Ulmer. Although
the behavior of $(0) found above is consistent with
some of the experimental properties of these metals"
it seems likely for several reasons (some of which we
will mention) that the theory overestimates the size
of the mass enhancement. The difficulty may lie in
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'OR. Huguenin and D. Baldock, Phys. Rev. Letters 16, 795
(1966).

"H. Claus and K. Ulmer, Z. Phys. 185, 139 (1965}.
"A. Y. C. Yu and W. E. Spicer, Phys. Rev. Letters 1/, 1171

(1960).
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FIG. 9. Magnetic susceptibility g, p(&,& 0 is the total measured
susceptibility. x„p(g p o gQ' is corrected for the diamagnetic
contribution estimated from the diamagnetism of Au( —0.53
states/eV atom) (Ref. 27) . The triangles are experimental y
values (Ref. 1). The heavy curve labeled p,p;, (theory) is cal-
culated from T: and p using the Berk-SchrieGer theory as de-
scribed in the text. The width indicates the probable uncertainty
in the calculation, due to the uncertainty in Vph.
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the neglect of the details (e.g., anisotropy) of the
Fermi surface of the metals near Pd. {Pote added ie
Proof (2) Experiments on the Rh-Ni system by Bucher
et al. LE. Bucher, W. F. Brinkman, H. J. Williams, and
J. D. Maita, Phys. Rev. Letters 18, 1125 (1967)]
indicate that the model calculations which give Eq. (28)
somewhat overestimate the size of V„;„.From the work
of Doniach {S. Doniach, Phys. Rev. Letters 18, 554
(1967)j and Schrieffer D. R. Schrieffer, in Proceedings
of the International Magnetism Conference, Boston,
1967 (to be published)g it appears that the over-
estimation of V,~;„may be mainly due to the use of a
contact potential which underestimates the faB of
t(q, (o) with q. I

For the region near Pd where g&&y, we can also
determine V,. Using Eqs. (27), (28), and (30) we And

the results shown in Fig. 8 (open circles). We see that
V, (we did not assume V, =V,) near Pd is 4 eV,
which is almost an order of magnitude larger than had
been thought. ~ A value this large, however, is con-
sistent with the large value for the V. found for Ni
in Be-Ni alloys by Klein and Heeger. ""We see that
the results for V, from the calculation with V,~; =0
(dashed curve in Fig. 8) are much smaller than the
values found using the Berk-Schrie6er theory. Also,
V, apparently increases abruptly as one moves past
iridium which is probably due to the fact that V. being
intra-atomic depends more on the atomic properties
(and also on the lattice spacing as discussed in AJ)
than on the band properties. Thus, in Ir-Pt alloys, one
might consider Pt as a kind of virtual magnetic impurity
which can be polarized for a short time by the multiple
scattering of electrons. /Note added in proof (3) The
fact that the more rapid increase in g past iridium is
not accompanied by a more rapid fall of T, past iridium
may be due to the fact that local spin Quctuations,
e.g., on a Pt site, are large momentum and hence higher
frequency excitations and hence have short lifetimes
compared with the long wavelength low-frequency
spin Quctuations which are most disruptive of the super-
conducting pairing. ]

~A. Klein and A. J. Heeger, Phys. Rev. 144, 458 (1966).
~ S. Donia, ch, Phys. Rev. Letters 18, 554 (1967).

IV. SUMMARY AND CONCLUSIONS

In the two preceding sections we have studied the
behavior of the parameters E(0), V~q, V„V„and U„
which one determines from the experimental data for
T„9~,y, and x, using two diferent theoretical models.
In the 6rst model we included only the retarded phonon
interaction and the instantaneous Coulomb interaction
in the pairing equations. In the second model we added
the dynamic interaction caused by the presence of
ferromagnetic spin Quctuations following the theory
of Berk and Schrie6'er.

Using the 6rst model we can explain the abrupt
decrease in the superconducting transition temperature
as one fills up the d band only by a decreasing phonon
interaction. We therefore find no simple explanation
for the strong empirical correlation between the de-
creasing transition temperature and the increasing
exchange enhancement of the spin susceptibility. If,
however, the screening which reduces V~I, is very
sensitive to the density of states at the Fermi surface
(unlike the behavior observed in most transition
metals) then the increase in the (bare) density of
states as one ills up the d band couM explain the
correlation between decreasing T, and increasing g.

On the other hand when the critical spin Quctuations
are included we 6nd a very natural explanation for the
strong correlation between the decreasing transition
temperatures and the increase of x, y, and x/y as one
6lls up the d band. However, the rapid increase of y
past iridium (e.g., in Ir—Pt alloys) would lead one to
predict an even more rapid decrease of the supercon-
ducting transition temperature than is observed. LSee
note added in proof (3)j.This theory also predicts an
unexpectedly large mass enhancement near Pd which
may indicate that it overestimates the importance of
the spin fluctuations. LSee note added in proof (2) .]
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