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In the scattering of low-energy electrons or positrons by spherically symmetric atoms, a significant role
is played by the long-range interactions. These originate partially in the adiabatic polarization of the atom,
which contributes 1/q', 1/q', and higher terms, where q is the electron-atom separation. There is also a non-
adiabatic contribution, which behaves asymptotically as 3a@Sj(e')'/qe, where e' is the charge of the incident
particle; this contribution was first studied by Mittleman and Watson in the case of hydrogen. We have ob-
tained a useful if formally trivial extension of their results on p& to a wide class of atoms. We have also ob-
tained rigorous if sometimes crude upper and lower bounds on p& which depend upon the availability of some
information on the low-lying atomic energy levels and the associated oscillator strengths, and on the elec-
tric dipole polarizability. Bounds on P~ have been obtained for He, Li, Ne, and Na. Statistical moment
studies lead to estimates of p~ for the rare-gas atoms.

1. INTRODUCTION

'HE problem Of the scattering of low-energy elec-
trons by complex atoms is clearly not one that

can readily be attacked theoretically from first prin-
ciples. In fact, the presence of significant effective long-
range potentials causes the phase shifts to vary so
rapidly with the energy that it is dificult, even using
experimental data, to extrapolate or interpolate in a
study of the phase shifts as functions of the energy
unless one explicitly extracts long-range effects.

It was recognized some time ago' that effective-range
theory as originally introduced in nuclear physics was
not directly applicable to the scattering of charged
particles by neutral polarizable systems, and a modified
eGective-range theory was introduced' ' in which the
contributions of the long-range interactions which can,
at least in principle, be deduced from experimental data
are separated out. The short-range interactions cause
a relatively slow variation of the phase shifts with
energy; for each phase shift, this effect can often be
adequately characterized, in the domain from zero to
a few eV, by two parameters, analogs of the scattering
length and effective range of the usual effective-range
theory. This combination of a theoretical analysis of
long-range effects which extracts the rapidly varying
component of the energy dependence, a component
which is not an analytic function, and the subsequent
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theoretically well-founded phenomenological analysis of
the short-range effects can be particularly useful in
determining the scattering in the very low energy
domain largely inaccessible to the experimentalist.
Modified effective-range theory has been applied to the
scattering of low-energy electrons by hydrogen atoms'
and by the rare gases. 4

The original papers" and the applications'4 con-
tained an analytic study of the dominant effects of the
polarization potential which varies as 1/q', where q is
the distance between the incident charged particle and
the atom; long-range effects were not fully accounted
for. More generally, the point was stressed that all long-
range potentials have their somewhat unusual energy-
dependent effects precisely because of the contribution
that comes from very great distances; since the potential
is exceedingly weak there, the specifically long-range
contribution to the phase shift is given exactly by the
Born expansion. More precisely, all contributions to the
phase shift qz associated with angular momentum L
which dominate over the k' +' short-range contribution
are given exactly by the Born expansion connected with
the long-range interaction. ' For higher values of L, and
particularly for large values of the electric dipole
polarnability a& of the target, where higher terms in
the Born expansion —which are very di%cult to obtain
analytically —may still be more important than short-
range effects, it is useful to determine long-range
effects numerically; one should be perfectly happy to
solve a one-body problem numerically if it is useful in
the analysis of a many-body problem. The formulation
of the numerical problem has been given not only for
neutral-atom targets' but for charged-ion targets. r (The

' T. F. O' Malley, L. Rosenberg, and L. Spruch, Phys. Rev. 125,
1300 (1962).
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Rev. 137, A1068 (1965).' R. Oppenheim Berger and L. Spruch, Phys. Rev. 138, B1106
(1965).
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latter formulation is also applicable to the scattering of
charged particles by nuclei. ) Tables of coefficients for
the 1/q' case, as functions of the energy, for various
target electric dipole polarizabilities and for different
orbital angular momenta, should be available soon';
the effect of the 1/q' term can often be treated via
perturbation theory. The determination of the coeffi-
cient of the 1/q' term forms the subject of the present
paper.

The analysis of the effects of long-range potentials
obviously requires a knowledge of the dominant terms
in that potential. For the scattering of a light incident
particie of charge e' by a (fixed) nucleus of charge Ze
containing 2 electrons, the long-range interaction will
be shown to be

(Z —s)ee' ni(e')' (o&
&(q) =

q 2q4

X +0(—) . (1.1)

Gp= A'/me' is the Bohr radius, a& and n& are the electric
dipole and quadrupole polarizabilities, respectively, of
the atom or ion, and pi determines the leading non-
adiabatic correction, a measure of the inability of the
electric dipole induced in the target to follow the motion
of the incident particle. A precise (formal) definition of
P~ will be derived, and estimates of P~ for a few atoms
will be given. The leading nonadiabatic contribution
was first obtained by Mittleman and Watson for the
case of e H scattering; it was in non-Hermitian form.
An equivalent Hermitian form' was subsequently ob-
tained by Mittleman. The parameters ni, otp, and pi are
properties of the target only; they are independent of
the particle being scattered. A review of the available
theoretical and experimental information concerning
n& and o.& has been given recently by Dalgarno. "The
value of Pi for H was given by Mittleman. An estimate
of P~ for He has also been obtained. "

The Mittleman-Watson derivation is very similar to
a derivation presented in Appendix A based on a study
of the equivalent one-body problem in Feshbach's"
formulation in which the projection operator I' projects
on to the unperturbed target ground state. A more
natural choice of projection operator would seem to be
that associated with the adiabatic approximation; for
each value of q, one projects on to the ground state of
the target in the presence of the potential generated

'R. Oppenheim Berger, H. Snodgrass, and L. Spruch (to be
published) ~
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by the incident particle fixed at q. The adiabatic ap-
proach has the advantage that the adiabatic 1/q' term
is thereby atuomatically accounted for, as is the adia-
batic component of the 1/q' term. The role of the
perturbation operator is then largely played by the
kinetic energy operator T(q) of the incident particle
rather than by the interaction of the incident particle
with the target particles. We have not actually obtained
the next term in the long-range potential —the term
which goes as 1/q' —but we believe that is thould be
easier to obtain using the adiabatic ground-state wave-
function approach than the unperturbed ground-state
wave-function approach. Apart from the question of the
choice of the projection operator, our results represent
a useful though formally trivial extension of those of
Mittleman and Watson" in that they are applicable
to any atom or ion for which the scattering problem can
be reduced to an analysis of one or more single-channel
scattering processes; this includes atoms whose ground
states can, in a sensible approximation, be said to have
orbital angular momenta 1.=0. (An extension to multi-
channel problems should present no real difficulties. )

Since we are not attempting an approach from first
principles, it will be useful to consider the possibility of
determining n&, a2, and pi experimentally, by means
other than an analysis of experimental scattering data.
More generally, it will be interesting to consider how
far one can go in an attempt to determine scattering
parameters such as phase shifts and cross sections
without doing scattering experiments.

The determination of the parameters which charac-
terize a modified effective-range theory expansion can
be viewed as an optical-model potential approach (with
the long-range behavior built in) which has been so
helpful in nuclear physics and whose potentialities in
atomic physics have been considered by a number of
people and stressed by Gerjuoy. '4

2. FORMULATION IN TERMS OF
ADIABATIC STATES

We consider the single-channel (elastic) scattering of
particles of positive or negative charge e' by spherically

symmetric atoms or ions which contain s electrons and
a nucleus of in6nite mass and charge Ze. We take the
incident particle to be distinguishable from the target
electrons. For present purposes, this does not exclude
incident electrons, for we are interested in the long-range
behavior of the effective interaction, and an electron at
great distances from the target is distinguishable from
the target electrons. (The argument is not completely
convincing, especially since the slowly moving incident
particle has a long wavelength. Some more formal if
still not rigorous arguments to justify an approach in
which the Pauli principle is not used have been pre-
sented. ' We shall assume that such an approach is

"E. Gerjuoy, Phys. Today 18, 24 (1965).
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justified. ) The total Hamiltonian H is then given by

H(r, q) =Hr(r)+T(q)+ V(r, q), (2.1)

where H~ is the target Hamiltonian with r denoting the
space and spin variables of all the electrons, T(q) is the
kinetic-energy operator of the incoming particle with a
mass which is to be negligible relative to that of the
target, and V(r, q) is the interaction potential between
the incident particle and the target particles, which we
assume to be spin-independent. It will be convenient to
break up V(r, q) into its unshielded and shielded
components,

We then have

since 8„(q) approaches Er„asymptotically.
Ke now introduce the adiabatic projection operator

P de6ned for each value of q by

P.—=yo)(go. (2.S)

Explicitly, for an arbitrary function f(r, q), we have, for
each value of q,

P,f(r, q) =Po(r, q) Po(r', q) f(r', q) dr'.

where

and

V(r, q) = V„,h(q)+ V,h(r, q),

V. .g(q) = (Z—s)ee'/q

(2 2) With the adiabatic excited-state projection operator Q,
defined by

,=—1—P„
we have

V,p(r, q) =ee' ——P
-q *=~ Ir,—ql-

The total energy of the system is

(2 3)
P '=P, Qo'=Q, and P,Q, =Q,Po=O.

The original Schrodinger equation

(H E)@=0-

[Hr(r)+ V,h(r, q) —8 (q) jP„(r,q) =0, (2.5)

where, for each 6xed value of q,

p„(r,q)p (r, q)dr= b„ (2 6)

where 8' is the initial kinetic energy of the projectile
and E&0 is the ground-state energy of the target. The
orthonormal target eigenfunctions P»(r) defined by

Hr(r)4»(r) =E»4»(r) (2 4)

are completely antisymmetrized with respect to ex-
changes of target electrons.

For E' relatively small compared to the 6rst excita-
tion energy, E» E&o, the states—f» will often be very
much distorted adiabatically by the interaction V. It
therefore seems useful to expand not in terms of the
fr~(r), which are generated by Hr(r), but in terms of
the orthonormal set of functions p (r,q) with associated
energy eigenvalues $„(q) generated by Hr(r)+ V,h(r, q).
We have

They can be formally uncoupled as

P.[H+HGo.H —EjP.+=0, (2 9)

Q,[H+HGP. H EjQ,+= —Q—HP 4, (2.10)

where 6 6 G@~, and P,C~ are de6ned by

P,(H E)P,G~ = P, — —

Q.(H—E)Q.G'= —Q.

P (H E)P 4' =0, —

(2.11)

(2.12)

(2.13)

and by appropriate boundary conditions.
The equivalent one-body equation (2.9) contains all

of the scattering information contained in the original
Schrodinger equation. We will now rewrite this equation
in a form in which the effective interaction is exhibited
explicitly. To begin, we define the adiabatic one-body
function uo, (q) by

can be rewritten as a set of coupled equations for the
components P,%' and Q,%' rather than in terms of the
components P% and Q4'. We then have

P.(H E)P.@=—P.HQ.q, —
Q.(H—E)Q.@= Q.HP.+.—

The @ will be taken to be real, as will all wave functions
throughout the paper. The P„are to be regular at the
origin and are to behave asymptotically as

uo, (q) =— yo(r', q) 4'(r', q)dr'.

We then have

(2.14)

4.(r,q) ~ 4r-(r), q ~ P.q —=y, (r,q)u„(q) . (2.15)

Using Eqs. (2.1), (2.2), (2.5), and (2.15), we can write
(For special cases, such as the H atom and hydrogen-
like ions, there are special problems associated with P,HP.@=go(r,q) T(q)+. V„„,h(~)+ bo(q)
degeneracy, but these can easily be handled. ) We
introduce the potentials o„(q) defined by

e (q)
—=8„(q)—E». (2.7)

+ po(r, q) [T(q)go(r, q) jdr uo (q), (2.16)
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where the square bracket indicates that the T(q) within
the square bracket is to operate on Pp(r, q) only. ln
arriving at (2.16), we used the fact that the cross term
arising from the application of T(q) vanishes, that is,

4o'dr= 1.

We next consider the term in (2.9) involving G& . From
the definition of Pp, (2.5), and of P„, (2.8), it follows that

P~Q =P,TQ, and Q~P, =Q,TP, .
Dropping a factor of go) on the left, we can now rewrite
(2.9) as

with
LT(q)+'U —E']up, (q) =0,

'U = V„„h(q)+vp(q)+v, ',

(2.17)

(2.1S)

where vp(q), defined by (2.7), is the additional energy of
the system due to the adiabatic interaction of various
multipoles of the ground state of the target with the
incident particle 6xed at q and where the nonlocal
operator ep' is de6ned by

vo'uo, (q) =— pp(r, q) (T(q) p) p(r, q) ]dr

Xup, (q)+vo"uoo(q), (2 19)

4p(r, q)r V,4p(r, q)]dr vpuo (q)

=L'v,g (a)) v,fe, '(r, q)zr=o,

since

L&r(r) E»34-o(r, q)
= —LV,h(r, q) —vp(q)]go(r, q), (3.1)

is regular at the origin, and approaches pro(r) as q ~ oo .
The normalization of po is given by Eq. (2.6). We intro-
duce the Green's function gp(r, r') associated with the
target; gp is to satisfy

[H r(r) E»]go(r—,r') = —g(r —r'), (3.2)

is to be symmetric in r and r', is to be regular at the
origin, and is to vanish asymptotically. Since frp(r) is
a solution of the homogeneous equation obtained from
(3.2) by dropping the delta function, gp is defined
uniquely only to within the additive term qk»(r)Pro(r ),
where c is an arbitrary constant. It will be convenient
to choose gp to be orthogonal to ))t»(r) Land therefore
to frp(r')]. We can then invert (3.1) and write

A(r, q) =&(q)4 o(r)

symmetrization, for all values of q. To be useful for all
values of q we must determine pI)p(r, q) and Go, but the
problem of determining G is generally more dificult
than that of solving the original Schrodinger equation.
The approach of Sec. 2 is, however, a very useful one if
we limit ourselves to a determination of the long-range
behavior of 'U, or, more precisely, to terms in 1/qr, for
the term in Gq does not then contribute at all and Pp
need only be determined asymptotically. To perform
this determination, we 6rst obtain the integral equation
satisfied by p) p.

Qp satisfies (2.5), which we rewrite as

where the operator 'vp ls de6ned by + go(r, r')(Voh(r', q) —vo(q)]4o(r', q)dr'. (3.3)

vo"uo, (q) =— po(r, q) T(q)G& (r,q; r', q') T(q')p))o(r', q')

X u(o)qdrdr'dq' (2.20).
Note the explicit appearance of T(q) in each term in
vp'(q). Equations (2.19) and (2.20) will provide the basis
for our discussion in the next section, where ep and eo'

will be studied asymptotically using perturbation
theory. It is often possible to evaluate the asymptotic
form of pp rather accurately. One can then obtain ep

and the 6rst term of ep' rather accurately. On the other
hand, the appearance of G~ means that the second
term in ep' is a highly complicated nonlocal interaction
which is very diKcult to treat accurately even asymp-
totically. It will be shown, however, that the term in
Go) only contributes terms of order 1/q'.

3. LONG-RANGE BEHAVIOR OF THE
EFFECTIVE POTENTIAL

The de6nition in Sec. 2 of the equivalent one-body
potential 'U is valid, apart from the question of anti-

X(q) is determined to within a phase factor by the
normalization condition satis6ed for each value of q
by 4p.

Finally, we let q be large. For sufBciently large q, we
can be sure that the solution of (3.3) obtained by
iteration converges. %'e then have

y,(ro) =N(q) f,(r)+, fgor )v, z(r', o)f, ,(,
r'')dr'

+ gp(r, r') PV,h(r', q) vo(q)]gp(r', —r")

X V, (r",hq)P (r')rdpr'dr"+ . , (3.4)

where the orthogonality of gp to frp accounts for the
omission of terms containing vo(q) on a number of
occasions. The number of terms in (3.4) that must be
retained depends upon how far in powers of 1/q one
wishes to obtain the equivalent one-body potential.
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Ji(r,q)—=P r Pi(cose, ),
s~l

(3.6)
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and noticing that (pro, Jixi)=0 for 1/1', we have,
using Eq. (3.5),

Ay (lg 1
~o(q) = —o(e')' —+—+O—

q4 q6 qs

Equating the left- and right-hand sides, we find

Ay 0.'2

o(q) = —-'(")' —+—+o-
q4 q' q'

(3.17)

%e turn our attention now to the determination of
vo' as given by (2.19). To evaluate the first term, we

operate on (3.14) with T(q) and obtain

PT(q)@o(r,q)) ~ —(e'/e)oXoPigro(r)fTq 4)

+(e')' goJ,X,dr'LTq 4)+O(q—') . (3.18)

In arriving at this result, we used the relationship

J'4(cos8~)
T(q) Z

ql+I
(3.19)

valid since we are not concerned with q =0, and we used
the fact that

go(r, r') Ji(r', q)xi(r', q)dr'

is independent of q. Multiplying (3.18) by Po on the left
and integrating over r, we use the orthogonality of pro
and go to arrive at

go(r, q) T(q) po(r, q)dr

e'q' k' 4X3 / Iq= —
I o pi— +ol —

I
(3.20)

e ) 2m q' kq')

The proof that vo", defined by Eq. (2.20), contributes
asymptotically only as 1/q' is indicated in Appendix 3.

From Eqs. (2.18), (3.17), and (3.20), we find that to
order 1/q', 'U is local and energy-independent, being
given by Eq. (1.1), where the a& and P& are defined by
Eqs. (3.16) and (3.12), respectively. LSince n& and Pi
are proportional to e' and to e4, respectively, it follows
that 'U as given by (1.1) depends, as it must, only on
the product ee'.)

to give a function which transforms like L=O or L=2
so that one must choose the L=2 component of V,h, a
component which goes as 1/qo. Jt.4(q) vanishes at least
as 1/q' since V,h goes at least as 1/q'. Introducing the
electric multipole polarizabilities e& numbers defined by

ai —=—2(pro Jixt) = 2e—'(Pro, J(goJ&pro), (3.16)

4. DOMAIN OF VALIDITY OF THE
EXPANSION

The expansion of 'U(q) in powers of 1/q, as given by
(1.1), is valid "for sufficiently large q,

" or, more
precisely, for q sufficiently large for the iteration of &0

given in (3.4) to converge. That the iteration will

converge for q large enough, say, q)g, is reasonably
clear on physical grounds. The contribution to the phase
shift of those terms with an energy dependence less than
that associated with short-range potentials, namely,
k'~', will be completely determined by (1.1), indepen
dent of tke value of q, "for sufficiently small energies
If, however, g is very large, those terms in the expression
for the phase shift which have their origin in short-range
potentials will have such large coefKi.cients that even
though they behave as k'~' or some higher power of k,
the energy domain validity of the terms arising from
(1.1) alone, some of which go as k', for example, will

only be from zero energy up to some in6nitesimal
energy.

In other words, we are faced with the fact that in
actual practice one really wants to have some idea of
the range of q for which the expansion (3.14) for go is
valid and for which, therefore, the expansion (1.1) for
'U is valid. Put slightly differently, one wants to know
where to cut off or alter U as q varies from q= Uo to
smaller values of q. This question will not normally be
answerable from 6rst principles. A more complete
discussion ~ill be given elsewhere. Here, we simply
comment that one could attempt, as one of many
possibilities, to replace q

' by (q'+a) ' and q
' by

(q'+b) ', in (1.1), for all values of q, with a and b con-
stants to be determined empirically which presumably
parametrize short-range effects due to exchange, the
excitation of higher states, etc. Note that the usual
replacement of q

' by (q'+d')' would not be consistent
in the present context for it has contributions which go
as q

' as well as q
' and we have here determined the

correct coefficient of q '. In any reasonably refined
treatment, it might be necessary to take a and b to be
functions of L.

S. EVALUATION OF $i

%e now turn our attention to the question of obtain-
ing numerical values for pi for various atoms.

A. H-Like Systems

For H and H-like systems, X& is known exactly, "and
Eq. (3.11) leads immediately to

Pi(Z, H-like system) = (43/8) (ao4/Z') . (5.1)

(It is clear that pi for H-like systems must go as Z '
since it is proportional to the square of a length and
inversely proportional to the square of an energy. ) For
Z = 1, Eq. (5.1) reduces to the value obtained
previously. '
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B. Direct Use of Approximations to Xl

For other than the one-electron case, the method that
would probably yield the most reliable results for most
systems would be to use x, as obtained from Eq. (3.8),
an equation especially suited for the numerical evalua-
tion of X&. Reasonably accurate approximations to Xi
have been obtained by Sternheimer'5 and others for
many different atoms. Ke will restrict ourselves to the
case of He, for which a relatively simple analytic
approximation to Xl was obtained by Schwartz. "This
leads to the estimate Pi(He) =0.46ao', an estimate which
can not be expected to be very accurate since the use
in Eq. (3.12) of the same approximation to &i leads to
an estimate of ni which is 20% lower than the best
estimates available. A value of 0.44u04 has been ob-
tained by LaBahn and Callaway" using a somewhat
more complicated approximation to xl. Statistical
moment studies lead to a presumably better estimate of
Pi(He). (See end of Sec. 5.)

C. Dipole-Oscillator Strengths

We turn now to a second method of obtaining Pi, in
which pl is expressed in terms of the electric dipole
oscillator strengths, the dipole transition matrix
elements from the ground state Prp defined by

ground state. It follows directly from Eq. (3.8) that

~i=o'P. 'Pr Q'r Jigrp)/(Ero Er ) ~ (54)

We immediately obtain, from (3.12),

Pi=e'Z. ' l(4r. ,~intro) ~'/(Ero &'r—.)' (.5.5)

In particular, we have

z

I(4r., 2 r' cos~Aro) I'/(E» Er.)—', (5 6)

We can now express Pi in terms of the oscillator
strengths as

e4h2

Pl= 2' fp-/(Er. &-'») '. —
2m n

(5 7)

If we use Eq. (5.4) in Eq. (3.16), we obtain the
standard relation

rzl 2e Q ~
(4'ro Jig'r ) ~ /( r -ro) ~ (5 8)

where we used Eq. (3.6). Because of the equality of the
x, y, and s component contributions, we can rewrite
Eq. (5.6) as

e2

Pi= P' —~(4r. ,pinero) ~'/(Ero Er.)'.—
3 n

where

fo.=
2m(Er —Ero)

I (Pro, S z0r ) I
',

3e h

pl=——e r;.

(5.2) In particular, we have

zzi 3 E ~ (4 rp)pl/ra)
~

/(Era Ero)

It is well known from studies of nl, which can also be
expressed in terms of the fp, that the use of the fp does
not lead to very accurate estimates, both because the
fp for sz representing a bound state are normally not
known very accurately and because the method does
not readily allow one to take into account contributions
from the continuum. Nevertheless, the use of the fp„
allows quick if rough estimates and will provide us with
some orientation. Further, the estimates provided by
the use of the fo„should be somewhat more reliable for
pl than for al. This follows from the fact, to be shown,
that the expression for P& contains one more energy
denominator than the expression for n&, thereby reduc-
ing the relative contributions from the higher energy
states and in particular from the continuum states
whose contributions we are here neglecting. (It will also
be possible to partially account for the continuum
contribution if ai is known experimentally. )

To express P, in terms of the fp, we begin by noting
that it follows from the equation which defines it,
Eq. (3.2), that gp can be written as

g, (r, r') =P' P, „(r))(P,.(r')/(E„—E,„), (5.3)

where the prime denotes the exclusion of n =0, the

=(e'Iz'/m) Q' fp /(Er Erp)'—(5.9)

To obtain an upper bound on Pi, we introduce ni($)
defined by

e Is

oi(-~ ) =——2 fo.l(E'r- I'-'ro)'—
AVith a slight generalization of a technique which was

used in the earliest calculations of o.l, we then have,
since

(Fr. &'ro) '& (I'-'r, ~+i —Ero) '(Er. Ero) —'—
for n & iV+1,

that

Pi &Piii(''t ) Piz( ~')) =-I
+-,'e'(Er „+i—Erp) '(zzi —ni(.V)j. (5.11)

Since each of the terms in Eq. (5.7) is positive, a lower
bound on Pi is obtained by utilizing the experimentally
or theoretically known values of fp„and Ez„ for the
first E contributions, that is, we have the lower bound

e4h2

P +Pziz(-~')= 2 fp./(Er- F»)' (5 1o)—
2m n=l
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Tanrm l. A lower bound pir, (E) Lsee Eq. (5.10)] and an upper
bound pro(tf') Lace Eq. (5.11)]on pq. p& is a measure of the non-
adiabatic contribution to the 1/q' term in the interaction. The
dipole oscillator strengths fo and the excitation energies of the
erst N+1 excited states are used, as is the value of the electric
dipole polarizability aI. N is the number of terms used in (5.10)
and (5.11).

Atom
Uncertainties

PII (&)l~o' PIU(&) l~o' in fo ('ro)

H~

He
Li&

Ne
Nab

40
11
12
2

16

4.7
0.4

1200
0.03

735

5.6
0.8

1205
2.2

745

1
1-10
1-10

25
10-25

& The values for Zfn —Zro and fan, and the characteristic uncertainties
in the latter, were obtained from W. L. Wiese, M. W, Smith, and B. M.
Glennon, Atorwic Trargsihoe Probabilities, Hydrogen Through ¹oe(U. S.
Government Printing Ofhce, Washington, D. C., 1966), Vol. I.

b M. W. Smith (private communication); see also V. K. Prokofjew, Z.
Physik 58, 225 (1929).

bounded by"
(—go%

(&,Q[JJr Er—o]%')
(5.13)

where F is an arbitrary function in Q space. The inser-
tion of Eq. (5.13) into Eq. (5.12) reproduces the
variational lower bound on n~.

We know of no crimple physical static interpretation
of P& and it is not immediately clear therefore, since the
Rayleigh-Ritz approach is not applicable, that one can
obtain a variational bound on pt. It is, however, trivial
to obtain such a bound, assuming again that pro is
known, though the bound is a much more dificult one
to use than the bound on ar. Thus, rewriting Eq. (5.6) as

Pr= e'(Pro, Jrgo'Jrgro), (5.14)

we have, since go is a positive-definite operator,

D. Variational Bounds

We now consider the possibility of obtaining an
estimate of pt which is a variational bound. To begin,
we note that, assoonsing pro to be known, variational
bounds on o.i are w'ell known. This is to be expected,
since an atom in a very weak uniform electric field b
has an energy E= srrrt'o'+Ero. A varia—tional upper
bound on E can be obtained by a Rayleigh-Ritz
calculation, and if Ego can be extracted, which is
possible if Pro is known, a variational lower bound on
0.& follows. A similar statement is valid for n& for any l
on restricting the correction to intro in the trial function
to states of angular momentum l. A neater way of
obtaining a variational lower bound on O. t is as follows.
From Eq. (3.16), we have

where
ar ——2e'(pro, Jr[—go]J+ro), (5.12)

—go= —Go~=
Q(&r—Ero) Q

is a positive-definite operator and can therefore be

The utilization of this inequality requires a knowledge
of ar, of fo„ for n=1 to X, and of Er„Ero for —n=1
to X+1. Some results obtained from Eqs. (5.10) and
(5.11) are listed in Table I.

The di8erence between the upper and lower bounds
is a measure of the error introduced by the use of a
restricted set of fo„An addh. tional error is introduced
due to the uncertainty in the values of the fo„. Some
characteristic estimates of these latter uncertainties are
listed in column 5. A more realistic determination of
lower and upper bounds could be obtained by reducing
the lower bound estimate [column (3)] and increasing
the upper bound estimate [column (4)]by the estimated
percentage error of the fo„

g 2Q

(~ [Q(&r—E»)Q]'~)
(5.15)

The insertion of inequality (5.15) into Eq. (5.14)
provides us with a variational lower bound on pr, but
the denominator of (5.15) is a very complicated quantity
to calculate for any moderately realistic approximation
F to gox. [It may be worth recording that the statement
that A&B&0 for A and B Hermitian operators does
not unfortunately imply that A2)B2; were this true,
one could immediately obtain a simple variational lower
bound on Pt by squaring inequality (5.13).]

It is interesting to note that the usual Born-
Oppenheimer (BO) approximation results when the eo'

term in '0 is dropped. Since Eqs. (2.17) and (2.18)
represent an exact statement of the problem, we may
be in a position to make more precise judgments about
the validity of the BO approximation. Thus, it has been
shown, " for single-channel elastic scattering of a
particle by a target of infinite mass, that eo' can often
be proven to be nonnegative. For such a case, the
solution of Eq. (2.17), with eo' neglected, gives an upper
bound (the adiabatic approximation) on the phase shift.
It is also sometimes possible to show that the exceed-
ingly dHEcult eo" term deaned by Eq. (2.20) is non-
positive. It follows that the phase shift defined by
V„„h+eo plus the 6rst potential of eo' in Eq. (2.19)
generates a lower bound on the phase shift.

fr&(P) =Z (E» Ero) t (4'ro J&4'ro) [

"R. Sugar and R. Blankenbecler, Phys. Rev. 136, B472 (1964).' L. Spruch and Y. Hahn, Bull. Am. Phys. Soc. 12, 560 (?967);
also (to be published).

E. Statistical Moments

Estimates of and bounds on Pt and more generally on
the pr can also be obtained in terms of the statistical
moments defined by
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Many of these moments can be related to physical
quantities and, can therefore be extracted from experi-
ment and some have rather simple mathematical
properties. Thus, we have

where

and

up(q) = P»(r)%'(r, q) dr

u&( —1)=(2e') 'a„uo(—1)=(2e') 'up, u&( 2—)=Pi/e4,

while u~(0) is related at least in the Hartree-Fock
approximation to the matrix element that determines
the ground-state diamagnetic susceptibility and u~(2)
can be related to the mean-square momentum of the
electrons in the ground state. The value of u~(1) can be
obtained from the standard sum rule.

As in Subsec. C, we can obtain bounds on P~ by
obtaining mathematical inequalities involving P& and
experimentall. y determinable quantities. Thus, using
the Schwarz inequality and the relations Ez„—E&p&0,
we find

u~'( —1)/ui(0) &u~( —2) &l ~(—1)/(E» —Erp)

If u~(0) is not known experimentally, it can be elimi-
nated by the use of the inequality

ui'(0) &ui(1)ui( —1)

'0up(q) = QTp(r)LV h(q)+ V h(r q)]/TO(r)drXup(q)

where
G&=Gp+Gp&UG~,

U= Q(T+ V—,h+ V„„.h —E')Q,

and where Goo(r, r') is defined as that solution of

Q(Hr E»)QGo ———Qg(r —r') (A6)

+ 4»(r) V'(r, q)G'(r, q; ",q') V"(r',q')

Xf»(r')up(q')drdr'dq'. (AS)

The integral in the first term in (AS) reduces to
V„„,h(q) plus a term, that due to V,h(r, q), which
vanishes asymptotically with q because of the assumed
spherical symmetry of Prp(r) To. evaluate the second
term in (AS), we write

Many other such inequalities can be obtained.
.Vote added iu proof Professor .Dalgarno has called our

attention to a tabulation of 5(—3)=u~( —2) for the
rare-gas atoms by Kingston. (See R. J. Bell and A. E.
Kingston, Proc. Phys. Soc. (London) SS, 901 (1966).]
The values for all but Xe should be accurate to within

10%%uo, that for He should be better. In units of ap',

Eq. (5.7) gives the estimates P&(He)=0.706, P&(Ne)
= 1.3, P~(Ar) =8 3, Bq(Kr) =14, and P~(Xe) =29.

which is regular at the origin, vanishes as r —+ ~, and
is symmetric in r and r'. Since go(r, r') was taken to be
orthogonal to pro(r) )and to lPrp(r')], so 'that gp=Qgp
=gpQ=QgpQ, it follows from Eqs. (3.2) and (A6) that
Gp& is nothing but gp. Choosing q to be sufIiciently large,
the expansion

GO =go+goUgo+goUgoUgo+

will converge and we have, neglecting short-range
components,

&uo(q) = V-.h(q)uo(q)+ V e(q)uo(q)

+u pup( )q+ . , (A7)
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P[H+HGoH E]P%'=0, —
where Go= QGoQ is defined by

(Ai)

G =-LQ(E-H)Q]- (A2)

and by the boundary conditions that it be regular at the
origin and vanish asymptotically. Since

PHQ=PV. hQ, QHP=QV. hP, and PHr=E»P,
(A1) reduces, on dropping a factor Pro) on the left, to

LT(q)+ V —E']uo(q) =0, (A3)

APPENDIX A: FORMULATION IN TERMS
OF UNPERTURBED STATES

The equivalent one-body problem defined by (2.9) is
valid for any projection operator which has the same
asymptotic form as P . In particular, it is valid for P,
replaced by P, the projection operator on to the un-
perturbed target ground state Prp(r). We then have

V~(q) = Pro(r) V,h(r, q)go(r, r') V,h(r', q)pro(r')drdr'

~ (ee')' Z (4 To +lgOJllpTD)
q2l+2

0!l= ——,'(e')' Q (A8)
q2l+2

V, (q)eis the adiabatic interaction to second order in
the perturbation V,h(r, q). The nonlocal interaction 'Up

is defined by

02uo(q) = &'TOVshgpUgpV hfTpdrdr'dr"up(q)+

Each of the V.h terms explicitly exhibited contributes
at most 1/q' while the V,h within U contributes at most
a 1/q' factor, since the relevant states in each of the gp
factors are target states of angular momentum 1 or
more. The V,h term in U therefore contributes at most
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a 1/q' term to 'Uo and can be dropped. Replacing the
other V,h terms by Ji/q', we can write

'Uouo(il) = (ee') q pro(r) Ji(r,q)go(r, r')
by

1 d——uo(q)
q' dq

This justi6es the replacement of

where

Xgo(r', r")Pro(r") A (q,r")drdr'dr"+0(q '), (A9)
3

uo(q)
2q

Since
T(~)[J (r" q)/q']=0.

[T(g)+V„...(q) —E']u, (e) =O(q-')u, (q),

on setting Ji(r",q) =r" q, we arrive at

A d 1 8
~(a,r")= —-'—Ji("' q) —— ~o(a)

2tp1 dq q Bq

h' r" 8—(1—
s ') —(&".q)

2m q Bp

8
X —uo(ol) +0(q '), (A11)

Bp

where p, =k- j, with k being a fixed unit vector. %hen
(A11) is inserted into (A9), the second term on the
right-hand side of (A11) does not contribute. This can
be seen easily by expanding the factor (r.q) in J&(r,g) as

(r q) =-",n. Q Fi~*(k,r) 'Vi~(p),

expanding (r" q) in a similar fashion, and then noting
that, after the drdr'dr" integrations, the Vi (p) factor
from Ji(r,q) and the (8/Bu) Vi *(p) factor from (r".q)
combine and sum over m, to vanish. Using (3.g) and
(3.12), we remain with

2h'(e')'Pi d 1
Vouo(q) = —uo(q)+0 —. (A12)

me'q' dq q7

To get 'U2 into Hermitian form, we recognize that '02 is
su%ciently weak that it is legitimate, to the order in
1/q under consideration, to replace it by a local potential
which gives the same result as 'U~ does in the Born
approximation. Thus, integrating by parts and dropping
the surface term at q=R since any contribution from a
inite distance represents the effect of a short-range
interaction, we have, for all angular momenta and for
scattering by a neutral atom or an ion,

Np d 1 1 d 3 Np——Np q2dq= — ——up2dq~ — —q2dq.
g q dq 2 g q dq 2 g

~(ii,r")= [T(a)+V.."(q)—E']
X([J ( "q)/q']u (e)) (Aio)

Since the point q
=0 is not under consideration, we can

use Eq. (3.19),

in (A12), and leads to

3h'(e')Pi 1
Vo= Vo(q) = +0-

m e'q' q'
(A13)

The use of Eqs. (AS), (A12), and (A13) leads to the
same expression for 'U(q) as that found previously for
'U, (q) in (1.1).

vo"uo. (q) = Q' (Ero Er„)—4o(r, a)

XT(q)p. (r, g)p„(r', q) T(q)po(r', q)uo. (of)drdr'

plus higher-order terms. The results

[T&o]=0(q ') and (Bgo/Bq)=0(q ')

follow from Eqs. (3.18) and (3.14), respectively. The
asymptotic q dependence of @„is similar in form to that
of go, and similar results follow for [Tg„] and for
(ay./Bq). We further use the results that (Duo, /&q)
and (Bouo,/Bq') are, for present purposes, proportional
to kup, and k'up, respectively; the argument is the
same as that used in Appendix A. Because of the
orthogonality of qhp and P„, at most two of the four
derivatives can operate on Np„and the leading term
of ep is therefore of order q

APPENDIX B: ASYMPTOTIC
CONTRIBUTIONS OF vp"

The operator oo" is deined by Eq. (2.20). To study
its asymptotic contribution, we begin by introducing an
approximation G@' to Gq', where G& is defined by

G@"= (Qo[Ero —&r(r) —V,h(r, q)]Q,) ', (B1)

or, equivalently,

G'(r, a;",q')=Z' &(a-q'). (»)
Ero—b.(q)

Use of the standard identity

1 1 1 1
+ (J3 A)—— —

8 8
leads to

«.=G'-G'Q. LT(q)+ V....(q)-E']Q.«. (B3)
We can approximate 8 (q) by Er„, since this introduces
an error of order 1/q4, and the error term will be
multiplied by terms which themselves go faster than
1/q'. Using Eq. (Bi) in (2.20), we arrive at


