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and
po9@=+0.1568(6)p~,

Within the quoted uncertainties, the agreement is seen

(4 2p) to be good.

where p~=5.0505X10 '4 erg 6 ' is the nuclear mag-
neton. Since the Knight shifts are identical for the two
isotopes (except for possible hyperfine structure anom-
alies which are, however, quite negligible for the present
purpose), the ratio of the two moments is given directly
by (3.1) and (3.2) .

&o»)/&ogu =+1P8gP(1) (4.21)

Finally, it is possible to correct the moments for core
diamagnetism, "giving

p&"'&(corr) =+0.1453(6)p~, (4.22)

p, ~"@(corr) =+0.1583(6)p~. (4.23)

Our results may be compared with the earlier optical
hfs values obtained by Murakawa and Suwa' (p&"~ =
+0.17&0.03+~ p~"~/po9u = 1.04&0.04) and by v.
Siemens' (p&"'& =+0.2&0.1p p&"~/p&'@~ = 1.0&0.1).

V. SUMMARY

The first observation of the ' 'Ir and '"Ir NMR has
been reported. The experiments were performed on
iridium metal at low temperatures and in high magnetic
fields using high-power pulsed NMR techniques. An
estimate of the Knight shift in iridium metal based
on the observed spin-lattice relaxation rate of '"Ir
allowed the ground-state nuclear magnetic dipole mo-
ments of the two odd iridium isotopes to be determined
with an uncertainty of about &0.4%. The results of
the present analysis provide evidence that the hyperfine
interactions in iridium metal are dominated by the
s-contact interaction. The results also suggest that the
principal d-conduction electron contribution to the
spin-lattice relaxation rate is associated with the electric
quadrupole interaction.
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A nonlinear (parametric) mechanism for the excitation of electron-density fluctuations by a long-wave-
length radiation Geld is discussed, for anisotropic many-valley semiconductors. Here the electron distribution
function is given by many Fermi ellipsoids of revolution not parallel to one another. This gives rise to
multimode density oscillations which can be excited nonlinearly by external electric fields. The threshold
Geld for this phenomenon is calculated for realistic semiconductor models.

I. INTRODUCTION

ITH the development of high-intensity radiation
sources in the microwave and optical spectrum,

the study of nonlinear interactions of electromagnetic
radiation with matter stimulates considerable theo-
retical and experimental interest. ' One area of interest
is the nonlinear excitation of plasma and ion-acoustic

* Present address: City College of the City University of New
York, New York, N.Y.

'N. Bloembergen, Eonlineur Optics (W. A. Benjamin, Inc.,
New York, 1965).

waves by a strong radiation field. ' ' Here the ion-
acoustic wave is driven by the plasma wave and the
radiation field. Conversely, the plasma wave is driven
by the ion-acoustic wave and the radiation field.

' D. F. DuBois and M. V. Goldman, Phys. Rev. Letters 14, 544
(1965),

V. P. Silin, Zh. Eksperim. i Teor. Fiz. 48, 1679 (1965) LEnglish
transl. : Soviet Phys. —JETP 21, 1127 (1965)j.

4 D. Montgomery and I. AlexeG, Phys. Fluids 9, 1362 (1966).' R. A. Stern and N. Tzoar, Phys. Rev. Letters 1'7, 903 (1966).' Y. C. Lee and C. H. Su, Phys. Rev. 152, 129 (1966).
~ E. Atlee Jackson, Phys. Rev. 153, 230 (1967).
T. H. Geballe, in Semzcondlctors, edited by N. B. Hannay

(Reinhold Publishing Corp. , New York, 1960).
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The basic mechanism which couples two waves to
excite a third one is the nonlinear interaction considered
in this work. To illustrate our point, we use a simple
physical picture. We consider a system of electrons
and ions in which simultaneously we excite a plasma
wave at (k, "~) and an ion-acoustic wave at (k, &o;,).
Applying now a strong radiation Geld. at (ko, &uo) with
ko«k, which couples strongly to the electrons, we
produce electron-density Quctuations at wave vector k
and frequencies or„&sero, s=0, &1, &2, ~ ~ ~ . If we
choose, for example, ~~—~0 co;„we have created
electron-density Quctuations coherent with the ion-
acoustic wave and therefore provide a possible mecha-
nism to enhance it. It is the different response to an
electric Geld of the electrons and ions, because of their
different charges and masses, which allows the growth
of ion-acoustic waves, for example by the plasma wave
and the external Geld.

This phenomenon can be observed for a system
consisting of an electron gas embedded in an anisotropic
lattice. We shall discuss, in this work, a degenerate
many-valley semiconductor. The electron distribution
function is described by many "Fermi ellipsoids"
which are not parallel to one another. Under an applied
electric field the electrons of the different valleys"
react as if they have different effective masses. There-
fore their response to a radiation field is similar in a
way to that of an electron-ion system, and we expect
to excite density fluctuation in anisotropic degenerate
semiconductors by radiation Gelds.

In Sec. II, we derive the basic equations which
describe the excitation of density waves by the radiation
field. In Sec. III, we solve for the growth rate of the
excitation under some simpliGed approximations and
calculate the threshold fields needed for real semi-
conductors in the microwave and infrared spectrum.

II. DERIVATION OF THE BASIC EQUATIONS

For the purpose of this work, we will assume that
the electron plasma in anisotropic degenerate semi-
conductors is made up of a set of 37 separate ellipsoids
of revolution. The Hamiltonian of this model is given
by

Ho=(2~) 'g dx4'l'(x) (—V'p~ V)A(x)

+~~e'g dxdx'p~(x) ~x —x'~ 'p~ (x'), (1)

where

w(x) =A'(x) A(x)

and the subscript / indicates the /th ellipsoid. '

E. T. Blaunt, in SOM State Physics, edited by F. Seitz and D.
Turnbull (Academic Press Inc., Nevr York, 1962), Vol. 13, p.
305.

The operators P&, P&t are, respectively, the second-
quantized destruction and creation operators obeying
the usual commutation relations, and p~ is the effective
inverse mass tensor, measured in terms of the free-
electron mass m. This way our model takes into account
the anisotropy imposed on the electron-gas by the
lattice. We also consider momentum and energy
transfers, respectively, to be small compared with
reciprocal lattice vectors and interband energy, so that
our one-band model will describe our system. "

The coupling to the electromagnetic field" is obtained
in the usual way by replacing V' with V —(%)A,
where A, the vector potential, represents the photon
Geld. In the long-wavelength approximation (k~~,~, is
small compared with any other k in our problem), we
approximate the electromagnetic Geld by a homoge-
neous oscillatory electric Geld. The vector potential A
is given in terms of the external electric Geld via E=—
1/c(8A/Bt). Under the inGuence of the homogeneous
field, our Hamiltonian, in the momentum representa-
tion, is given by

H=(2~) 'ZQEp —(%)A5 t'&'t-p (e/c) Aja~,„'a~,„
l=l p

+k~p~ ~ Eat, p+v at' p' t a&,.p a—~.p. (3)

Here p"=4~e'/k' represents the electron-electron inter-
action potential, and u~, pc~,pt are, respectively, the
destruction and creation operators of the state /, p
obeying the usual commutation relations, where p is
the canonical momentum.

We next calculate the equation of motion for the
one-particle density matrix which determines the
coupling of the external electric Geld to possible density
fluctuations in our system. We deGne

"(y+0 p ') =(a..(~)a, +'(~)) (4)

where ( ) means the usual thermodynamic average
over all electron coordinates and a~,~(/) = exp(iHt) a~,,
exp( iHt), etc. U—sing the Heisenberg picture, the
change in time of the operator a~~(~) is given by

i(8/Bt) a~,p ——exp(iHt) [H, ag,,j exp( iHt), (5)—
etc. We therefore arrive at the following coupled
equations of motion for the density matrices given by

Li(a/at) P.,(y) —e,(p+ h)]F,(y+k, y, t)

+A~a)p comoptF~(p+1', y, t) —gpg QN~. (i ', t)

XP'~(y+& —1",p, ~) —&&(y+l, p+1', ~) j=O, (6)
where 7=1 ~ S.

'OP M Platzman Phys Rev 139, A379 (1965)"C. Nanney, Phys. Rev. 138, A1484 (1965), R. A. Allgaier,
ibid. 112, 828 (1958).



165 NONLINEAR EXCITATION 0 F D EN SIT Y FLUCTUATIONS 513

where X~ is defined by

X,=(e/nuoo') (ok. yi Eo+Eo yi k) (8)

It should be noted that the term proportional to A'
commutes with the density operator and therefore does
not affect Eq. (6). This can be simply understood,
since this term depends on Ppai, ptai, p

——Si, the average
density of the lth ellipsoid, which is a constant of the
motion.

In order to solve the X coupled equations given in
Eq. (6), we use the following approximation:

~&(p+» p t) =fi"'(p)+fi"'(p t)B~.p+fi(p+» p t)

(9)
with

E,(k, t) =0+0+v (k, t). (10)

Here fi&o&(p) is the Fermi distribution function of
electrons in the tth ellipsoid, fi&'&(p) is the linear
response to the external Geld, and fi(p+k, p, t)
represents the spatially dependent distribution func-
tion which leads to density Quctuations. From Eqs.
(6) and (8), we obtain [Bfi&'& (p, t)/Bt7=0 which means

f&&'& (pt) =fi&'& (p) and indicates that in the linear
approximation the electrons have the Fermi distribu-
tion function in terms of their canonical momentum.
It is clear that the velocity distribution of the electron
will depend on the oscillatory electric 6eld since

nzv =[p+ (e/o&p) Eo coso&pt7 y+ p. [p+ (e/o&p) Ep cosp&pt7

The linearized equation of motion for fi is given by

[i(BIBt)+p (p) —«(p+k) 7fi(p+» p t)

+bio&p coso&ptfi(p+k~ p~ t)
N

—
p ~[Z~i(k, t) 7Lfi'"(p) —fi"'(p+k)7=o (11)

with

5 (k, t) =Zf (p+k, p, t). (12)

It follows that Eq. (11) does not give us the long
time behavior of our system; however, its solutions
predict the complex eigenvalues for the density Quc-

tuations at resonance. We therefore are able to deter-

In arriving at Eq. (6), we have used the following
approximation: Electron-electron correlations (colli-
sions) have been neglected but the self-consistent Geld
of the charged electrons has been taken into account.
The kinetic energy p&(p) is defined by

«(p) = (1/2™)p p&'p.

Also in Eq. (6), we used for the external Geld E, E=
Ep sino&pt, and the density fiuctuations Xi(k, t) is given
by

1V&(k, t) = QF&(p+k, p, t),

where

and Pi.' means sum over t'Wt
Ke next write

(16)

exp( iX& i—sino&ot) = g J,()iii ) exp( i sino&pt). —(17)

The solution of Eq. (15) for the density fiuctuation in
the frequency representation is given by

pi(k, p&+tkdp) pi(k, o&+'&imp) +[pi(k, p&+capp&p)
—17

XQ Q Js~(X&'i) pi (ot&+so&p)=0. (18)
«=i s=~

In Eq. (18), p&(koo) is given by

fi"'(p+k) —fi"'(p)
pi k, oo =1—p„Z~

~ (~p+k) i(p—) —in—
=1—

oo& gi(k, ~),

and f&&o& (p) is explicitly given by

fi"'(P) = (exp( —tt[«(p) —t 7)+1) ' (2o)

In order to understand our result [Eq. (18)7 we
6rst go to the limit Eo——0. Here X~ g=0, therefore
J, (0) =B,„, and Eq. (18) reduces to the well-known
dispersion relation for density Quctuations, namely,

1-~.Ze(k, )=0. (21)
l

This same result is obtained if all mass tensors y~ are
equal which implies again X«=0. We obtain therefore
the expected result that a homogeneous Geld does not
couple to density fluctuations of charged particles
with the same charge and mass. The effective coupling

mine the condition for excitation of density fluctuation
in our system driven by the homogeneous electric 6eld.
Our solution is equivalent to the random-phase approxi-
mation; looking at Eqs. (6) and (11), it is clear that
in arriving at Eq. (11) we have considered in Eq. (6)
only terms with wave number k', coherent with the
wave number k of fi, i.e., k'=k. To solve Eqs. (11)
and (12), we first move to an accelerated frame:

fi(p+lr, p, t) =f&(p+k, p, t) exp( —i&~i sin(apt), (13)

t'ai(k, t) =p&(k, t) exp( i)u—sinoppt). (14)

We therefore obtain for f& the equation of motion as

(i(B/Bt)+pi(p) —p&(p+k) )f&(p+k, P, t)

—
o ~(fiw&(p) —fi"'(p+k) )t i(k, t)

—
p ~(fi"'(p) —fi"'(p+ k) )

N

Xg'pi (k, t) exp( i&i& i —sino&pt) =0 (15)
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in our case is given from Eqs. (16) and (8) as

(1/2/2Mo)2(k pi. / Eo+Eo 1//vi k),
where

pi t= p&
—pi,

(22)

(23)

which indicates diferent eGective mass for the elec-
trons in the 1th and l'th ellipsoids depending of course
on the relative directions of k and Ep. If we now adopt
the model of electrons of different masses, the physical
mechanism for density excitation via the field is clear;
for two ellipsoid models, it is the difference between
the oscillatory motion of the light and heavy electrons
in the applied field which couples density Quctuations
of the heavy electrons at frequency co to density Auc-

tuation of the light electrons at frequencies M+sMp,
where s=0, +1, +2, ~ ~, and conversely.

&1(M)Pi(M)

+[pi(M) —
17[Jp (X)p2 (M) —Ji(X)p2(o/ —Mp) 7 =0,

pi(M —
Mp) pi(M —Mp)

+[pi(M —
Mp)

—17[Jp(X)p2(M —1 p)+Ji(X) p2(M) 7=0,

P2(M) P2(M)

+[p2 (M ) —17[Jp (X) pi (M ) +Ji (X) pi (M Mp) 7 =0,—

III. CALCULATION OF THE GROWTH RATE

In order to extract useful information from Eq. (18),
let us limit ourselves to the two ellipsoid systems. Ke
also shall omit all coupling other than between the two
possible plasma modes given by the linear solution. We
therefore are interested in the mode coupling of density
fluctuations at frequencies co and co—cop. We obtain
from Eq. (18) four coupled equations in which the
mon1entum k has been omitted for simplicity and

where
P (M) =Pl(M) + P2( M)

Here p(M) is the total dielectric function of the system
in the absence of the external field. In laboratory
situations, X would be less than unity, and thus the
shift of the resonance frequencies will be small and
proportional to X'. Therefore the approximate equation
for the growth rate is given by

M —
GDI, CO

—
GOp

—CO~

J12[p2(M) —p2(M —Mp) 7[pi(M) —oi(M —
Mp) 7

(26)
L~p(M)/p/M 7~~L [p/p(M Mo)/~(M Mo) ']~—~D=RP

where col, and co~ are, respectively, the resonance
frequencies given by

p(Mr, ) =0, p(Mrr) =0. (27)

We next evaluate Qi(M) and Q2(M), respectively, using
Eqs. (18) and (19). First we define the matrix [A7
which diagonalizes the reciprocal mass tensor, i.e.,"

[~7[.7[~?'=[~'b',7, (28)

where l~; are the eigenvalues of [/27. It is then easy to
show that if we choose the coordinate (x, y, z) in the
direction of the three principal axes of the ellipsoid we
obtain

Q(k k k M)
—(g g li )

—I/2Q()i 1/2k g 1/2k g 1/2k M)

(29)

The factor (P,ihol~o) '/' is merely a volume factor which
comes into a redefinition of the electron average density.
In the long-wavelength limit /7//7/ ((1,Qi is given by

Qi (x) = ——,
'

(22/o2 )

X[xi ln
l (1—xi) /(1+x1) l

+2+iorx/0 (xi—1)7

(30)
and

p2 (M —
Mp) p2 (M —

Mp) x1 ——M/k/v2. (31)

+[p2(M Mp) 17[Jp(&)pi(M —Mp) —Ji(X)pi(M) 7 =0.

(24)

The solution of Eq. (24) is straightforwa, rd, and after
much algebra we obtain the nonlinear dispersion rela-
tions

The Fermi velocity v& is defined by ~map' ——e& and k& is
defined by ki ——(Xi'/'k, 712'/'k /io"/'k, ). We next calcu-
late the dielectric function for a special case of two
ellipses in the x-y plane at right angles, where k is in
the x direction. The inverse matrices of the two ellip-
soids are defined as

Jpo(X) +J12(X) —1
P(M) Pi(M) ( P2)M

Jpo(g) +J12(g) —]
X 6 6)—COp

—
6y M —

GOp 62 M —
GPp

Joo (x) +J12(x)

( 00)0
[p7= o a o

( ~ )
and the dielectric functions are

o 0)
oho

( ~ )

X[pi(M) —pi(M —Mp) 7 =0, (25)

pi ——1+-,' (M„2/vpok12)

X[xi ln
l (1—xi)/(1+xi) l

+2+iorx18(xi —1)7,

(33)
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For the simple case y&2orL„we obtain

&2 1+ (Q 2/vp2k22)

&(L22 ln
~

(1—22) /(1+x2) [ +2+ix~(~ 1)j.—
(34)

[ po )
=s,(7)~,Q,/(4 H~L)

However, for the more general case, we have to solve

12(1yr) = —~32/4 L',

4o/klvtp(1, 4o/kovp) 1, (4o —&oo)/klvp) 1, (4o —4oo)/kovp))1

and thus obtain

ol(4o) 1+34o 2/5vp2k12

32(ool = 1 Q 2/oo2 (Q 2/434) vp2k22

(35)

(36)

ol(oo —4oo) = 1—Loop'/(oo —ooo) '3—
5 Loop'/(4o —o'o) 'l»'k6

Here specifically 4op2=42/eonb/m, Qp2=4meona/m, kl=
b'"k, k~=a'l"k, and x~ and x~ are, respectively, given
by ~/k, v„~/k v2,

Substituting Eqs. (33) and (34) into Eq. (26) is
not very illuminating. In order to simplify further the
analysis, we shall use a power-series expansion for e&

and e~ under the following approximations. We assume
that

—( 2) 1/3~ 2/3oo 1/3 (46)

In order to see the dependence of the threshold field
(Eo)4h on the physical parameters of the system, we
use Eqs. (44), (16), and (8) and also the well-known
result (see Appendix) that the effective collision fre-
quency of our system is given by (pHpL)'", where pH

and vz, are, respectively, the collision frequencies of the
two linear modes. We therefore obtain for the threshold
field

v(&o) 4h kl k2& 4,Q,
»2 =(pLpH)" (47)4 o "'(o/„+Q,)' ml m2) (4oH4oL)»'

where I'=y/24 L. The solution for I')1 result in a
frequency shift as well as a growth rate and is given by

32(oo—Coo) = 1—Qp /(4o 4oo)

(37)

(38)

In Eq. (47), kl=kb»', ko=ka", ml =m/f/"' and m2=
m/43'/2. Also ooL and 4oH are defined respectively by Eqs.
(40) and (41). In our case kl/ml)k2/m2 and also
cv„)Q„)col„we obtain the approximate result

Here we have neglected the imaginary part of E] Eg and
consider later the decay rate of the excited modes by
defining a phenomenological collision frequency which
takes into account the Landau damping as well as the
collisions with ions and phonons in the lattice. The
behavior of our system under the conditions stated
above is well-known; the electrons of ellipsoid 1
statically screen those of ellipsoid 2 and cause the
lower eigenmode to be an acoustic excitation having
the dispersion relation oP=c'O'. The electrons in ellip-
soid 1 are responsible for a plasmalike excitation
slightly modified by electrons of ellipsoid 2. The
solution of Eqs. (26) and (27) is given, after some
algebra, to dominate contributions only:

(~2 ~ 2) L(4o 4oo)2 MH2$ —J12(g)4o 2Q 2 (39)

where

and
4oL2~(Q 2/34o 2) 5vp2k12

4oH /41p +Qp +ovp kl /Mp ~—
(40)

(41)

We next solve for the growth rate, and write

OO =4OL+7,

O/O =O4L+O/H, (42)

p2(24oL+y) = —112(&)oop2Qp2/2/dH. (43)

and obtain for 7, in the case ~~&)p, the equation, up to
dominant terms,

4'(ekl/o~— mllop ) (Qp/4oL) (L&o) 41,

(/dH2H) (&L&L) " (48)

which is given in terms of the system parameters as

(e/ml) (Eo) 41,

4(3)1 4o 1 2(m2/ml)1 4(ko/kl)1/2v/p(p p )1/2 (49)

Here the wave number ko is given by ko ——&o„/vp. For
real semiconductors f///3 can be varied between 5 (Si)
and 20 (Ge). For example in germanium and lead
telluride, the anisotropy of the lattice enforces an angle
different from 90' between the ellipsoids. This does
not change quantitatively the result for the growth
rate by any substantial factor. We therefore calculate
the threshold field with our simplified model of two
perpendicular ellipsoids. For heavily doped semi-
conductors (degenerate) with n 10"-10'2 with m as
the free-electron mass and b=12, 43=0.6 (the parame-
ters for Ge) we obtain &op 1013, Qv 2)&10', kpr~~l03,
and ooL 5)(1013 for kl SX10'. Using Eq. (48) the
threshold Geld given by

(Eo) 4 (V/cm) 2)&10'(4oH2H) '/'(4oLrL)-1/2 (50)

which indicates reasonably low' threshold field even for
strongly damped systems. As for the microwave region
we need dopings of 10"-5XIO'4 impurities per cm'
since by lowering the sample temperature some of the
electrons in the conduction band would "freeze."This
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APPENDIX A

In this work we have calculated the threshold field
for the excitation of the two density fluctuation modes
in anisotropic semiconductors by a radiation field. To
show that the effective collision frequency used in
Eq. (47) is (vzv&)'I', we begin with our nonlinear
dispersion formula LEq. (25)], for X(1 and rewrite it
in the form

Here
e (ooL )e (~H ) +X (oiLq ~H ) (A1)

(A2)

and e(io) is the total dielectric function of the electron
plasma including the phenomenological frequency-de-
pendent collision frequency which generally is different
for cog and co~. The nonlinear effective dielectric func-
tions can therefore be defined as

e&r (~i) =e(~r) +x(oi«ir)/e(eo~) ~ (A3)

eÃL (err�) =e (o'H ) +x (o&IMrr ) /e (oir) ~ (A4)

The threshold is given by

x (cd,colr) I m(cedlr)

LRee(o~ir) ]'+LIme (u )]'
(AS)

x (eo«ir) Ime((or, )
(Ree (coz,)]'+LIme (co~) ]'

(A6)

The optimum condition occurs at resonance, when
Ree(ooz) = Ree(eoir) =0. We therefore obtain from Eqs.

may present an additional difhculty in preparing the
sample. However, we have the advantage that in the
microwave regime where ~„~10",the coupling of the
electrons to the radiation field is more effective Lsee
Eq. (47)]. Calculations of the growth rate in the
microwave regime result in threshold field of ~300
V/cm even for heavily damped density oscillations.

In conclusion, we have calculated the nonlinear
excitation of density fluctuation driven by long-wave-
length radiation field. The threshold field was deter-
mined and estimated for the infrared and microwave
bands. It is concluded that observations of the phe-
nomena either by measuring the electron density
fluctuations or by measuring the change in the absorp-
tion fields Eo) (Eo) ig are plausible experimentally.
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(A5) and (A6)

Ime(coy, ) Ime(&air) —x(a&l.o&~) =0. (A7)

This is equivalent to our condition given in Eq. (47) .

APPENDIX B

The feasibility of the particular experiments dis-
cussed in this communication depends largely on the
lifetimes of the excited density modes. We would like
to discuss particular examples in which the mode life-
times are long enough such that (a) our two-modes
approximation is valid and (b) the threshold field is
relatively small. To understand condition (a), we must
go back to our exact solution LEq. (18)]. There we
find that, in general, density fluctuations occur at
frequencies &o» I &oi I

=coo—oo2
I

oui'
I =eoo+eo, and at

higher frequencies of approximately 2'„, 3'„, etc.,
which we do not consider. However, as one can easily
check, the mode at ~&' can only exist if the mode at ~&

is excited. Therefore the mode at orj' can only increase
the threshold field. In order to eliminate the mode at
coq' and thus keep the threshold field low, we need a
resonant mode at co~ such that 2v~or2)1. Our result for
E&h, stemming from the two-mode approximation, will

not be applicable for 2~~~&(1, and we have to extend
our analysis, in this case, to include all three modes.

In choosing the particular materials for the experi-
ments, it is desirable to have 2v~co2& 1 for low threshold
field. We first consider lead telluride $PbTe) which has
an electron concentration larger than 10" cm ' and
thus is a suitable material for the infrared region.
Mobility" measurements give p) 3X10' (cgs) for
liquid-helium temperatures, and p 3X10o (cgs) for
liquid-nitrogen temperatures, for electron densities such
that o~~ 2X10" )for T 10'K one can estimate that

(3—6) X10' (cgs)]. Vsing the parameter of PbTe,
one easily obtains for low temperatures r& 5X10 ".
(Here we have used the relation r, =pm% and
& n„„,=27, )The mode. frequencies are s» 2X10"
and co2~10", and we are in the region of applicability
of our two mode analysis.

For the microwave region, we take advantage of the
high mobility of Germanium at very low concentration.
For GeSb at low temperatures" the mobility p,

1.5X10' cgs), and the "plasma" lifetime is r 2X10-'o.
The plasma mode co~ 10" and the acoustic mode co2

3X10'. (For low electron concentrations, the electron
distribution may be Maxwellian, and we have to make
sure that k(kn in order to eliminate Landau damping. )
Here again, we check 2v~co2 1 and conclude that our
estimate of the threshold power is valid (up to a
factor of 2).
"S.H. Koenig, R. D. Brown III, and W. Schillinger, Phys. Rev.

128, 1668 (1962).


