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Channeling of 'H+, 'D+, and 'He++ Ions in Germanium:
A Diffraction Calculation*
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The channeling properties of 'H+, ~D+) and He++ ions in germanium have been examined, using a
diffraction model for the interaction between the lattice and the channeled ions. The stopping power
(—dE/dx) and the differential mean-square energy spread (do-'/d E) of the channeling energy spectrum have
been calculated for each of the above ions in the energy range 3 to 8 MeV for three incident directions in the
lattice. The energy states of the electrons in the lattice are approximated by using a shell model of the lattice
atoms. Z electrons per atom are assumed to occupy a rigid, negatively charged shell surrounding an atomic
core, where Z is an adjustable parameter in the calculation. An harmonic approximation to the shell-core
and shell-shell interactions in the lattice then leads to phononlike excitations in which the shell and atomic
core are moving out of phase. This introduces a time-dependent polarization in the lattice which interacts
strongly with the incident ions. The lower-energy portion of this excitation spectrum is indeti6ed with the
plasmon spectrum of the solid, and the known properties of the plasmons are included in the calculation.
The parameter Z is adjusted to give agreement between the theoretical and experimental channeling energy
losses. No experimental data are presently available for comparison with the calculations for 'He++. The
results indicate that each of the three directions considered in the calculations can be characterized by a
reasonable value of Z, which is expected to be &4 depending on the degree to which the valence electrons
shielded the inner electrons. For ions incident near the directions indicated these values are (1, 1, 0), Z=
5.6&0.3; (1, 1, 1),Z=8.6&0.4; (1, 1, 2), Z=7.2&0.3.

I. INTRODUCTION

r iHE correlated channeling of particles in crystalline..solids was discovered in the machine calculations
of Robinson, Holmes, and Oen' on the slowing of ions
in single-crystal lattices in the energy range 1—10 keV.
The e8ect was subsequently verified by a variety of
experimental techniques for both light' "and heavy' "
ions for energies extending from the keV range up into
the MeV range. The converse e6ect, blocking, in which
atoms of the crystal inhibit propagation in certain
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directions, has also been observed in the emission of
a particles" and electrons" from single crystals con-
taining radioactive materials. Protons from the (d, P)
reaction have also been observed in blocking experi-
ments. "

Theoretical studies of the channeling of ionic parti-
cles have generally been based on a classical picture
of the interaction between particle and lattice' '~' and
have successfully accounted for some of the interesting
features which have been observed. Among the fea-
tures which can be accounted for classically are the
energy dependence of the angular distribution of the
emergent beam of channeled particles and the energy
dependence of the acceptance angle for the channeling
of an incident beam. Recent theoretical work" shows
that diffraction e6ects are important, however, in the
anomalous transmission of channeled particles even
for particle wavelengths which are short compared with
the lattice spacing of the crystal. In addition, Chadder-
ton" has concluded from a study of the channeling
patterns of protons in Si that diffraction eBects must
be considered when discussing channeling phenomena.

In neither the classical nor the diffraction studies
have energy losses or the stopping power of the lattice
for channeled particles been determined except for the
low-energy range considered in Ref. 1. In the present
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paper" the energy loss and energy spread of the low-
energy-loss component of the channeled particle beam
are studied for incident ions in the MeV range using a
diffraction picture. The transmission of a particle
through the lattice is treated as a series of independent
scattering events with particle wave functions before
and after each event being plane waves.

The electronic states of the crystal are approximated
by using a shell model for the atoms of the lattice.
Each atom in the lattice is considered as a heavy,
positively charged core (which includes the atomic
nucleus and the tightly bound inner electrons) and a
negatively charged shell of loosely bound electrons.
The various shells and cores of the lattice move inde-
pendently under the mutual forces which exist between
them. A similar model has been used to account for the
long-range forces needed to explain the phonon-disper-
sion curves in a variety of materials, in particular for
ger manluIll.

The primitive unit cell in the germanium lattice con-
sists of four independent masses in the above model,
tmo atomic cores, and two electronic shells. Application
of ordinary phonon theory" in the harmonic approxi-
mation will then yield four bands of phononlike excita-
tions. Tmo of these are the ordinary acoustical- and
optical-phonon bands which consist of modes for which
an atomic core and its associated shell are moving in
phase. The remaining two bands correspond to lattice
modes in which the atomic core and its associated shell
move out of phase, and represent the electronic states
of the crystal. These modes introduce a local time-
dependent polarization into the lattice. The lower-

energy portion of this set of excitations is identified
with plasmon" excitations, and the known properties
of plasmons in germanium are utilized in the descrip-
tion of these states. The ordinary phonons will be re-
ferred to as the phonon modes mhile the modes with
core and shell moving out of phase will be referred to
as polarization modes.

In the above model it has been implicitly assumed
that the energy losses of an ion channeling through a
crystal are predominantly to the collective modes of
the solid. This assumption is justi6ed by reference to
the energy-loss calculations of Bohr'~ who showed that
in an amorphous solid the "distant resonant energy
transfers" and the "close impact-type collisions" share
equally in the energy lost by a fast incident paI'ticle.
In the channeling situation, the "distant" processes
are as probable as in the amorphous solid, while the
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"close" collisions are signi6cantly reduced due to the
small electronic density in the channels. The channel-
ing energy losses are thus primarily through the "'dis-
tant" processes.

Recent studies on the statistics of the energy-loss
process indicate further that even the "close" collisions
do not generally result in large momentum transfers
to individual electrons, but also excite collective modes.
In fact, for simple valence-electron solids (of which
germanium is an example) it is believed that a fast
incident particle dissipates the major portion of its
energy in the production of plasmons, even in the nor-
mal (random) solid."This would indicate that a large
fraction of the "close" collisions result in plasInon exci-
tation. "These ideas are rejected in the model presented
above.

Transition probabilities are considered in Sec. II.
Numerical calculations are presented iri Sec. III where
focusing properties of the model described above are
discussed. Section IV is a discussion and summary of
the paper.

II. TRANSITION PROBABILITIES

A. General

A plane-wave ion of mass M and charge se is assumed
incident on a single-crystal target. The internal dy-
namics of the crystal are described in terms of ordinary
and polarization phonons as described above. The shells
have a charge of —Z;e and a mass of Z;ns while the
1111cicl have a cllar'gc of +Z;e R11d R nlRss 1M„. Z; 1s tile
effective number of electrons on the ith atom which
contribute to the lattice polarization. The value of Z;
mill be left unspecihed until theory is compared with
the experiment in Secs. III and IV. The mass of a
single electron is m and e is the electronic charge. The
incident ion interacts mith the electronic shells and the
atomic cores through a Coulomb interaction represented
by the Hamiltonian H'.

The transition probability of interest is W(K, Ear),
the probability that the incident ion undergoes a change
of momentum fiK, accompanied by a simultaneous
change in energy fiAor. A straightforward application
of 6rst-order time-dependent perturbation theory with

~8 C. A. Klcin, J. Phys. Soc. Japan Suppl. , 21, 307 (1966).
~This is also in agreement with measurements of electron-

energy loss to thin Sms of extremely pure germanium PC. J.
Powell, Proc. Phys. Soc. (London) /6, 593 (19N))g which show
energy loss only to collective electron modes of the solid. The low-
energy loss structure reported in recent electron-energy loss
measureme~ts PK. Zeppenfeld and H. Raether, Z. Physik 2.93,
471 (1966)j as well as earlier optical measurements I H. R.
Philipp and H. Ehrenreich, Phys. Rev. 129, 1550 (1963))probably
reQect the presence of a surface layer of oxide. Powell also found
such structure in samples with an oxide layer, but no such struc-
ture was observed for his high-purity samples. %eak losses to d-
electron excitation were also observed by Powell in some elements,
but such losses were too weak to be observed in germanium. It is
felt that these losses can safely be neglected compared with the
plasmon losses, especially for germanium.
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y =ir/fi, ,

)i=1/kT —y,

0 =Tr{exp( —Hr/kT) }, (2)

k is the Boltzmann constant, T is the absolute temper-
ature, and HI, is the Hamiltonian which describes the
internal dynamics of the crystal.

The operator Hx (K=lr' —Ir) is defined as the ma-
trix element of the operator H' between the initial ion
state, +i„and the final state +i, . The initial and final
wave vectors for the ion are k and k', respectively.
The quantity p is the density per unit energy range of
lattice states. This density refers to those states of the
lattice which contribute to the energy loss (gain) of
the incident ion, and may be diferent from the actual
density of lattice states. This point will be discussed
further when (1) is evaluated.

As a consequence of the model for the internal lattice
dynamics used in the calculations, the Hamiltonian H~
can be written as

Hz, = ~ AMpgG pgGpq)

where u„,t and a„, are creation and anihilation opera-
tors for the pth mode of the lattice with wave vector
q.3' Both phonon and polarization modes are included
in the sum in Kq. (3) .

The interaction between the incident ion and the
crystal is taken to be

H'=se' g Z, {1/
~
r, —r„; {

—1/ { r —r„{}, (4)

where r„ is the position vector for the incident ion, r;
is the position of the ith atomic core, and r„ is the
position of the ith electronic shell. The position of an
electronic shell is considered as the center of charge for
that shell.

Matrix elements OKcalculated using (4) a're deter-
mined with ion wave functions normalized in a volume
V, the volume of the crystal. At the end of the calcula-
tion, the crystal volume will be allowed to become in6-
nite while the atomic density remains constant. The re-
sultant transition probability will then represent a single
ion interacting with an infinite crystal through (4).

' For a similar derivation concerning the Mossbauer eGect see
B. Kaufmann and H. J. Lip%in, Ann. Phys. (N.Y.) 18, 294
(1962).

"Vector notation will be suppressed when q is used as a sub-
script. %hen not a subscript, q will represent the magnitude of q.

the appropriate thermal average over initial lattice
states and sum over 6nal lattice states yields, for this
probability, '0

p CX)

W(K, 6&0) =— exp(srA(o)
Ao'

XTr{exp( XHz—) HK exp( yHr—) HKt}dr, (1)

where v is the variable of integration with units of time
and

Using (3) and (4) Eq. (1) becomes

W(K, A&a) =Ai exp(i'&r) U(r) dr, (5)

where
A i= (16s'z'e4p) /( V'E%)

U(r) = g Z Z {Aiba+A, '~+A '~'+A, '~'}

Xexp(sK R;)),
A '&'= exp{ —g X Es[C (0, 0) 5 s

aP

—C.p(R;;, r) j},
C p(R;, , r) = Q (M;Mp;) 'ls(fie, „'e,J")/(2s),~)

cu

X{exp[i(q R;j Mspr)$ X,icos(q—R;j Mqpr)},

X„=2{ep[(Ao),„)/(kT) )—1}-'. (6)

In expressions (5) and (6) the variable R,; is the
equilibrium separation of the ith and jth atoms and
the indices rri and Pj refer to Cartesian components
of the displacements of electronic shells or cores of the
ith or jth atom from their equilibrium positions in
the lattice. In the function Ai both ni and pj refer
to core displacements; in A2 and he they refer, respec-
tively, to a core displacement and to an electronic-she11
displacement. In A4, both rri and pj refer to electronic-
shell displacements. M =M„ for nuclear displacements
and M =Zm for electronic-shell displacements. X is
the number of primitive unit cells in the volume t/'.

The function C s(R, r) is the time-dependent dis-
placement correlation function introduced by Glauber, "
which depends on the phonon field of the lattice. co,„
is the frequency of the (q, p) lattice mode, while e,„'
is the polarization vector for this mode at the ith atom.
The sum over q and p includes a sum over both the
phonon and polarization modes.

B. Approximations

The dBBculty in evaluating the transition probability
arises from a lack of detailed knowledge about the
internal modes of the crystal. Some reasonable approxi-
mations will allow one to continue with the evaluation
of the transition probabilities, while reducing the com-
plexity of the expressions involved.

The following four approximations will be made:

(1) The total transition probability is large enough
that the natural linewidth of an individual transition
is much larger than the spread of the phonon spectrum.

(2) The displacement of the atomic cores due to
the presence of the polarization modes is negligible

compared with the corresponding displacement of the
electronic shells.

(3) The polarization-mode frequency spectrum will
be replaced by an "average" frequency co.

"R.J. G1auber, Phys. Rev. 98, 1692 (1955),
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(4) The interference effects in the function C p(R, r)
will be ignored.

The first of these approximations will be justified
when the total transition probability is evaluated. This
approximation is equivalent to saying that the inter-
action between the ion and the polarization modes is
much stronger than the interaction between the ion
and the phonon modes. It is also equivalent to replac-
ing exp(i&a,„r) by 1 for the phonon modes. Since the
phonon spectrum is germanium has a width of 10"/
sec, this requires that W&=pa, KW(K, hei) satisfy
W~))10"/sec.

The second approximation is justified using the or-
thonormality relations for the lattice-mode polarization
vectors Gqy for fixed q . Since phonons correspond to
cases in which the electronic shell and the correspond-
ing atomic core move as a unit while the shell and
core move out of phase in the polarization modes,
one obtains for the polarization-mode displacements
x, , (atomic core) (Zm/M )x, . (electronic shell).
The mass ratio is less than 1/4000 for most atomic
systems.

The third approximation can be justified through
the experimental measurements of the plasmon spec-
trum in germanium. " Averaging the energy of this
spectrum over a spherical Brillouin zone one obtains
as the average polarization-mode energy &=20.0 eV.
The rms deviation from this average is 1.6 eV. The
curvature of the Ge spectrum is almost twice that
measured for other materials; thus the use of approxi-
mation (3) for such materials should be even more
accurate than it is for germanium. Approximation (3)
will be used in the description of the polarization modes
in germanium. '4

The fourth approximation is justified by invoking
anharmonic forces in the lattice. These forces will cause
both the phonon modes and the polarization modes to
scatter, thus destroying any long-range correlations.
In addition, the polarization modes should decay into
lower-energy excitations of the lattice, further reducing
their space correlations. The sums over i and j in Eqs.
(5) and (6) extend over the entire lattice; thus most
of the terms in that sum correspond to values of R;;
for which correlations may be neglected. The factor
exp(sq R) will thus be replaced by unity in the cor-
relation function C p.

Approximations (1) and (2) eliminate the r depend-
ence of A&'&', A2'&', and A3'&. Similarly, approximations
(3) and (4) eliminate the r dependence in A4" when
i and j refer to inequivalent sites in the primitive unit
cell because of the orthonormality of the polarization
vectors e,~. Transition probabilities for events in which

"H. Watanabe, J. Phys. Soc. Japan 11, 112 (1956).
84 The argument for using an effective Einstein spectrum in the

description of the plasmons is further strengthened by the very
weak dependence of the channeling stopping power on the plasmon
energy. For example, for 8-MeV protons incident along (110)with
2= 5 and e=15 eV one obtains

~
dE/dx ( =52.10 MeV/cm. This

should be compared with the result of 50.53 MeV/cm obtained
using e=20 eV (sec T@blc: I), g, digerqnce of only 3 jo,

g;(K) = (SE')/(2Z, cue),

r =exp( —fin&/k T), (8)
and the primed sum indicates a sum only over those
i and j which refer to equivalent primitive-cell sites.
Placing this expression for U(r) in Eq. (5) yields

W(K, Aoi) = A Q w, (K, e),

2r"g, (K)
w;(K n) =Lg, (K)]-'r "i'I„

1—r

&«xp —g'(K) I, (9)
&1—r

where I„(y) is the hyperbolic Bessel function of order
e and the sum over i is over the inequivalent sites in
the primitive unit cell.

A = (87r's'e4fPÃ'p) /(uses V')

and from Eqs. (5) and (7) K and hei are, respectively,
restricted to values satisfying: K=reciprocal lattice
vector,

Adco =st. (10)

The selection rule on energy LEq. (10)j arises be-
cause of the integration over r. The selection rule on
the E vector arises from the sum over i and j, The E
selection rule is not conservation of crystal momentum
because the correlation effects have been ignored. This
selection rule arises since the incident ion interacts
with atoms located on lattice sites. The variable e ap-
pearing in the constant A is the average polarization-
mode energy (e=fko) .

Since &=20.0 eV for germanium, the temperature-
dependent variable r will be negligible even for tem-
peratures as high as the melting temperature of germa-
nium (958'C). This will also be true of most other
materials since the lower edge of the plasmon spectrum
is generally in the range 10—20 eV. Transition probabili-
ties, and other quantities derived from them (e.g., the
stopping power), will thus be relatively insensitive to
the temperature. The approximations (1) through (4)
have allowed certain terms to be ignored in the prob-

the ion-exchanges energy with the lattice will depend
only on those terms which have a r dependence; thus
other terms will be ignored in the following develop-
ment. These terms would be of interest, however, in
determining the magnitude of a "zero-phonon" line ia
experiments for which little energy transfer was ex-
pected between an incident ion and the lattice (e.g.,
transmission of ions through very thin films) .

Retaining in U(7) only those terms which have a r
dependence then yields for this function

U(r) = Q'Z'exp(iK R;;)
u

Xexp I
—g, (&)[(1+r)/(1 —r) —(1—r)-'

(exp( —ivor) +r exp(ioir) )gI, (7)
where
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ability expressions, however, which also depend upon
temperature. These have been argued to be small.
Since r is so extremely small in the temperature ranges
of interest, it is quite likely that any small temperature
dependence which might be observed would be due to
the neglected terms rather than the temperature de-
pendence indicated in Eq. (9). The quantity r will

thus be set to zero which yields for the second of
Eqs. (9)

m;(K I) = (1/n!) Ig, (K) I" ' exp[ —g;(K) 3. (11)

Expression (11),multiplied by A, and summed over
i, gives the desired transition probability for the crea-
tion of e polarization-mode quanta (plasmons) of en-

ergy e accompanied by a change in incident-ion wave
vector of K. The sum over i is a sum over inequivalent
sites in the primitive unit cell.

III. NUMERICAL CALCULATIONS

A. Energy Uncertainties

As indicated in Sec. IIB, in order for approximation
(1) to be valid, the total transition probability through
the polarization modes must be greater than 10"/sec.
When total transition probabilities are evaluated using
Eqs. (9)—(11) one obtains transition probabilities of
the order of 10" to 10"/sec. These large transition
rates justify the use of approximation (1) in the cal-
culations, but they require that one also take into
account the energy uncertainties which will be intro-
duced by the short transition times. A straightforward
apphcation of the theory of line-breadth phenomena"
then yields a factor of

r
(12)

2~ I's/4+ (E—Es) '
which must multiply the transition probability for each
transition. In (12) I' is given by jtW'r. The total prob-
ability for a given transition is then obtained by inte-
grating (summing for a discrete spectrum) over the
values of K The total transition probability to any
state is then obtained by summing these "broadened"
probabilities over all transitions allowed by the selec-
tion rules.

The stopping powers and differential mean-square
energy spread of the channeling spectrum have been
calculated using the "broadened" probabilities as de-
scribed above. The focusing of channelled particles is
discussed in the next subsection qualitatively, and the
"broadened" probabilities have not been used there
since the qualitative properties of the interaction are
not changed by the broadening. "

"V. Weisskopf and E. Wigner, Z. Physik 63, 54 (1930); E.
Arnous and W. Heitler, Proc. Roy. Soc. (London) A220, (1953)."Use of the broadened probabilities greatly extends the running
time of the computer program. The qualitative aspects of the pre-
dicted channeling phenomena are not altered by use of the un-
broadened probabilities. The unbroadened probabilities are thus
used when a numerical calculation would call for a prohibitive
amount of computer time, but when it was desirable to illustrate
the qualitative aspects of the interaction.

FIG. 1. Polar projection of a series of the most probable changes
in the momentum of an 8-MeV proton incident on a germanium
lattice. The pole of the projection is the! 110) crystallographic
axis. The polar angle of the initial direction of incidence is 5X10 4

radians. These momentum changes were determined using the
"unbroadened" probability function.

B. Planar and Axial Focusing

The focusing properties of the lattice for channeled
particles have been investigated in the following way.
A particle of given mass and energy was assumed inci-
dent near some crystallographic axis. The most prob-
able transition was then determined using Eqs. (9)—
(11).The momentum and energy of the incident ion
were changed accordingly and the process repeated.
The result of a set of such calculations is shown in
Fig. 1. This 6gure shows a projection onto the (1, 1, 0)
plane of the changes in momentum for an 8-MeV pro-
ton initially incident near the [1, 1, 0] direction.

One sees that the proton is 6rst deflected toward
the (1, 1, 1) plane, the most open plane intersecting
the [1, 1, 0$ axis. Similar calculations for initial proton
momentum near other low-index crystallographic direc-
tions indicate that the most probable first deQections
are always those which carry the momentum vector
into the most open plane intersecting that direction.
After reaching the most open plane, the momentum
vector in Fig. 1 is then further deflected into the axial
channel. The transitions which carry the momentum
vector away from the plane or axis are, however, almost
as probable as those which carry it toward the axis
when the broadened probabilities are considered. The
tendency toward axial and planar focusing, while real,
is thus not as strong as one would expect from calcula-
tions made with the unbroadened probabilities.

One should note that this focusing mechanism does
not depend upon direct collisions between the incident
ion and the channel walls. Two features of the model,
the long-range Coulomb potential and the plane-wave
nature of the incident ion, are responsible for the focus-
ing mechanism. The Coulomb potential provides an
interaction between an atom at a lattice site and the
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CO N TOURS OF EQUAL STOPPING
POWER 8.0 MeV PROTON INCID
NEAR (I IO) IN Ge

Z=4
STOPP
SCALE

68—70
73
78

FIG. 2. Polar projection of the contours
of equal stopping power for an 8 MeV
proton incident near the L110) direction.
The pole of the projection is the L110j
crystallographic axis. The scale of the
polar angle for this projection is shown.
These contours were determined using the
"unbroadened" probability function.

78

~ ~ ]incident ion even when they are widely separated and
leads to the form of the probability function, W(K, n) .
The plane-wave nature of the incident ion leads to
interference eGects between the wave fronts scattered
from different lattice sites and yields the selection rule
on K. This is analogous to the Bragg condition for the
scattering of x rays from a crystal. The form of the
probability function and the selection rule on K to-
gether determine the focusing properties of the inter-
actions. This, however, should not be taken to exclude
other forms of focusing for ions which do interact with
t e "channel" through direct collisions with the walls.

=(A/e) Q Qnettt, (K, n), (13)

where v is the ion speed. For ion and polarization-mode
energies of interest, the probability function W(K, n)
varies rapidly in some directions in wave-vector space
in comparison with the spacing of the reciprocal lattice
points. It is thus not appropriate in general to replace
the summation in Eq. (13) by an integration. A general
evaluation of the stopping power is then a formidable
task even with the use of a high-speed computer. In
certain cases of specific interest, however, the stopping
power may be evaluated. These cases correspond to

B
ions incident near major crystallographic direction s.

ef6re evaluating the stopping power for" these cases
some of the properties of the probability function
W(K, n) should be pointed out.

C. Stopping Power

To determine the stopping power, one must evaluate
the expression

—dE/dh= e 'Q neW(K, n)—
K

For 6xed n, the probability function w;(K, n) has a
sharp maximum when g, (K) =n —2. The locus of such
points forms a circle in K space. The locus of such cir-
cles for variable n forms a spherical shell (which shall
be referred to as the sphere of maximum probability)
with a center located at —(kb)/(1+5) . (Ir is the inci-
dent proton wave vector and b =Z~/M. ) The diameter
of the shell is given by

2kb 2(1+b) e '~' 2kb

(1+b) Eb (1+b)
(14)

Points on the shell in K space nearer the origin cor-
respond to higher probabilities. The complete set of
points in K space corresponding to a constant n also
forms a spherical shell with center at —k and radius
k' —k' —2k =[k'—(2neM)/fPjUr, where Ir' is the proton wave
vector in the final state. Since b((1, the spheres of
constant e may be replaced by planes in the vicinity
of the sphere of maximum probability.

The magnitude of the energy loss of protons incident
normal to a set of planes of reciprocal lattice points
may now be easily evaluated since the sum over K in
E . (f31 iq. ~ ~ is simplified. Each plane of reciprocal-lattice
points can be characterized by a particular value of
e in this case, and the sum can be done in two steps.
First, the sum within a particular plane is done with
constant n, and then the summation over e completes
the evaluation.

A similar evaluation is possible for ions which are
incident rear a major crystallographic direction. In
that case, a small angle approximation can be used
and the sum evaluated as before. In both cases it is
necessary to use a computer in the calculations.

Contours of equal stopping power have been deter-
mined for 8.0-MeV protons incident near the L1 1 Oj
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axis in germanium using the unbroadened probabili-
ties." The results of this calculation are shown in
Fig. 2. The value of Z used in this determination is 4,
the number of valence electrons per atom. As indicated
earlier, the value of Z which will best explain the
experimental data is expected to be &4. One notes in
the figure that the contours of equal stopping power
reproduce the starlike pattern of low-index planes which
intersect at the L1, 1, 0) axis. The stopping powers
are relatively constant in the planes, but drop to a
very small value along the axial channel.

The focusing properties discussed in the previous
subsection indicate that the particles incident near a
channeling axis will be deQected into one of the open
planes intersecting that axis. The pattern of the emer-
gent channeled particle beam is then predicted to re-

TABLE I. Calculated stopping power for protons in germanium.

Incident
direction

&110}

Incident
energy (Mev)

Stopping power
(MeV/cm)

Z=6

&112&

8.0
7.0
6.0
5.0
4.0
3.0

8.0
7.0
6.0
5.0
4.0
3.0

81.74
89.98

101.17
115.38
135.00
169.97

90.83
102.38
117.12
137.90
168.52
212.39

97.13
107.16
120.81
138.18
162.15
205.09

110.76
124.40
141.77
166.20
202. 12
253.64

Z=9

TABLE II. Calculated stopping power for deuterons in germanium.

Incident
direction

&110)

Incident
energy (MeV)

Stopping power
(MeV/cm)

Z=5

8.0
7.0
6.0
5.0
4.0
3.0

105.36
117.25
138.04
162.51
192.11
264.51

124.39
137.34
157.81
187.62
232.52
311.88

8.0
7.0
6.0
5.0
4.0
3.0

8.0
7.0
6.0
5.0
4.0
3.0

50.53
55.54
61.75
69.97
81.77

100.66

Z=7

51.65
57.65
65.19
75.85
91.87

116.26

Z=8

59.44
65.31
72.83
82.87
97.24

120.12

64.06
71.24
80.26
92.95

111.94
140.83

Z=9

channel becomes broader, extending out to 0.001 rad
rather than the 0.0001 rad indicated.

Stopping powers have been calculated (using the
"broadened" probabilities) for 'H+, 'D+, and 'He++
for incidence near three major crystal axes in germa-
nium and for energies in the range 3-8 MeV. These
stopping powers are listed in Table I for 'H+, Table II
for 2D+, and Table III for 'He++ for two different
values of Z for each direction. These values of Z are

8.0
7.0
6.0
5.0
4.0
3.0

56.13
63.69
72. 11
84.61

104.56
131.23

66.65
75.48
85.34
99.96

123.21
154.34

Incident
direction

(110)

Incident
energy (MeV)

Stopping power
(MeV/cm)

Z=6

TABLE III. Calculated stopping power for
pie' in germanium.

produce the star-shaped pattern seen in Fig. 2, and
such has been observed experimentally. s' The present
calculations thus show that a diffraction picture can
successfully account for the observed patterns which
are characteristic of the crystal geometry in the vicinity
of a channeling axis.

If the "broadened" probabilities are used in produc-
ing Fig. 2, the essential features of the contours are
reproduced. The significant differences in that case
are that the stopping powers for a given value of Z are
reduced, the anisotropy of the stopping power is greatly
reduced, and the stopping power for ions incident down
the axial direction is not appreciably different from
that in the off-axis directions. '~ In addition, the axial

~ For example, with 7.0-MeV protons, and Z=5 one obtains a
stopping power of 55.54 MeV/cm down the I 110jaxial direction,
while at an angle of 0.01 radians from this direction in the (111)
plane one obtains a value of 56.66 MeV/cm for the stopping power.

(112)

8.0
7.0
6.0
5.0
4.0
3.0

8.0
7.0
6.0
5.0
4.0
3.0

8.0
7.0
6.0
5.0
4.0
3.0

348.11
389.66
438.81
504.24
599.69
748.89

Z=j
566.04
626.53
716.84
849.74

1040.0
1289.1

638.42
713.11
839.37
.989.64

1167.1
1543.6

398.70
445.94
502. 18
577.18
686.19
854.59

650.07
720.55
824.52
975.26

1189.8
1479.1

Z=9
716.30
801.15
933.57

1095.4
1296.7
1686.0
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TmLE IV. Comparison of theoretical and experimental energy loss protons and deuterons in germanium.

Incident
direction

Crystal
thickness
(10 ' cm)

Incident
Ion

Incident'
energy
t,'Mev)

Energy loss (MeV)
Expt. Theory

(110) 15.31 H+ 7.59 0.97&0.05 0.929 5.6+0.3

7.07
6.57
6.10
5.54
5.05
4.54
4.03
7.35

1.00
1.01
1.08
1.14
1.25
1.44
1.71
1.60&0.08

0.983
1.042
1.107
1.202
1.306
1.447
1.647
1.621

12.80 H+ 6.57 0.90~0.05 0.859 7.2~0.3

D+ 7.28
6.78

1.43&0.08
1.56

1.449
1.567

12.16 H+ 6.57

6.78

l.02%0.05 0.964 8.6&0.4

1.75+0.08 1.869

~ From Ref. 10.

presented since the experimental data will indicate that
the actual value of Z for each of these directions lies
between the two values of Z for which results are pre-
sented.

For comparison with experimental data the stopping
powers can be integrated over a given path length
(crystal thickness) and the predicted energy losses
compared directly with the observed energy losses.
This procedure has been carried out and is presented
in Fig. 3 for protons incident near the L1, 1, 0] direc-
tion in germanium and in Fig. 4 for deuterons incident
near the P1, 1, 0j direction. The data presented in
these two figures are from Sattler and Dearnaly. ' No
experimental data are presently available for 'He++.
These calculations along with those for the other direc-

Z(1, 1, 0)=5.6&0.3,

Z(1, 1, 2)=7.2a0.3,

Z(1, 1,"1)=8.6a0.4. (15)

These values of Z represent the effective number of
electrons per atom which participate in the shell motion

tions are compared with experiment and tabulated in
Table IV.

The best value of Z for each of these three directions
has been obtained by using a linear interpolation be-
tween the Z values for which stopping powers are pre-
sented and making a least-mean-square-error fit to the
experimental data. The results of this fit are

3.0—

X

3

Wz 2.0—

I I

ENERGY LOSS VS INCIDENT ENERGY

DEUTERONS INCIDENT IN {ill) PLANE
NEAR &IIO& DIRECTION IN Ge

CRYSTAL THICKNESS = 15.31%0.I7&& IO cm
EXPERIMENTAL POINTS- —a

2.0

0to I.5

UJz
iJJ

I.O

I.O I I

6 7
INCIDENT ENERGY (Me V)

I

6 7
INCIDENT ENERGY (MeV)

Fzo. 3. Energy loss versus incident energy for protons incident
in the (1T1) plane near the

I 110$ crystallographic axis of ger-
manium. Curves are calculated as indicated in the text. Experi-
mental points from Ref. 10 are shovrn.

FIG. 4. Energy loss versus incident energy for deuterons incident
in the {&1&) plane near the f110) crystallographic axis in ger
manium. Curves shovr calculated values. Experimental points are
from Ref. 10.
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when ions are incident in the directions indicated. That
the value of Z is anisotropic shouM not be too surpris-
ing since the channels are of different size in the various
directions and the ion will on the average pass closer
to the atoms in the more constricted channels. The
inner electrons on the atoms are thus less eBectively
shielded and can participate more strongly in the inter-
action.

If the atoms in a zinc-blende type lattice are assumed
to be spheres of radii equal to half the nearest-neighbor
distance, then the rms distance of closest approach to
the atomic centers for ions channeling down the vari-
ous axes is

Incident
direction

Energy —da'/dEX 10' (MeV'/MeV)
(MeV) 'H+ ~D+ 'He+ +

(110) 5.6 8.0

7.0
6.0
5.0
4.0
3.0

6.5

5.9
5.3
4.6
4.0
3.2

4.0

3.6
3.2
2.8
2.4
1.9

3.8

3.4
3.0
2.6
2.2
1.7

&112) 7.2 8.0 6.3 4. 1

TAsLE V. do~/dE for ~H+, ~D+ and ~He++ incident
on a germanium lattice.

R, ,(1, 1, 0)=0.269ap,

R, , (1, 1, 2)=0.236ap,

R, (1, 1, 1)=0.223go, (16)

7.0
6.0
5.0
4.0
3.0

9.9
8.8
7.5
6.2
4.9

5.6
4.9
4.2
3.4
2.7

3.7
3.2
2.7
2.2
1.8

where ap is the lattice constant for the material. In
comparing (15) and (16) one can easily see that the
larger values of Z correlate with the smaller values
Of ~rms

D. Straggling

8.6 8.0

7.0
6.0
5.0
4.0
3.0

13.6

12.0
10.6
9.1
7 ~ 4
5.9

7.3

6.6
5.7
4.8
3.9
2.9

5.0

4.4
3.8
3.2
2.7
2.1

The straggling of the particles can also be deter-
mined by the same sort of calculation which yields the
stopping power. To determine the straggling or mean-
square spread in energy of the transmitted beam of
channeled particles it is necessary to calculate (as a
function of ion energy) the zeroth, ffrst, and second

energy moments of the probability distribution given
in Eq. (9). Let M& be the kth energy moment of the
probability distribution dined by

a Least-mean-square error value from comparison of theoretical and
experimental stopping power.

Mg Mj —M) Mp dE) (20)

the crystal. The average energy loss per dS' events
is given by dE, where dE= —(M&/Mo)dN' Thus the.
last of Eqs. (19) can be written

(17) or, in differential form,

EI,—— E~G E dE)

where G(E) is the energy spectrum of the channeled
beam. The mean-square energy spread of this spectrum
is then given by O' = E2/Eo —(Eq/Eo) '. The relation of
0-2 to the energy moments of the probability distribu-
tion is obtained through

O'= Q I M2/Mo —(Mg/M0) '}
events

N'

{M2/Mo —(Mg/Mo) '
I dN',

0
(19)

where E' represents the average number of scattering
events a channeled particle undergoes in traversing

where &E is given by Eq. (10). Also, let the kth energy
moment of the spectrum of the transmitted beam of
channeled particles be deined by

da'/dE= (M2/Mx Mx/—Mo) . —(21)

The moments Mp, M~, and M2 have been calculated
according to Eq. (17) and combined in the form given
in Eq. (21) to obtain der'/dE Because the .contributions
to the probability function from A~, Am, and hg Lsee
Kqs. (5) and (6)g have been neglected, Mo is in error

by the zero-energy transfer probability contribution
of these functions. The quantities M~ and 3f~ are cor-
rectly given by (17), however. The calculated values
of the moments M~ indicate that M2/M~ is much larger
than M, /Mo. Thus changes in Ma by as much as an
order of magnitude would affect the value of do'/dE by
no more than 5—10%. It is expected that the zero-

energy transfer events will not be 10 times as prob-
able as all other events combined, but that they will

be about equally probable with all other events. The
calculated values of do'/dE should be in error by no
more than 1—2%.

The calculated values for do'/dE are tabulated in
Table V for the values of Z given in the expressions
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(15). The observed channeling spectrum of Sattler
and Dearnaley'" is not suSciently collimated to permit
a numerical comparison between the experimental and
theoretical values of O'. That is, many of the particles
appearing in the low-energy loss spectrum presented
in Ref. 10 are particles which were marginally chan-
neled and did not remain in the channeling beam
either because of interactions with lattice defects, the
channel walls, or through other processes. These par-
ticles were accepted in the channeling spectrum be-
cause of the large acceptance aperture used in the
experiments.

A qualitative comparison can be obtained by noting
that the experimental channeling peak (if highly colli-
mated) should have a width less than that observed.
The experimental width is about a~0.22 MeV for the
spectrum shown in Ref. 10 for 6.57-MeV protons inci-
dent along the (1, 1, 0) axis.N From Table V and
Eq. (20) one obtains for this case ~~0 086 .MeV. Thus
the calculated straggling is in reasonable agreement
with the experimental data. Experiments in which a
higher degree of collimation is used, such as those of
Gibson et al. in Si," yield much narrower channeling
peaks with normal energy-loss peaks greatly reduced
in relative intensity. No such data are presently avail-
able for germanium.

IV. CONCLUSION

Tables of the stopping power and the differential
mean-square energy spread have been calculated for
'H+, 'D+, and 'He++ ions channeling in a germanium
lattice. The calculation utilizes a diffraction picture
through the use of plane waves to represent the inci-
dent ion. The lattice polarization is represented through
a shell model of the lattice atoms.

The effective number of electrons per atom which
participate in the interaction with the channeling ion
is found to be a function of the incident-ion direction.
It is further noted that the closer the average distance
of approach the channeling ion makes to the channel
walls, the larger the effective number of electrons which
participate in the interaction.

The effective number of electrons per atom partici-
pating in the interaction between the lattice and chan-
neled protons and deuterons in germanium has been
obtained by Erginsoy et a/. ,39 who compare the ob-
served and calculated straggling using a classical pic-
ture of the channeling ion. In those calculations the
effective number of electrons per atom participating
in the interaction is also a function of direction with
Z values of slightly less than 6 for channeling in a
I 1, 1, 1I planar channel and slightly greater than 6 for
channeling in a I1, 1, OI planar channel being obtained.

The values of Z obtained by the two methods are
then in fair agreement. Use of a different potential
(e.g. , the Bohr potential) or a different model for thc
lattice polarization would yield slightly different val-
ues of the parameter Z. Variations in this parameter
should thus be expected when calculations are carried
out using different models. The present paper has
shown, however, that the stopping power can be cal-
culated from a diffraction picture using reasonable
values of the parameter Z. In addition, the straggling
is predicted within the experimental uncertainty for
the same value of Z. A more accurate comparison of
theory and experiment will require experimental data
obtained with the incident- and emergent-particle beams
collimated to within several hundredths of a degree.

The present calculation has also shown that the
temperature dependence of the stopping power and
differential mean square energy spread is quite small.
Although no data are available for channeling in ger-
manium, experimental measurements of the tempera-
ture dependence have been reported by Thompson
et al." for protons channeling in copper. They find
that the channeling fraction decreases with increasing
temperature, but no changes are observed in the en-

ergy losses. This is in agreement with the predictions
of this paper.

The same calculational techinques which have been
used in the present paper to describe the interactions
between a target crystal and a channeling particle
should also be applicable to a wide variety of incident
particles over a broad range of incident energies. The
energy range should be restricted from above by the
nonrelativistic nature of the calculations, and from
below by the requirement that electronic excitations
in the target be the major source of energy loss. While
there is no clear low-energy cutoff for this region the
method should apply as long as the velocity of the
incident particle is large compared with the velocity
of the outer electrons of the target atoms. One should
also be able to describe the channeling of heavier and
lighter particles although some of the explicit approxi-
mations used in the present paper may require altera-
tion. In addition, for very heavy particles electron ex-
change may occur between the target and the channel-
ing particle, in which case the simple Coulomb potential
used here would no longer adequately describe the
interaction.
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