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Calculations are given for the linewidths of the paraelectric resonance transitions of OH~ ions introduced
as impurities in KCl. The methods are applied to the transitions reported by Feher, Shephard, and Shore.
The width of the narrow line of this experiment is caused both by the dipole-dipole interaction and by
strains, presumably arising from dislocations. The broad line observed is primarily strain-broadened.

I. INTRODUCTION

HE microwave spectroscopy of dipolar impurities

in alkali-halide crystals has excited a great deal of
recent interest.'=® The spectroscopy of these impurities
shows a strong analogy to that of paramagnetic ions.
The transitions observed between the energy states of
the dipoles have become known as paraelectric reso-
nance transitions.

An experiment by Feher, Shepherd, and Shore? shows
this analogy in a striking way. A crystal of KCl was
grown with a small number of OH~ ions introduced
substitutionally for CI~ ions. The crystal was placed
in an ordinary electron-resonance spectrometer in an
external static electric field. Two separate resonance
transitions were observed and identified; one of them
was fairly narrow, the other quite broad.

The calculation of linewidths of paramagnetic reso-
nance lines is a highly developed field. In this paper,
we extend some of its well-known techniques to the
paraelectric case, with the aim of calculating from first
principles the observed linewidths.?

In Sec. IT we review the Hamiltonian and wave func-
tions which have been proposed for the OH—, following
the work of F'SS and Shore.* In Sec. III we apply the
classic moment techniques of Van Vleck to the calcu-
lation of paraelectric-resonance linewidths arising from
the dipole-dipole interaction. We first give a model
calculation for a resonance line in zero external field,
then apply the methods developed to the transitions
of the FSS experiment. In Sec. IV we consider strains
as a line-broadening mechanism.

II. HAMILTONIAN

Shore* gives a detailed discussion of the model Hamil-
tonian which we use. We briefly reproduce his major
points. In the absence of an external electric field, an
OH~ ion in KCI finds itself in a strong octahedral

* Supported by the National Science Foundation.
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crystal electric field. If the crystal field is very strong,
the eigenstates of the ion are six strongly localized
states, approximately degenerate, corresponding to the
dipole pointing along the coordinate axes. The states
can be written

IZ), l ——Z>, l x)) I —x>a |y>) ’ ‘“3’>' (1)

We will not specify these states further except to
say that they are orthogonal and that

(lex|z)=—(z|ez| —z)=n, (2)

where p is the dipole moment. Similar equations hold
for x and y, and all matrix elements of the type (z| x| z),
(z|y|2), «--, are taken to be zero because the states
are assumed to be very strongly localized.

In the parts of the FSS experiment which we con-
sider the external fields (both the dc field Eq and the
ac field E,.) were along a (100) axis, which we desig-
nate as the z axis. Hence the parts of the Hamiltonian
for interaction with the field

3p+3e=—p* (Eo+Exc) 3)
have the following nonvanishing matrix elements:
(2| 3Cac | 2)=—pFuc,
(=2 | 3Ca | —2)=pFye.
4)

If the E fields are the external fields, then u is the
dipole moment uncorrected for local fields.

In a real crystal, for which the crystal field is not of
infinite strength, there will be a finite probability of
rotational tunneling among the states of Eq. (1). This
probability will be largest for 90° rotations. We write
the Hamiltonian describing the tunneling on the basis
of Eq. (1);

(=] 3Cs | 2)=—nl,
(=2 |3k | —z)=nEo,

001111
001111

110011
Ho=—3A . (5)
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TaBLe I. Wave functions for E¢=0 and for E,=7.3 eV/cm.

Representation
State Energy label
E¢=0; symmetry group O

Yo=EvVO) { | )+ | —2)+ | o)+ | =)+ | o)+ | —2)) —2A A
Ya=0GV2){|2)— | —2)} 0 T
Ye=(3V2){ | 2)— | —=)}

va=GV2) { | 9)— | —o)}

ve=3{ [ 2)+ | =)= [9)— | —9)} A E,
=3 2| 2)+2 | —2)— | 2)— | —2)— | 9)— | =3}

Ey=7.3kV/cm; symmetry group Cs
eo=(1.575)"12(0+-0.681y1-+0.333ys) —2.925A 14,
1= (2.99)712(4+4-0.936y1 —1.06¢5) —0.728 A 24,
2=y 0 E
ws=vYs
o=y A By
o5 =(1.794)12(0.25¢0—0.855¢1+s) 2.644 A 34,

The parameter A measures the tunneling probability.
This form of Hamiltonian is also suitable to the trans-
lational states proposed by Bron and Dreyfus.!

The effect of strains must now be taken into account.
We neglect the effect of shear strains, and we also
neglect the dilation or breathing mode

S3: ezz+eyy+ezz- (6)

The dilation gives an unimportant over-all shift in en-
ergy levels.

T 1 T I T 1
@™ Eqlifio0] / 7]
0 Eqell Eg Eou=l0 -
STRAIN=0 STRAIN(+) 1
8~ / lod] 1

18,
IE

24, \

-10}- SYMMETRY c.,\ % Coor

7 SN N NN NN I SO N B
0O 2 4 8 8 o 1 2 3 4
Eop 2aZ,

A 3A

F16. 1. Energy level diagram of an OH~ dipole in a crystal field
of octahedral symmetry with an electric field along a (100) axis.
The double lines indicate an allowed transition, the single line a
forbidden transition. The effect of a uniaxial strain in the [100]
direction is indicated in the right half of the figure. (After FSS.)

We may then write, following Shore, the effect of
crystal distortions on the OH~ ions. In terms of the
stresses, the Hamiltonian is given by

(Z l ICs | Z>= <_Z l 3Cs l _z>=%a(Zz_%Xz_%Yu)7

(x [ s I x>= <—x ! 3Cs | _x>=?§a(Xx”%Yy_%Z2);

3| y)=(=y| ks | —y)=3a(¥,—$X.—3Z.).
(7)

All the other matrix elements vanish. Here « is an
experimentally measured parameter.?
The dipole-dipole interaction between OH™ ions is

Jaa= (¢/eRi®) [xi-1;— (1:*Ry;) (1;+Rij) /Rii*]. (8)

Here e is the static dielectric constant, er; is the dipole
operator for the site 7, and R;; is the vector between
the site ¢ and the site 5.

The parameters u, A, @, and e have been measured.?:®
Their values are

pu=(4.04£0.2) X108 esu,
A/kp=0.30°K,
e=4.85.

Two different values of a have been given in the liter-
ature®

a=23.7X10"2 cm?,
a=0.59X10"% cm?.
A calculation by Shore seems to support the second

8 C. Kittel, I'ntroduction to Solid State Physics (John Wiley
& Sons, Inc., New York, 1966), 3rd ed., p. 156.
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value.” The full Hamiltonian for the OH™ ions is, from
(3), (5), (7), and (8),

JCr= Z (3Coi +3Cmi+3Caci+3Cs:) + ; Jaa(ig). (9)
7 >7
The sum is over all the occupied OH~ sites. The terms
JCs: and 3Cyq give rise to the broadening of the resonance
lines,

The Hamiltonian JCy4-3Cg appropriate to noninter-
acting ions in an unstrained crystal was diagonalized
by FSS. In Fig. 1 we give their results for the energy
levels as a function of applied field. The representation
labels refer to the group Cs appropriate to the KCl
crystal with an electric field along the z axis.

Shore has given the wave functions of 3C+3Cg in
terms of the states | 2), | —2), etc., for very strong and
very weak electric fields. (That is, for uEc>A and
pEKA, respectively.) In Table I we give the wave
functions for Ey=0 and for E,=7.3 kV/cm, which
corresponds to the narrow line. The narrow line was
identified as the forbidden transition 141»34;. The
two transitions 141524, 241<>34;: were identified
with the broad line of the experiment. These allowed
transitions are not resolved because of their breadth.
The calculation of the widths of these resonance lines
is the concern of this paper.

As FSS have shown, when 3Cs of Eq. (7) is taken
into account we obtain at once a qualitative under-
standing of the relative linewidths of the two transi-
tions. We can see this from the right half of Fig. 1,
where we plot the energy of the various levels versus
the stress, for a uniaxial stress Z,. The Jevels 14;, 34,
move nearly parallel under the influence of the stress;
hence the forbidden transition is not appreciably strain-
broadened. However, the stress has a large effect on
the two allowed transitions.

We need another broadening mechanism for the for-
bidden transition. We turn to the dipole-dipole inter-
action, as treated in Sec. III. The allowed transitions
seem to be strain-broadened. We attempt to make the
FSS argument more quantitative in Sec. IV.

III. DIPOLAR BROADENING

In a classic exposition, Van Vleck® calculated the
moments of paramagnetic resonance lines broadened
by the dipole-dipole interaction. In this section we
apply his techniques to the paraelectric case.

We do not use the full treatment of Van Vleck, which
is fairly complicated even for paramagnetic resonance,
but we take advantage of the following fact: In experi-
ments of the type performed by FSS we always con-
sider crystals with small fractional concentrations of
OH- ions. Kittel and Abrahams® have treated analo-
gous paramagnetic systems. They show that for suffi-

7H. B. Shore, Phys. Rev. Letters 17, 1142 (1966).

$T.'H. Van Vleck, Phys. Rev. 74, 1168 (1948).
9 C. Kittel and E. Abrahams, Phys. Rev. 90, 238 (1953).
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ciently small fractional concentrations of paramagnetic
(in our case, paraelectric) impurities all of Van Vleck’s
equations reduce to expressions involving sums only
over pairs of ions. Hence the moments are given by
expressions of identical form if we treat a single pair
or if we treat a large number of ions. We can treat
each pair of OH~ ions separately, and sum over all
such pairs. We use this procedure in all the calculations
in this section.

In order to illustrate our techniques, we now present
a model calculation in which we take Ey=0. The time-
independent part of the Hamiltonian for a pair of ions
at points 7 and j is just

JC=3Co;+3Coj+3Caq. (9
The time-dependent part is
JCac="3Cac i13Cac e (9,,)

If we examine Fig. 1 we see that at zero external
field two transitions at a single site are possible: one
of energy A, the other of energy 2A. We now calculate
the broadening of the latter transition due to 3C4q4.

The relevant wave functions are given in Table I.
Using these, we construct a 36-dimensional direct-
product space with the basis vectors Y. (2)y¥s( 7). Here
a and B run from O to 5, and 7 and j are site labels.
Using this basis, we can find the matrices of the opera-
tors in (9).

The calculations of the matrix elements are straight-
forward with the relations given in Sec. II. One point
should be noted: We must insure that we are calculat-
ing the moments only of the transition of energy 2A.
This corresponds to Van Vleck’s “truncation” proce-
dure. To this end we neglect for the purposes of this
calculation all matrix elements of JCy ; other than

('I/O('I’) |3Cac i ! ll’l(i) >= (‘I/l(i) 1 ICac 4 ! 'I/0(7') >

= _I‘Eac/\/g' (10)

We now apply Van Vleck’s equation®:
72 ((Aw)?)= —Tr[3C, 3Cae 2/ Tr(5Cac)?— (img) 2. (11)

In our case, fiwp=2A. The actual calculation using (8)-
(11) is tedious.

After the commutator is squared out, the traces
taken, the final average over all pairs performed, we
have the result

72 ((Aw)?)= ( fut/6e) Z' (1/R;®) (1.2241.67 cos;) .
(12)

Here f is the fractional concentration of OH~ ions, and
6;; is the angle between the vector R;; and the z axis.

10 The much weaker transition of energy 2A corresponding to
two transitions each of energy A, at two different sites, will be
ignored.
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The sum is over all sites j5%4 whether or not occupied
by an OH~ ion. We have used the relation (see Ref. 9)

>’ (occupied sites) = Nf >/ (all sites), (13)
i i

where N is the total number of impurity ions. For a
fcc lattice like the one formed by the CI~ sites of KCl,
the sum in (12) has the value 205.5/a% where @ is the
lattice parameter.

All the odd moments of the transition at 2A are
zero, as one may show by explicit examination of the
relevant matrices. The next even moment, the fourth,
is calculated in a similar way using the relations®

((Aw)*)= (w*)—bur? {(Aw)?)—ax',
(w*)= (1/4%) Tx[3C, [3C, 3Cac] P/ Tr(3Cs)®. (14)

Once more the explicitly known matrices are com-
muted, squared, and their trace taken in the 36-dimen-
sional direct-product basis. The calculations are fairly
long, but lead to the relatively simple result

7t ((Aw)*)y= ( fus/6€") 27 (1/Rii®?) (0.43+418 cos't;;

—28 c0s%9;;-+12.67 cos0;;40.48 cos?0;;— 2 cos?0;; sin‘d;;
(15)

Here ¢;; and 6;; are the azimuthal and polar angles of
R;; with respect to the crystalline axes. For a fcc lattice
the entire sum in (15) has the value 871.62/a%2.

This equation is quite a bit more complicated than
Van Vleck’s corresponding expressions. This is due to
the complicated and rather low symmetry of the elec-
tric dipole states. For instance, the appearance of the
azimuthal angle ¢;; in the expressions arises from the
fact that the dipoles can be localized about any of
the six coordinate directions, so that the dipole-dipole
interaction depends on the exact orientation of R;;.

The low symmetry of the electric dipoles should be
contrasted with the cylindrical symmetry of the more
familiar magnetic dipole states. In a strong electric
field Fy, the wave function changes form correspond-
ing to the alignment of the electric dipoles along the
z axis. In this case the ¢;; dependence will drop out.

The Van Vleck techniques that we have used up till
now are limited in validity to the high-temperature
region. Because the FSS experiment was performed at
1.3°K, the high-temperature approximation (i.e., all
the states are equally populated) may not be valid.
We must extend our calculations to finite tempera-
tures. An extension of this type has been carried for
the analogous paramagnetic case by several authors.!
We may compactly reexpress their results for the
paraelectric case by using the autocorrelation functions.

XC052¢1:J' sin2¢,~,-— 18 COS40,':; sin"(?,-,- sinzqﬁi,- C052¢i,') .

M. H. L. Pryce and K. W. H. Stevens, Proc. Phys. Soc.
(London) A63, 36 (1950) ; K. Kambe and T. Usui, Progr. Theoret.
Phys. (Kyoto) 8, 302 (1952); M. McMillan and W. Opechowski,
Can. J. Phys. 38, 1168 (1960} ; 39, 1369 (1961).
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TasLe II. Temperature dependence of the second and fourth
moments of the transition with energy 2A in the absence of an
applied electric field or strain field. The parameter 7 is defined
by n=hu/ead.

T(°K) ((aw)?)/fn? ((aw)*)/fnt
1 31.73 119.39
2.5 33.23 134.76
5 33.75 140
7.5 33.92 141.76

10 34 142.63
® 34.26 145.27

We now give, without proof,’? an expression for the
autocorrelation function I'(#) from which all the mo-
ments may be derived.

I'(£) = C exp(—ioxt)
X 2 Tr(exp(—3¢/kT)[3Ca(2), 3ast]),

C={2/ Trexp(—3¢/kT)[5e, Hast ]} (16a)

Here wy is the resonance frequency of the noninteract-
ing system of dipoles, and the sum is over all pairs of
sites occupied by OH~ ions.

The operators appearing inside the traces are defined
as follows:

(n| 3t | m)=0 for E.> E.,,

=n|3w|m) for E.<E,

(n|3o | m)={(n|3u|m) for E,>E,,
0 for Fm<En (16b)

Here | m) and | #) are eigenstates of the pair of ions
at sites 7 and j. Also,

3Cact (¢) = exp(43Ct/h) 3Coct exp(—13Ct/R). (16c)

The relation
((Aw)?)= —dT'(t) /dt* |10 (17)

gives us an expression for the second moment of the
transition (for finite temperatures) in terms of traces.
A typical term is the following:

Tr(exp(—3C/kT)3Cas3CICact3C).

We handle the exponential factor by using the ap-
proximation

/ exp(—3C/kT)=exp(—3Co/kT). (18)
Here 3Co=3C;+3Co;. The eigenvalues of 3 are known
(Table I) along with the matrices of 3¢ and 3C,.. We

12 The proof is easy and follows closely the one given by G. E.
Pake Paramagnetic Resonance [ (W. A. Benjamin, Inc., New York,
1962), Sec. 7-17 except that Pake uses the high-temperature ap-
proximation.
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TasLE III. Linewidths of the forbidden transition. (Column 3
is for the dipole-dipole interaction.)

Concentration
of OH-, hB (exptl), hB (theoret),
incm™ (erg)» (erg)
1.3x10% 0.7X107  0.16X10-1
4x10v 0.3X10  0.05X10°1
3%10% 0.1X107%®  0.37X1078

2 G, Feher (private communication).

proceed as before with explicit and somewhat lengthy
matrix calculations to find the results which are given
in Table II.

We turn to the calculation of the linewidth of the
forbidden transition of the FSS experiment. We replace
Eq. (92) by

3C=3Co;+3Co;+3Cri+Hr;+Faq. (19)

The steps leading to the calculations of the moments
are identical to those above: We choose a product
basis which diagonalizes the first four operators in
Eq. (19). This is the basis ¢.(7)¢s(7) where a and 8
run from 0 to 5, and the functions ¢, are given in
Table I. We then calculate the matrices of the opera-
tors appearing in the correlation function (16).

We make a simplifying approximation in carrying
out the work. The eigenstates ¢ correspond to “aligned”
dipoles under the influence of a strong external electric
field. So we replace Eq. (8) by

FCaa=2(e?/eR;*) (1—3Z:;) 2:3;. (20)

Here Z;; is the z component of the vector Ry;.

The truncation of Eq. (10) is performed to pick out
the correct transition ¢o(2)<>¢5(7). Because of the net
alignment of dipoles, we expect the resonance line to
be asymmetrically shifted. This is indeed the case, but
the shift turns out to be small, about 0.02 of the un-
shifted resonance frequency.

The even moments of the line are calculated to be

2 {(Bw)?)=0.27( fu'/€) Zj:'( 1/R:f%) (1—3 cos’y)?,
(21)

At (Aw)*)=0.28( fu®/e*) Zj’ (1/R:;%) (1= 3 cos’6;;)*.
(22)

The sums in (21) and (22) have been calculated nu-
merically to be 68.9/a° and 325.2/a®, respectively.

To compare with the FSS experiment we use the
moments (21) and (22) to fit a CO Lorentzian line
with CO at wy=a and half-width 8 at half-maximum
intensity.

C. Y. FONG
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The value of 8 and « are found from the well-known
relations

(23a)
(23b)

((Aw)?)=2Bc/m,
{(Aw)*)y=2Bc3/3m.

The values of 8 found from (21)—(23) are compared
with the measured values in Table IIL.

For the two higher concentrations of OH™ listed in
the table the agreement to within one order of magni-
tude may be considered satisfactory. Certainly the
simplicity of our treatment should lead us to expect
no better. We have used observed values of the dipole
moment uncorrected for the polarizability of the me-
dium. The calculation by Mahan (Ref. 1) suggests
that this procedure is a good approximation.

In fact our use of the experimental dipole moment
takes into account a possible charge-dipole effect which
may arise if the OH~ is displaced along one of six
equivalent (100) axes. As pointed out by Bron and
Dreyfus,! the permanent dipole moment of the OH™
ion is oriented so that the proton always falls on the
(100) axis away from the nearest K* after the ion is
displaced. Suppose we consider a positive and a nega-
tive charge of equal magnitude to be present at the
lattice point from which the OH~ is displaced. The
negative charges preserve the crystal arrangement so
that its effect on the other OH~ ions has been ac-
counted for in the crystal field approximation. The
positive charge at the lattice point and the negative
charge on the displaced OH~ form a dipole moment.
This dipole moment has the same direction as the per-
manent dipole moment of the OH~, namely, along the
[100] axis. The resultant dipole moment is what is
measured experimentally.

The disagreement of two orders of magnitude of the
last line of Table II suggests that we have neglected a
line-broadening mechanism which is independent of
concentration of OH~. We should expect such a mecha-
nism in any case, because the measured linewidths are
not linear in f, as they are expected to be from the
discussion in Ref. 9.

We can apply the techniques developed here to esti-
mate the dipolar width of the allowed transition of
FSS. As we might expect, the predicted width turns
out to be much too small (by a factor of ~1072%) to
explain the experimental values.

To rectify both of these discrepancies we now turn
to a discussion of static strain broadening.

IV. STRAIN BROADENING

The Hamiltonian 3Cg given in Eq. (7) will describe
a line broadening provided there exists an inhomogene-
ous stress field in the crystal. We now inquire into the
possible sources of such a stress field. First, there may
be dislocations present in the crystal. This would give
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rise to a broadening independent of the concentration
of OH~. Also, strains may be introduced when the
OH- ions are substituted for the Cl-, due to differ-
ences in ionic radius. This is a concentration-dependent
effect.

The stresses at a point ¢ in an isotropic, elastic
medium due to an edge dislocation at the point j are
given by.1

Xp=—Yb sing;;(2+cos2¢;;) /2w (1—0) Rij,
Y,= Yb sing;; cos2¢;;/27w(1—0a) Ry,

Z.= —20Vb sings;/2r (1—a) Ryj. (24)

Here R;; and ¢,; are cylindrical coordinates, with the
end of the dislocation as center, the dislocation line
as the z axis, and the Burger vector along the x axis.
Further, ¥ is the shear modulus, ¢ is the Poisson’s
ratio, and b is the magnitude of the Burger vector,
b=10"% cm. For simplicity we adopt a model in which
the dislocations are all parallel and occur randomly
with probability f; at lattice points in a plane perpen-
dicular to their common direction. To find the total
stress field at ¢ we sum (24) over all dislocations j.
Then we calculate the various combinations of stresses
appearing in 3Cg.

Our total Hamiltonian now is 3¢=3Cy+3Cz+3Cs. We
use the first two operators as a zero-order Hamiltonian,
and JCs as a perturbation. Using the zero-order eigen-
functions ¢, of Table I we find

(¢o | 5Cs | po)=AE(14,) =0.61 Z L,

(s | 5Cs | ds)=AE(341)=0.71 3 Ly (25)
J
Here
Lij=%a(Zeij— 3 Xaii— 3 Vi)
= Vba(1—20) sing;;/3r(1—0) Ry;. (26)

The sums in (25) are over all dislocations j. The shift
in the resonance frequency is given by

fibw;=AE(34:) —AE(14:)=0.10 > Li. (27)
J

The observed moments of the strain broadened line
are the averages over the independent sites 7 of the
powers of AAw;. If f3K1, we can see by the methods of
Ref. 9 that

12{(Aw)?)=£a(0.10)2 37 Li, (28)

74 ((Aw)*)=12(0.10)* Z' LA (29)

These sums are over all lattice points in the plane

13 J. Friedel, Dislocations (Pergamon Press, Inc., New York,
1964), p. 21,
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intersecting the dislocations. They have been performed
numerically.

We now use these expressions to fit the anomalous
low-concentration datum point in the FSS experiment
by finding the half-width from (23), (28), and (29).
We find that f3 must be about 10~* if we use the value
of a given by Shepherd and Feher, whereas the value
reported by Hartel and Liity requires f3 to be about
61074 These probabilities correspond to densities of
dislocation lines pg~4X 10 cm™2 or pg~27X 109 cm~2.
These values are perhaps not much higher than what
one would expect, so that the proposed broadening
mechanism is possibly correct.

We now discuss the allowed (broad) transition of
the FSS experiment. This transition takes place at
a large electric field (i.e., Fou/A>>1; here Ey;=19.4
eV/cm), so that we can use the high-field wave func-
tions given by Shore to diagonalize the zero-order
Hamiltonian 3Cy+3Cz. To consider the effect of the
dislocations on the allowed transition we once more
use JCg as a perturbation to find

AE(14,)=1.14 Y Ly,
J

AE(24))=—0.54 Y Ly,
)

AE(34,)=0.80 > L. (30)
i
The moments for the transitions 14,24, are
2 (Aw)?= (1.68)%1 3 Lif,
7
A (Aw) 4= (1.68)4; > Lt (31)
i

For 24+>34,, the factor 1.68 becomes 1.33. The sums
in (31) are over all lattice points in the plane inter-
secting the dislocations.

If we use the values found for f; for the forbidden
transition along with Eq. (23) we find a value for the
half-width of the allowed transition

7B=2.5X10716 erg.

Because the half-width is proportional to the product
of fq and a, both values for « give the same result.
The experimentally measured half-width [from Fig.
1(a) of Ref. 27 is about 1.25)X 1071 erg. Our disloca-
tion hypothesis seems to give reasonably consistent
results.

To estimate the broadening due to the crystal strains
arising from the introduction of the OH~ ions we adopt
a simple model: We consider the OH~ ions to be spheri-
cal occlusions in elastic and isotropic KCl. The stress
field arises from the different ionic radii of Cl~ and

14 Reference 4, Eqs. (5) and (6).
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OH~. The ionic radius of OH~ is about equal to u/e=
0.8XX107% cm. Pauling®® gives for the ionic radius of
ClI~ 1.8X10~® cm. The fractional change of radius,
which we denote by 4, is 0.55.

The displacement field in an elastic isotropic medium
induced at a point ¢ by a spherical occlusion at a point
7 has been found by Mott and Nabarro.!®

R;i< Ry,
R;;i> Ry.

Up= K.R,‘,',
U= KR03/.Rij2,

Here #, is the radial component of the displacement
field, and Ry=original radius of the occlusion. Also «
is defined, so that é—x is the fractional change in
“lattice parameter” of the occlusion. We set 6=«.

The corresponding stresses are found using the stand-
ard methods of elasticity theory. In particular, we can
write the combinations appearing in 3Cg.

(32)

L= (20/3)(Z,—1X,—1Y,)
—[GaR#s/(14¢) Rif](1—3 costs;),

Mij= (20/3) (Xo—3Y,—3Z.)
—[GaR#8/(140) RiF](1—3 sin’y; cosy),

Nij=(2a/3) (Y,—3Xs—3Z.)

= [GaRo36/(1—l—a) Rif"](l—S sinzﬁi,- Sin2¢ij) . (33)
Here G is Young’s modulus. Again the total stress at
site 7 due to the occlusions alone is the sum of (33)
over all the other occlusions j. We now repeat the
derivation leading to (31) to find, for 141524,

12 {(Aw)?)=(145)2f 2/ Li,

R ((Aw)t)=(145)4f D/ Lif. (34)

For the transition 241345, the factor 1.45 is replaced
by 1.43. The sums in (34) are over all lattice points
and L;; is given by (33). The OH~ concentration is
3X10% cm™3,

B, Pauling, The Nature of the Chemical Bond (Cornell
University Press, Ithaca, N. Y., 1960), 3rd ed., p. 451.

18 N. F. Mott and F. R. N, Nabarro, Proc. Phys. Soc. (London)
52, 86 (1940).
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To compare with the FSS experiment we compute
the half-width of the allowed transition leaving & as a
parameter. Using the experimental value #B8=1.26X
10718 erg gives 62, instead of 0.55 estimated above
from atomic radii. Here we have used the Shepherd
and Feher value of «. If we use that of Hartel and
Liity we get 6~~12. In either case, if occlusions were
the only stress-producing mechanism, we would prob-
ably be able to understand the width of the allowed
transition with reasonable accuracy. The remaining
discrepancy could arise from the anisotropy of the
crystal, and from nonlinear terms.

If both occlusions and dislocations are considered
at once, the situation is somewhat different. For it is
the stresses that add, not the half-widths. With the
density of dislocations found above, the stress field of
the occlusions is completely negligible compared with
that of the dislocations. If the dislocations we have
postulated do indeed exist, the occlusion stresses have
no appreciable effect on either transition.

V. SUMMARY

Our very simple models appear to give a good semi-
quantitative account of the linewidths of the FSS ex-
periment. The situation is particularly clear for the
forbidden transition for the higher concentration levels
reported. We obtain fair agreement with experiment
by considering dipolar broadening alone.

For the lowest concentration of OH~ we are led to
postulate dislocations as a broadening mechanism. The
datum point is fitted to find the concentration of dis-
locations. This concentration has a fairly reasonable
value.

Turning to allowed transitions, we find that the
dipolar broadening is negligible. Using the density of
dislocations found from the forbidden transition, the
calculated width of the allowed transition due to the
dislocations agrees with the experimental value within
a factor of 2.
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