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Eq. (A6) reduces to

with
Y"(rt'''r ' rt''''r ' rt"'''ro") =(j I

Y'Y"Y"'
I i),

Y'=P(t r,)—F" FP(r t,),—
Y"=P(t '—)F ~ FP( „' t )—,
Y"'=P(ts rt")—F" FP(ro").

(A7)

(A8)

On substituting (A7) into (A4) we see that the equality (A1) indeed holds. In a similar way it can be shown
that the general term in Eq. (3.17) is correct.

APPENDIX B

(B2)

The expression (3.21) only involves an inversion of a 2)(2 matrix and hence can easily be reduced to
an algebraic expression. First we note that Eq. (3.21) can be rewritten as

W(Ir) =(2/r) Re+ x'
[ (Iso I 3."+'

I I&m&) I'Zp~(g[[A '(p)+3Q'rp&(p)?' I i). (B1)
tsPtsI

Then on substituting the explicit expression forJ and B into (B1)and performing the matrix inversions we obtain

gp, (j [ [ 5 (p)+3Q g B(p)j t [i)=&/D,

where

with

&=d(p+iP+2W)+3QY(p oP)—
D= d[(P+i (P C&+—Co) +W) (P+i (P+Ct Co) +—W) W' j—

+3P 'E(p+ (P+C C)+W)(—p '(P C'+—Co)+—W)

+ (p+i(P Ct+Co)—+W) (p i(P+Ct—' Co)+W—)+2W'+3QYj
d=(p sP)'+(Ct' -Co)'+2W(-p iP). -

We have used here the fact that p;= ,', and we h-ave taken W+ ——W + =W.

PHYS ICAL REVIEW VOLUME 165, NUMBER 2 10 JAN UAR Y T 968

Mossbauer Spectra in a Fluctuating Environment II.
Randomly Varying Electric Field Gradients*
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We derive an expression for the Mossbauer line shape in the presence of an electric Geld gradient which
jumps at random between the x, y, and z axes. This Hamiltonian represents an idealized model for the
effects on a nucleus of Jahn-Teller distortions, jump diGusion of vacancies, or electronic relaxation. A
simplified calculation based on a model in which the field gradient jumps between positive and negative
values along the z axis is also given. In certain limiting circumstances the two calculations give similar results:
The Mossbauer line shape consists of a single unsplit line for fast jumping, and of a quadrupole doublet for
slow transitions. The results of the calculation agree with experiments of Pipkorn and Leider and of
Chappert, Frankel, and Blum, as interpreted by Ham.

I. INTRODUCTION

EVKRAL recent Mossbauer-effect experiments on

~

~ ~

~

Fe'+ in cubic materials have yielded spectra which
are interpreted as being produced by a fluctuating
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electric Geld gradient at the nucleus. ' ' Such Quctua-
tions have been attributed to jahn-Teller effects, jump
diGusion of vacancies, or electronic relaxation. Ham
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has given a persuasive explanation for these experi-
ments on the basis of electronic relaxation in the
presence of a random strain. In this paper, we will give
a time-dependent Hamiltonian which represents a
reasonable physical model for all of the above effects,
and, with the use of this Hamiltonian, we calculate the
Mossbauer line shape and compare with experiments.

If an ion with a degenerate ground state is in a cubic
environment, the surroundings are expected, according
to the Jahn-Teller theorem, to distort in such a way
that the electronic degeneracy is removed. The dis-
torted surroundings would. then produce an electric
6eld gradient at the nulceus. There are, however,
several equivalent directions at a cubic site along
which these distortions can occur, and, as a result of
thermal excitations, the surroundings would jump from
one to another of these equivalent distortions. A nucleus
in the center of the ion would see, as a result of these
eGeets, an electric 6eld gradient which jumped at
random from one axis to another. The jump rate would
be determined by the temperature, and in turn this
rate determines the nature of the MOssbauer spectrum.
It is clear that an identical physical picture, from thc
point of view of the nucleus, would be produced by a
vacancy in one of the neighboring sites of the ion. The
vacancy would jump, as a result of thermal excitation,
from one equivalent position to another, producing
again a Quctuating 6eld gradient at the nucleus.

In Ham's' picture of the MOssbauer spectrum of
Fe'+ in MgO, '2 the three-fold degenerate I"5 ground
state is split by random strains into three singlets.
None of these singlets can produce a magnetic hyper-
fine 6eld at the nucleus, but when the ion is in one of
the levels, it will produce a field gradient at the nucleus.
The sublevels of F5 transform like xy, xs, and ys. (We
suppose that these levels are eigenstates. In general,
the eigenstates will be a linear combination of these
levels, but as Ham has shown, the magnitude of the
6eld gradient at the nucleus is independent of the
particular combination used. ) As a result of electronic
relaxation, the ion will jump between the three states.
When the ion is in

~ xy), a field gradient along s is
produced at the nucleus, etc. The physical picture is
therefore as in the preceding cases.

Our approach will be to construct a Hamiltonian
which is a random function of the time, and which
consists of an electric 6eld gradient 6xed in magnitude,
but which jumps between the x, y, and s axes. We then
use the formalism given in an accompanying paper' to
calculate the MOssbauer line shape. The problem con-
sidered here is cornplieated because the Hamiltonian
does not commute with itself at separate instants of
time. We nevertheless are able to solve this problem,
and we compare the solution with that for a simpler
problem, in which the field gradient fluctuates from +
to —only along the s axis (for which the Hamiltonian
commutes with itself at all times). We find that the

' M. Blume and J. A. Tjon, preceeding paper, Phys. Rev. 165,
446 (196g}.Referred to as 5.

solutions for these two cases are identical in form with
slight numerical diftcrcnces in the limit where each
6eld gradient is equally probable, but they differ when
the time-average gradient is not zero.

The mathematical results for the linc shape for our
model agree with intuitive arguments based on the
concept of motional narrowing. When the jump rate
is rapid compared to the precession rate of the nucleus
in the 6eld gradient, the line is unsplit and. has the
natural width, while when the jump rate is slow com-
pared to the precession rate a quadrupole splitting
appears.

In the next section, we construct the Hamiltonian
for the system and derive an expression for the bnc
shape. We then compare the results of this calculation
with those for a simpli6ed Hamiltonian. There is very
good agreement with the experimental results of
Pipkorn and Leider. '

II. HAMILTONIAN AND LINE SHAPE FOR A
FLUCTUATING ELECTRIC FIELD GRADIENT

We wish to give the Hamiltonian for a nucleus in an
electric 6eld gradient which jumps at random between
the x, y, and s axes. To do this we introduce a random
function of time f(t) which takes on the three possible
values, ~1 and. 0. Stochastic functions such as this have
been thoroughly discussed previously (see Refs. 15, 16,
20, and 21 of I) . The Hamiltonian may be written

3'.(t) =Xp+L1—P(t) )Q(3I,'—I2)

+kf(t) L1+f(t)3Q(»' I')-
+i&(t) L1 f(t) ]Q(3I—V' I'), (1)—

where K0 is the Hamiltonian for the nucleus in the
absence of any perturbations and Q is a constant
proportional to the product of the electric 6eld. gradient
and the quadrupole moment of the nucleus. When
f(t) =0, (1) reduces to Xp+Q(3I,'—Im), while for
f(t) =1, 3'.(t)~Xp+Q(3I '—I'), and f(t) = —1 yields
K(t)-+3CO+Q(3I„s—Im). Hence, as the random func-
tion f(t) jumps between its three permissible values,
the field gradient jumps between the three axes.
Speci6cation of the matrix 8"of transition probabilities
per unit time between the three values of f(t) then
completes the construction of the model for the proc-
esses discussed in the introduction. Before proceeding
with the calculation, we rearrange some of the terms
in (1).Since

kf(1+f)Q(3I' I')+2f(1 f) Q—(3'' I')— —

=2fQ(I' ~w') 2f'Q(3I' —I'), (2)—
we may write

3'.(t) =X/+ $1—g'f2(t) )Q(3I '—I') y 3 f(t) Q(I '+I 2)

(3)

where I~——I,&iI„, and I '—I„'=~2(I+2+I '). We note
that if the transition probabilities per unit time between
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and expanding

in a time-ordered series, we 6nd

G, (t) = P(—i)" dt's ~ ~

n 0

exp —i V t' Ch'

0

4-1 t

dt„(I&m&
I

exp i —X&(t') dt' V(4) ~ ~ V(t„) I hmg)
0 ) SV

(10)

Since V(t) has the selection rule Am= &2, only terms with even m occur for the diagonal elements. Because of
this rule, and since I~ ———,', we have

t

(lee)e p( —i. ee (e'}«') p(e) ~ p(e, ))Iee)„p,„=
0

where

Further,

(I)m) I V(t)) V(t2) I
I,m, )

(.= exp
I
in f, (t')dt'

I
(I~m)

I V(t&) V(tm) I I&m&) ~ ~ ~ (I,m, I V(tm„,)V(t,„) I I,m, ), (11)
I 0 ]

a=n(m&) = —-,'Q(3m)2 —15/4) and f)(t) =2L1—$f'(t)].

t1 ( t2

= exp —iu, h' dh' h& exp —in ~
h' dt' exp i' ~

h' Ch' h2 exp in ~
h' dh'

) 0

&((-',Q)'
I
(I m)

I
I+'

I I)mq —2) I',

where we have used the fact that

—-', QI 3(m)+2)' —15/4] = —n(m)).

Then, since
I

(I&mq I
I+'

I Iqm&+2) I2 =12, Eq. (11) becomes

( ty~

4'&„——L(27/4)Q'] exp I in f~(t')dt' f(t)) exp in f~—(t')dt' f(t2) ~ f(t2 ) exp
I
in f~(t')dt'

I
.

0 j
To take the stochastic average of +2„,we introduce the restricted average, subject to the condition f(t) =i at t=0
and f(t) =j at t. We denote this average by (j I %2„ I i) . Since i, j=&1, 0, this restricted average is a 3)&3 matrix.
The full average which we require is then given bya veraging over initial values i and summing over final values j:

+-= Zp'(i I
+.- I i),

where p; is the u priori probability of the value i at t=0. If each of the values &1, 0 is equally probable, p; = ~~.

To obtain this restricted average of 02„we introduce (j I
A (t„—t„) I i), the restricted average of

f~(t') dt' I,
t„I )

subject to f(t„)=i and f'(t„) =j Similarl. y, (j I
B(t„—t„) Ii) is the average of

ta

f(e )eep( —; f,(e')„«' lf(e„,),
t I ]

subject to the same conditions. Then

+2.=ZP (a I
(3~')"~(t—t))~(t~ —t2) "&(t2-i—t2-)~(t2.) I ~),

where we have written (27/4) Q~=3n~. From (10) and (12),
t t&n-1

G„„(t)=pp, j g( —3~')" dt, " dt,.A(t —t,)B(t,—t,)" B(t,„,—t,„)A(t,„) i I,
$j n 0 0 ]
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ci(p) = dt exp( —pt)A(t),

and

and, on substituting in (8),

X&+& I ppsW(k) = (2/P) Re(1/2Ii+1) Q I (Ierpse I
X&+& Iippsi

&&2 '(iI ~(p)L1+3~'B(p)~(p)3 'I &)
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0

in the summation inare both 3&(3 matrices. Performing
(13) yields

=2 '(il&(p)I. 1+3~'B(p)~(p)3 'I s) 14

ould be satisfied in the three physical
iscussed in the introduction. n e

dd th o i o th t thelectronic re aaxation we must a
e hi h compare to e sd th plitting of the

)b h 1o l t
se for all of the experiments so far

~ =— it is possible by straightforwar u
(14). We simply quote the resultalgebra to evaluate . e si

here,

p+3W
"'(p) =

ps+3WP+C

1 1—3W/(9W' —16as) "'
2 p+-,'W+-'(9W' —16cr') '"

1 1+3W/(9W' —16ns) "'
2 P+ssW ,'(9W—'—16n'—)"'

rum de ends on whether 95"&The natu e of the spect p
en 8'&~o., the radical is rea an

two lines is found. In Fig. 1, we show a series o s
calculated from (15).We have taken

exp( —6/2T)
(17)

sinh (6/2T)

endence of an Orbach-type relaxa-the tempe ature dep
.4 Choosing 6 100 cm ' an 0 so

1 llthe results in ig. i
agr

'
x erimental results of Pipkorn andagreement with the experimenta resu s

I.eider.

78'

0 0

is the matrix w ose iis h diagonal elements are the per-
missible values of f(t),

0 0

0 2 0

0 0 —1

matrix of values of fi(t) =2—3f'(t),
b bilities ~er unitmatrix of transition pro a i i ies

time between the thre|: values o t .

I.8—
I.6—
I.4—
l.2—
I.O—

0.8—
0.6—
0,4—
0.2—

l4

I I I

0 2 4
t l J I I l I I

0 2 4 0 2 4024 024
15 an(IMossbauer line s ape asM" b as calculated from" Eqs. ( )

l7), for different values of T.



165 MOSSBAUER SPECTRA

III. SOLUTION FOR A SIMPLIFIED
HAMILTONIAN

The calculation of the line shape in II was compli™
cated by the noncommutativity of the Hamiltonian at
diGerent times. This noncommutativity has physical
consequences in the polarization and intensity of the
radiation emitted from a single-crystal source in which
one of the axes is singled out. As we pointed out in the
preceding section, however, these effects do not appear
in polycrystalline materials for which there is no
specific orientation. It is of some interest to compare
the results of the model used in the preceding section
with one that does not have these complications. We
consider the Hamiltonian

t
= exp( tP, t) e p ~

2} f(t )dd—) t. . . (1'9)

where n is as de6ned following (11).Using (19) and
(5) in (4),

W(k) = (2/I') Re(2I)+1) ' dt exp/i((0 —~(})t ', Ftj—-
0

X Q i (Iomo (
BC(+)

~
I)m) ) ~'

mPm1

t

X exp 2in t' dt'
0 8V

(20)

3'(&) =&o+Qt (&) (3I.'—I'),

where here f(t) takes on the values &1 (but Not 0).
The electric 6eld gradient then jumps from positive to
negative, but always along the s axis. We clearly have
PC(i), K(t')]=0 for Eq. (18). This enables us to
consider the stochastic and quantum-mechanical as-
pects of the problem separately, for we may diagonalize
K(t) at one instant and be assured that it will always
be diagonal. This was not possible with (1), since the
appropriate quantization axis there depends on the
nature of the transition matrix W, i.e., it is not possible
to disentangle the stochastic and quantum-mechanical
parts of the problem.

We reevaluate (5) using the Hamiltonian (18).
Equation (6) for the matrix element in the spin Io ———,

'
ground state is unchanged, but (7) can now be written
down directly:

t

(I m '
~

exp (
—i td(t'}de')

~

I m, )
0

The stochastic average in (20) is given in Eq. (3.3) of I,
provided n in that equation is replaced by 20.. Substi-
tuting that result in (20) gives

W(lr) =(2/r) Re(2Ig+1) 'g
I &Ipmolm"+'

1
I)m, &

I'
tgpm1

X 2 p;(J I p —2~P —~3 'Ii), (»)

where now

(—W+ W+

(W, —W,j
and where P= —i(dd —a&(})+-',I'. For W+ ——W +=W,
and for p;= 2~, inversion of the matrix yields

=L(p+2W)/(p~+2Wp+4nm) $

1 1 W/—(W' 4n'—)"
2 p+W+ (W' —4n') '"

1 1+W/(W' —4n')'I'

2 p+W —(W' 4n')—" (22)

If in (22) we let W-+-, W, this equation is identical to
(17). The factor —,

' is reasonable, because there are
three possible values of the Hamiltonian (1), but only
two of (18).

The line shapes produced by (18) and (1) agree, it
should be emphasized, only in the limiting conditions
discussed above. For example, it is possible to obtain,
for certain relaxation matrices 'N, a four-line pattern
or a three-line pattern from (1), while (18) can yield
only the standard two-line pattern in addition to an
unsplit line. To calculate these eBeets numerical
evaluation of (14) and (15) is the most economical
procedure.
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