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with
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(A7)

V' =P(t—r;)F-++FP(rn—1),
V" =P(ty—r)F--FP (1, —1),

Y"'=P(ty—r")F+++FP(z,").

(A8)

On substituting (A7) into (A4) we see that the equality (A1) indeed holds. In a similar way it can be shown

that the general term in Eq. (3.17) is correct.

APPENDIX B

The expression (3.21) only involves an inversion of a 2X2 matrix and hence can easily be reduced to
an algebraic expression. First we note that Eq. (3.21) can be rewritten as

W (k) =(2/T) Re2_ § | {Tomo | 500 | Iomy) P2 p:(5 | A7 (p) +3Q%PB ()17 | 4).

mom1

(B1)

i

Then on substituting the explicit expression for 4 and Binto (B1) and performing the matrix inversions we obtain

;jp,-(j | CA(p)+3Q*2B(p) T | i)=N/D,

where

N =d(p+if+2W)+3Q%*(p—1B)

(B2)

D=d[ (p+i(8—Ci+Co) +W) (p+i(8+C1—Co) +W)—W?]
430 (p+i(B+C1—Co) +W) (p—i(B—Cy'+Co) +W)
+ (p+i(B—Ci+Co) +W) (p—i(B+Cy' —Co) +W)+2W2+30%7],

with

d=(p—1)*+(C/—Co)*+2W (p—1iB).
We have used here the fact that p;=%, and we have taken W, _=W_ . =W.
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We derive an expression for the Mdssbauer line shape in the presence of an electric field gradient which
jumps at random between the x, y, and z axes. This Hamiltonian represents an idealized model for the
effects on a nucleus of Jahn-Teller distortions, jump diffusion of vacancies, or electronic relaxation. A
simplified calculation based on a model in which the field gradient jumps between positive and negative
values along the z axis is also given. In certain limiting circumstances the two calculations give similar results:
The M&ssbauer line shape consists of a single unsplit line for fast jumping, and of a quadrupole doublet for
slow transitions. The results of the calculation agree with experiments of Pipkorn and Leider and of

Chappert, Frankel, and Blum, as interpreted by Ham.

I. INTRODUCTION

EVERAL recent Mossbauer-effect experiments on
Fe?t in cubic materials have yielded spectra which
are interpreted as being produced by a fluctuating

* Work perfurmed under the auspices of the U.S. Atomic En-

ergy Commission.
T Permanent address: University of Nijmegen, Nijmegen,
The Netherlands.

electric field gradient at the nucleus.' Such fluctua-
tions have been attributed to Jahn-Teller effects, jump
diffusion of vacancies, or electronic relaxation. Ham*
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has given a persuasive explanation for these experi-
ments on the basis of electronic relaxation in the
presence of a random strain. In this paper, we will give
a time-dependent Hamiltonian which represents a
reasonable physical model for all of the above effects,
and, with the use of this Hamiltonian, we calculate the
Mossbauer line shape and compare with experiments.

If an ion with a degenerate ground state is in a cubic
environment, the surroundings are expected, according
to the Jahn-Teller theorem, to distort in such a way
that the electronic degeneracy is removed. The dis-
torted surroundings would then produce an electric
field gradient at the nulceus. There are, however,
several equivalent directions at a cubic site along
which these distortions can occur, and, as a result of
thermal excitations, the surroundings would jump from
one to another of these equivalent distortions. A nucleus
in the center of the ion would see, as a result of these
effects, an electric field gradient which jumped at
random from one axis to another. The jump rate would
be determined by the temperature, and in turn this
rate determines the nature of the Mdssbauer spectrum.
It is clear that an identical physical picture, from the
point of view of the nucleus, would be produced by a
vacancy in one of the neighboring sites of the ion. The
vacancy would jump, as a result of thermal excitation,
from one equivalent position to another, producing
again a fluctuating field gradient at the nucleus.

In Ham’s* picture of the Mossbauer spectrum of
Fe?* in MgO,'? the three-fold degenerate I'; ground
state is split by random strains into three singlets.
None of these singlets can produce a magnetic hyper-
fine field at the nucleus, but when the ion is in one of
the levels, it will produce a field gradient at the nucleus.
The sublevels of T'; transform like xy, %z, and yz. (We
suppose that these levels are eigenstates. In general,
the eigenstates will be a linear combination of these
levels, but as Ham has shown, the magnitude of the
field gradient at the nucleus is independent of the
particular combination used.) As a result of electronic
relaxation, the ion will jump between the three states.
When the ion is in | xy), a field gradient along z is
produced at the nucleus, etc. The physical picture is
therefore as in the preceding cases.

Our approach will be to construct a Hamiltonian
which is a random function of the time, and which
consists of an electric field gradient fixed in magnitude,
but which jumps between the x, v, and z axes. We then
use the formalism given in an accompanying paper’ to
calculate the Mdssbauer line shape. The problem con-
sidered here is complicated because the Hamiltonian
does not commute with itself at separate instants of
time. We nevertheless are able to solve this problem,
and we compare the solution with that for a simpler
problem, in which the field gradient fluctuates from -+
to — only along the z axis (for which the Hamiltonian
commutes with itself at all times). We find that the

& M. Blume and J. A. Tjon, preceeding paper, Phys. Rev. 165,
446 (1968). Referred to as I.
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solutions for these two cases are identical in form with
slight numerical differences in the limit where each
field gradient is equally probable, but they differ when
the time-average gradient is not zero.

The mathematical results for the line shape for our
model agree with intuitive arguments based on the
concept of motional narrowing. When the jump rate
is rapid compared to the precession rate of the nucleus
in the field gradient, the line is unsplit and has the
natural width, while when the jump rate is slow com-
pared to the precession rate a quadrupole splitting
appears.

In the next section, we construct the Hamiltonian
for the system and derive an expression for the line
shape. We then compare the results of this calculation
with those for a simplified Hamiltonian. There is very
good agreement with the experimental results of
Pipkorn and Leider.!

II. HAMILTONIAN AND LINE SHAPE FOR A
FLUCTUATING ELECTRIC FIELD GRADIENT

We wish to give the Hamiltonian for a nucleus in an
electric field gradient which jumps at random between
the #, 9, and z axes. To do this we introduce a random
function of time f(¢) which takes on the three possible
values, =1 and 0. Stochastic functions such as this have
been thoroughly discussed previously (see Refs. 15, 16,
20, and 21 of I). The Hamiltonian may be written

3e(f) =3+ 1—£2(t) JQ (3T 2—I?)
+3f(O[1+f(H)J0BL2—1I?)
+f(O—f(0]JeBL—1%), (1)

where 3C is the Hamiltonian for the nucleus in the
absence of any perturbations and Q is a constant
proportional to the product of the electric field gradient
and the quadrupole moment of the nucleus. When
F(@® =0, (1) reduces to 3¢+Q(3[.2—I?), while for
F(®) =1, 3e()—>5c+Q(3L.2—I?), and f(¢) =—1 yields
3¢(t)—3C+Q(3I,2—1I?). Hence, as the random func-
tion f(f) jumps between its three permissible values,
the field gradient jumps between the three axes.
Specification of the matrix W of transition probabilities
per unit time between the three values of f(£) then
completes the construction of the model for the proc-
esses discussed in the introduction. Before proceeding
with the calculation, we rearrange some of the terms
in (1). Since

H(1+N)QGLA—I)+3f(1-) QL —I)
=3I —1?) —3f QB3I -1, (2)
we may write
50(f) =3e-+[1—3f2() JQBL2— %) +3 F() QUL +1.2),
(3)

where Iy =1I,=+il,, and I2—12=3(1*+1%). We note
that if the transition probabilities per unit time between
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the various values of f(#) are all equal, i.e., W, _=
Wio=W_g="+++ =W, then the average of f(¢) will equal
zero. Also, the average of f2(¢) will be %, so that, in this
case, JC(£) =3C,.

To calculate the line shape, we must evaluate Eq.
(2.8) of I for the probability W (k) of emission of a

J. A. TJON AND M. BLUME
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tonian for emission of a photon k by the nucleus,
30O =5e,

and

3D (f) = exp (1 / t&c(t’)dt’) 3 exp (—i / ’J(Z(t’) dt’),
0 0

photon ke:
- with, in the present problem, 3C(#) given by (3). The
W(k) =(2/T') Re / dt exp(iwt—3T%) notation ( )ay in the correlation function in (4) indi-
0 cates that a stochastic average over all functions f(¢)

X ({33 (£) V)ay.  (4) 18 to be performed. We calculate the correlation func-

tion for a nuclear transition from an excited level with
Here TI' is the natural linewidth and 3¢ is the Hamil- 1

spin I1=3% to a ground level with spin J/y=2%. We have

> (Lom | 1O | Iomo)

mimo,m1/mo!

(@@ (f) )= (1/21+1)

t [2
X {Iomo | exp (ifﬁc(t’)dt’) | Tomo' Y{Tomo' | 3D | Iymy Y{Iym,' | exp (-—z/ Jc(t’)dl’) | L), (5)
0 0
Because Iy=1% the quadrupole terms in (3) have no effect in the J, matrix element, and we obtain
t
(Zomo | exp (i'/ se(r) dt,) | Zomo')= exp (iEof) dmony- (6)
0

The central part of the calculation is then the evaluation of

((Ilml’ | exp [—i/ot{i(i(t’)dt'] | Ilm1>)av= exp(—iFEl) ((Ilml' | exp [——i/:({}cl(t’)—l—V(t’) )dt’] | Iﬁnl))SL , (D

A4

where
e (r) =[1-3() JeBL2—I)
and

V() =i/ QI +12).

Using reasoning identical to that following Eq. (3.11) of I, it follows that if we consider the probability of emission
from a powder we need only the diagonal element of (7). Also, even for a single crystal, the nondiagonal elements
of (7) vanish if the three values of /() are equally probable. In the general case, it is possible to calculate the
off-diagonal elements by a procedure identical to that used in the following for the diagonal elements. Under the
above restrictions, then, we have, on substituting (7), (6), and (5) in (4),

W (k) = (2/T) Re f " dt explli (w—wo) i—3T¢](1/2041) 3 | (Tumo | 56 | Tmy) 2

0 mimo

av

t
X ((Iﬂm | exp [-i/ @)+ () )dt’] | 11m1>> , (8)
)
where wy=F;— E, is the frequency of the unperturbed transition. We consider now the calculation of

Gt = (| exp [ =i @)+ V@3¢ | 1) ©)

Writing :
exp (—i /0 ‘G )+V (@) )dt’) = exp (—i fo tacl(t’)dt') exp (—i fo tV(t’)dl’) ,
with

V(8) = exp (i/otﬁcl(t’)dt’) V(£) exp (—— '/;tscl(t')dt’) ,
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and expanding

exp (—i/:V(t’)dt’)

in a time-ordered series, we find

Gon(8) = (=) [ e / ity (¢tm ex [—z‘ / Seu(?) dt’] P+ T 0) | o)) (10)

av

Since ¥ (#) has the selection rule Am=--2, only terms with even # occur for the diagonal elements. Because of
this rule, and since I; =3, we have

<Ilm1 ] exp (——i/iﬂcl(t') dt') V(tl) .. 'V(t2n) I I1m1>=‘1’2n
0

= exp (ia/tfl(t’)dt’) (Iomy | V() V (t) | Toma )+« Tymy | V(tans) V (820) | Irma),  (11)
0

where

a=a(m)=—30Q@m’—15/4) and fi(f)=2[1—-3f*(1)]
Further,

Ty | V(1) V (&) | Tima)

~ exp (—ia fo “ﬁ(t')d/) F(t) exp (—ia /0 “ﬁ(/)dz') exp (ia fo "h() dt’) #(8) exp (ia fo () dt’)

X GO | (Lo | 12 | Lo —2) |2,
where we have used the fact that
—3003(m=£2)2—15/4]= —a(m).
Then, since | (T | 1.2 | [m==2) |2 =12, Eq. (11) becomes

T =[(21/90T exp (i 50at) (1) exp (i RO 1(6)-++1(1) e (ia f ).

To take the stochastic average of ¥, we introduce the restricted average, subject to the condition f(¢) =7 at =0
and f(#) =7 at £. We denote this average by (7| ¥z, | ). Since ¢, j===1, 0, this restricted average is a 3)X3 matrix.
The full average which we require is then given bya veraging over initial values ¢ and summing over final values j:

y, = ZPi(j [ W | 1),

where p; is the a priori probability of the value ¢ at {=0. If each of the values 41, 0 is equally probable, p;=1.
To obtain this restricted average of ¥, we introduce (| 4 (¢,—t,/) | %), the restricted average of

exp (ia tﬁfl(t’) dt') ,

tn!

subject to f(¢,r) =17 and f(#,) =4. Similarly, (| B(¢.—t.) | %) is the average of

o
1(0) exp (—ief i1 1000,
tn
subject to the same conditions. Then

Vg = Z_:P-'(f | (3a2)"A(1—4) B(ti—1ts) *  * B(fon1—1tm) A (L20) | 1), (12)

).

where we have written (27/4)(Q?*=3a? From (10) and (12),

Gral) = S (s

¢ ton—1
Z(“S(Xz)"/ dt1"'/ dlznA (t_lfl)B(tl—lz) "'B(tzn_1—'tzn)A(t2n)
n 0 0
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and, taking the Laplace transform of G, (%),
Gmx(?) =/mdi exp(-—Pl)Gm(t)
0
=205 | 22(=3a®)"A(p)[B(HA(p) T | 4,
(13)
where
A(p) = ["arexp(—p 400,
0
and
B = [“tresp(—p) BO),
0
are both 3X3 matrices. Performing the summation in

(13) yields
Gy (p) = 200G | A(P)[1432B(p) A (p) T |3)  (14)

and, on substituting in (8),

W (k) = (2/T) Re(1/2,4-1) > | {Tomo | 3P | Iymy) |2

mom1

X 205 | A(p)[1+3e2B(p) A (p) T | 0),

(15)

with p=—i(w—w)+3I. The problem reduces to the
evaluation of the 3X3 matrices 4 (p) and B( p) and to
the calculation of the elements of [1+3a2B(p) A (p) T
The matrices A (p) and B(p) can be found by following
the procedures of Anderson, Kubo, and Sack (see Refs.
of I, as well as Appendix A of that paper). We obtain

A(p) = (p—iaF1—W)7,
B(p) =F(p-+iaF,—W)-IF,

where

is the matrix whose diagonal elements are the per-
missible values of f(¢),

-1 0 0
Fy= 0 2 0
0 0 —1

is the diagonal matrix of values of fi(¢f) =2—3f2(¢),
and W is the matrix of transition probabilities per unit
time between the three values of f(¢). If these prob-
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ablities are all equal, we have p;=% and

—2W w w

W= W =2W w

w W =2W

This condition should be satisfied in the three physical
situations discussed in the introduction. In the case of
electronic relaxation, we must add the proviso that the
temperature be high compared to the splitting of the
three levels | xy), | xz), and | yz) by the local strain,
but this is the case for all of the experiments so far
performed. Using this expression for W and taking
pi=%, it is possible by straightforward but tedious
algebra to evaluate (14). We simply quote the result
here,

p+3W
2+ 3W p+-4a?

_ 1 1-3W/(OW*—160%) 12
2 pHEW (9P —1602)1

1 1430/ (9W?—16a2) 12
2 p+EW—3(9W?—16a2) 12"

The nature of the spectrum depends on whether 9W?2>
or <16a?. When W>$a, the radical is real and con-
tributes to the width, while for W <4« a splitting into
two lines is found. In Fig. 1, we show a series of spectra
calculated from (15). We have taken

exp(—A/2T)
sinh(A/2T) ’
the temperature dependence of an Orbach-type relaxa-
tion process.* Choosing A100 cmm! and W, so that
W (14°K) =4a, the results in Fig. 1 give excellent
agreement with the experimental results of Pipkorn and
Leider.

G,,u(?) =

(16)

W=W, (17)

T T 1 T T 1 T T T T 1 T T T
78°
16

201 -
18~ -
1.6 -
1.4 -
12~ -
1.0~ -
08~ -
o.e— -
0.4—
02~ .

1 | L1l Lt 1 11 [

024 024 2 4 024

T1c. 1. Mossbauer line shape as calculated from™Egs. (15) and
(17), for different values of T.
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III. SOLUTION FOR A SIMPLIFIED
HAMILTONIAN

The calculation of the line shape in IT was compli-
cated by the noncommutativity of the Hamiltonian at
different times. This noncommutativity has physical
consequences in the polarization and intensity of the
radiation emitted from a single-crystal source in which
one of the axes is singled out. As we pointed out in the
preceding section, however, these effects do not appear
in polycrystalline materials for which there is no
specific orientation. It is of some interest to compare
the results of the model used in the preceding section
with one that does not have these complications. We
consider the Hamiltonian

3e(8) =30+Qf (8) (312—17),

where here f(f) takes on the values =1 (but =ot 0).
The electric field gradient then jumps from positive to
negative, but always along the z axis. We clearly have
[3e(#), 3e(¢)]=0 for Eq. (18). This enables us to
consider the stochastic and quantum-mechanical as-
pects of the problem separately, for we may diagonalize
3¢(#) at one instant and be assured that it will always
be diagonal. This was not possible with (1), since the
appropriate quantization axis there depends on the
nature of the transition matrix W, i.e., it is not possible
to disentangle the stochastic and quantum-mechanical
parts of the problem.

We reevaluate (5) using the Hamiltonian (18).
Equation (6) for the matrix element in the spin Io=21
ground state is unchanged, but (7) can now be written
down directly:

(18)

Iy | exp (—i/()%c(t’)dt’) | Iymy)

= exp(—12Ey) exp (21'0: / tf(t’) dt’) Ommyr,  (19)
0

where « is as defined following (11). Using (19) and
(5) in (4),

W (k) = (2/T) Re(2041)1 f “ a1t explli (w—wo) t—1T]
0

X 20 | Tomo | 3 | Iumy) |2

momy)

X (exp [zm /0 7w dt’])av.

(20)
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The stochastic average in (20) is given in Eq. (3.3) of I,
provided « in that equation is replaced by 2a. Substi-
tuting that result in (20) gives

W (k) = (2/T) Re(QI+1)71D | (Tomo | 3P | Iymy) |?

mom1

X 2 pi(j| p—2iaF =W ]4),

ij=£l

(21)
where now

1 0 Wl  Wi_
F= , W= ,
0 —1 W_, —W_,

and where p=—i(w—wy)+3iT. For Wy _=W_ =W,
and for p;=3%, inversion of the matrix yields

} 2 (Gl (p—2iaP =) 3)
=[(p+2W)/(p*+2Wp+4e?) ]

_ L 1-W/ (WP —4e))'2
T2 pE WA (WE—4a2) 12

1 14+W/(W2—402)12 (22)
2 p+W—(W2—4a2) 12"
If in (22) we let W—3W, this equation is identical to
(17). The factor £ is reasonable, because there are
three possible values of the Hamiltonian (1), but only
two of (18).

The line shapes produced by (18) and (1) agree, it
should be emphasized, only in the limiting conditions
discussed above. For example, it is possible to obtain,
for certain relaxation matrices W, a four-line pattern
or a three-line pattern from (1), while (18) can yield
only the standard two-line pattern in addition to an
unsplit line. To calculate these effects numerical
evaluation of (14) and (15) is the most economical
procedure.
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