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The Mossbauer line shape in the presence of time-dependent electric Geld gradients and magnetic Gelds
is considered. Two specific soluble stochastic models are treated: (1) a static electric 6eld gradient with a
randomly fluctuating magnetic field which takes on values +h and —h, each directed along the axis of the
6eld gradient and (2) as in (1), but with the fluctuating magnetic 6eld perpendicular to the axis of the
field gradient. Example (2) is more complex than (1), since the fluctuating 6eld is in this case capable of
inducing transitions between the nuclear levels, while in (1) this is not possible. Speci6c calculations for
the two cases illustrate the differences between them.

I. INTRODUCTION

t ~HE theory of the Mossbauer line shape in the..presence of time-dependent perturbations has been

considered by a number of authors in recent years. ' '
These theories have been applied with some success to
a variety of problems involving hyperfine fields and

electric 6eld gradients in paramagnets and. ferromag-

nets. The time dependence of the hyper6ne fields arises
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from such eGects as spin-spin and spin-lattice relaxation,
spin waves, and Jahn-Teller distortions. The previous
theoretical treatments can be divided into two general
categories. The erst can be termed perturbation treat-
ments, '»' ' in which one uses the correct Hamiltonian
for the entire system, consisting of the Mossbauer
emitter, the hyperfine interactions between this nucleus
and the electronic spins, and interactions between the
electronic spins and one another and between these
spins and other degrees of freedom. The line shape is
then derived by treating some of these interactions as
perturbations. The second category consists of calcu-
lations with stochastic models. ' 56 ~'0 The hyperfine
interaction is replaced by a randomLy varying external
magnetic held or electric field gradient, and the line
shape is found in the presence of these 6elds. The
problem here is to construct a Hamiltonian which
represents as closely as possible the physical situation,
but for which the line shape is soluble exactly. The 6rst
approach has the advantage of rigor over the second,
but it suffers from the disadvantage that it is applicable
only for very slow or very rapid rates of time variation
of the hyperhne fields. The stochastic models on the
other hand have been solved for all rates of time
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variation. Since most of the interesting eAects on the
line shape occur for intermediate rates, these models
are of considerable interest.

In this paper we consider some of these models in
detail. We treat the line shape of a nucleus in a Gxed
axially symmetric electric field gradient in the presence
of a Quctuating magnetic 6eld. This is a model for a
nucleus in a paramagnet or a ferromagnet, in the
presence of an electric Geld gradient. The case for
which the magnetic 6eld Quctuates along the axis of
the field gradient is straightforward and has been
treated previously. Ke consider as well the case where
the magnetic 6eld jumps along an axis perpendicular
to that of the electric 6eld gradient. Since in this
situation the magnetic Geld may induce transitions
between the eigenstates of the 6eld gradient Hamil-
tonian (this is not possible in the parallel case), there
are additional physical effects here which are not
present in the parallel case.

In the following section we derive a general expres-
sion for the line shape in the presence of time-varying
Gelds. This is applied in Sec. IIIA to the calculation of
the line shape for Gxed electric 6eld gradient with
Quctuating Geld parallel to the axis of the gradient,
and in Sec. IIIB we treat the perpendicular case.
Detailed comparison of the two cases is illustrated by
calculations appropriate to a model of a paramagnet.

In the following paper we treat another model of
physical interest, while in a subsequent paper we will
consider the general solution for the line shape in the
presence of arbitrarily varying MarkofBan perturbations
as well as the justi6cation of the stochastic models
from 6rst principles.

II. EXPRESSION FOR THE LINE SHAPE

A general expression for the line shape may be
derived following the procedures of Lamb, "Van Hove, "
and Singwi and Sjolander. "Let K&+) describe the inter-
action of the solid with a photon of wave vector k
which is being emitted by the system. Then the prob-
ability of the emission of a photon with wave vector k
and frequency cv by the system, which in the process of

emitting the photon makes a transition from its initial
state

I
&(.) to its final state

I n), is given by

W (I,)
1(n IX"'

I » I'
(2 I)(~+& —&&)'+&I'&'

The states
I

&() and
I n) represent, in general, eigen-

states of the entire solid, including nuclear spin quan-
tum numbers, electronic quantum numbers, etc. It is
of course understood that in the initial state

I
&(,) the

nucleus is in the excited state, while in
I n) it is in its

ground state. The quantity I'& is the inverse of the
natural lifetime of the excited state

I
&(). In most

"W. E. Lamb, Phys. Rev. 55, 190 (1939)."L. Van Hove, Phys. Rev. 95, 249 (1954) ."K.S. Singwi and A. Sjolander, Phys. Rev. 120, 1093 (1960}.

actual eases I'~ is independent of the particular sub-
level of the excited state. We shall for convenience
assume this to be the case. With the aid of the relation

I:(~+& —&.) '+-'I"3 '

= (2/I') Re Ct expLi(co+E —E&() t—-', I'tj (2.2)
0

one Gnds

W&, (ir) =(2/I') Re Ct exp(mt ——',I' t)

where

X(~IX(-&In)(nlU'(t)X(+&U(t) I», (2.3)

~(—) —~(+)t

U(t) = exp( —iXt),

(2.4)

(2 5)

and X is the total Hamiltonian for the entire system.
The experimentally observed emission probability is
simply obtained by averaging Eq. (2.3) over all
possible initial states

I &() and summing over all final
states

I n) of the emitter. The result is

W(ir) =Qp&,W&, (ir)

One way to study the expression (2.6) is to start
from the total Harniltonian of the emitter and use some
approximation scheme on Eq. (2.6). However in many
cases it is mathematically and conceptually simpler to
consider as a model the nucleus in the emitter to be
under the inQuence of explicitly time-dependent forces
than to consider the emitter to be an extremely large
system. The time-dependent forces on the nucleus are
due physically to the interaction of the nucleus with
the electronic degree of freedom, lattice vibrations, etc.
The expression (2.6) is then simply modified by using
instead of Eq. (2.5) the time-ordered operator

t

U(t) = exp i x(t')—Ct', (2.7)
0

where X(t') is now a time-dependent Hamiltonian for
the nucleus. It is also useful to consider the case where
the Hamiltonian of the emitter is a random function of
the time, since this provides a physically reasonable
model for a system undergoing Quctuations due to
interactions with other degrees of freedom. Such models

= (2/r& R»f &(».x»(& & r» (se»—a'c, &+&(» &,
—

0

(2 6)

where p&, is the probability that the initial state
I

&(,)
occurs, X&+&(t) =Ut(t)X&+&U(t), and the average is
defined by

(o)=gp, y, I
o

I
x).
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were used by Anderson and gneiss'4" and Kubo" in
their treatments of the problems of motional and ex-
change narrowing in magnetic resonance, and these
problems are closely related to the ones considered here.
If such stochastic Hamiltonians are considered, the
observed probability of emission of a photon k is the
stochastic average of the previously derived expression,

W(lr) = (2/P) Re dt exp(icot —sI't) ((X~ 'X&+&(t) )), ,
0

(2.8)

where the ( ), denotes the average over the stochastic
degrees of freedom in the Hamiltonian. Equation (2.8)
provides a general expression for the line shape in the
presence of Quctuating fields. Like the expression of
Singwi and Sjolander, it gives the Mossbauer line shape
as the Fourier transform of a correlation function. The
correlation-function expression for the linewidth of a
spectral line was derived by Foley" and Anderson" in
their treatments of pressure broadening in optical
spectra.

A simple example may illustrate the use of Eq. (2.8).
Let us consider a nucleus with an excited state of spin

Ir= s and a ground state of spin Is= rs (e.g. , Fe") in
the presence of a static external magnetic 6eld and an
electric 6eld gradient along the s axis. Ke neglect
phonon recoil eGects and assume that the nucleus is
held rigidly 6xed. This means that the Debye-Wailer
factor is unity. (The central calculation in the Moss-
bauer effect is thus being omitted. ) Let the states of
the nucleus in the absence of the 6elds be given by
I Irmr) and I Iomo). The unperturbed Hamiltonian Xo
has the property

X, I I,m, )=E,
I I,m, ),

x. II,~&=E, II,~&.

(For Fe", Er Eo 14.4—keV——.) The Hamiltonian in the
presence of the fields is then given by

X=X,+gpHI, +Q(3I,'—Is),
where

(2 9)

g I Irmr&=gr I Irmr& g I Iomo&=go I Iomo); Q I Iomo)=0,

and g~ and go are the g factors for the excited and ground
states, respectively.

The correlation function then becomes

m0m1, 77t0tmlI

X ((Irmr I
X& &

I Iomo)(Iomo I Ur(t)
I
Iomo')(Iomo

I
X&+~

I Irmr')(Irmr'
I U(t) I Irmr)). , (2.10)

where we have assumed that the various initial mr sublevels are equally probable, i.e., p& ——1/(2Ir+1). Using
Eq. (2.9) we obtain

(Iomo I
Ur (t) I

Iomo') = exp/i (Eo+gotI Hmo) t)8

(Irmr' I U(t) I Irmr) = expI i(Er+ g—rpHmr+Q(3mr' 15/4) )t—]5, ,'
On substituting this above we 6nd

G(t) = (2Ir+ 1) 'Q
I (Iomo I

X&+&
I Irmr& Is expL i (ooo+ (—grmg g„mo) pH—+Q. (3mrs 15/4) )tj—,

where roo=Er —Eo is the frequency of the unsplit line. Performing the integration in Eq. (2.8) we get

I (Io~ I
X'+'

I Irmr& I'

~my (ro —uo —(grmr gomo) tsH Q(3m—ro 15/4) )—'+ sFs— (2.11)

The matrix elements (Iomo I
X&+'

I Irmr& determine the
intensity and the polarization of the individual lines,
and their dependence on m& and neo is essentially con-
tained in a Clebsch-Gordan coeKcient. As expected,
the correlation function expression for the line shape
yields a sum of Lorentzians centered at the Zeeman
and quadrupole-split points. For Fe'~, where the transi-

'4 P. W. Anderson and P. R. gneiss, Rev. Mod. Phys. 25, 269
(1963)."P. W. Anderson, J. Phys. Soc. Japan 9, 316 (1954).

'6 The earlier work of R. Kubo is summarized in his review in the
proceedings of the Scottish Universities Summer School: J llgtug-
tion ReltJxation and ResontJnce in Magnetic Systems, edited by D.
ter Haar (Oliver and Boyd, Edinburgh, 1962), p. 23.

'~ H. M. Foley, Phys. Rev. 69, 616 (1946)."P.W. Anderson, Phys. Rev. 76, 471 (19491.

tion matrix elements of K(+) are of magnetic dipole
(M1) character, (2.11) gives the familiar 6-line pattern.

III. STOCHASTIC MODELS

A. Fluctuating Magnetic Field Parallel to Electric
Field Gradient Axis

In this section we calculate the line shape in the
presence of a Quctuating magnetic Geld which jumps at
random between the values +h and —tr along the s axis.
In addition, we assume the presence of a 6xed sym-
metric electric 6eld gradient along the s axis. The
Hamiltonian for the nucleus under these conditions is

X=Xs+Q(3I ' I')+gtltsI, f(t). (3—.1)
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Here f(t) is a random function of time, which takes on
the values +1.This model Hamiltonian describes in a
reasonable approximation the nucleus in the presence
of relaxing electronic spins. The third term in Eq. (3.1)
with the time-dependent Geld replaces the actual hyper-
6ne interaction AI. S (S is the electronic spin) together
with terms giving the interaction between S and other
degrees of freedom, such as lattice vibrations and other
spins in the crystal. The eGect of these other inter-
actions is to cause S to move in a very complicated
way, which we represent here as a random fluctuation
of a magnetic field. The function f is specified by gi»ng
the matrix of probabilities per unit time, 5';;, for a
transition of f(t) from the value i to the value j(i&j).
(In the case under consideration i, j=&1, but more
general situations where f(t) takes on a larger number
of values can also be treated. ) The physical picture of
the Quctuations of the electronic spin system are then
contained in the quantities 9';;. The approach which
we use, then, is to give an expression for the line shape
in the presence of a randomly Quctuating Geld in terms

of the W@. We must use some other calculation to
obtain the values W;,. For example, if we want the
Hamiltonian to represent the nucleus in a paramagnetic
ion with spin ~~ and gz =0, then we should require 8'+
W +=K; If the transitions between the paramagnetic
levels are due to Raman-type spin lattice relaxation,
we expect that lV will be proportional to T" or T'. To
represent a ferromagnet, we would take 8"+ &8' +,
since in the presence of spontaneous electronic moments
the ion is more likely to be found in (say) the +-',
level. The transition probability would then be due to
spin waves.

Let us now return to the calculation of the line shape
with the Hamiltonian (3.1). The functions f(t) have
been thoroughly studied"'~" and applied to the
theory of the line shape in nuclear magnetic resonance.
Recently, a number of authors have adapted these
results to the case of the Mossbauer effect as well."' "
We must now evaluate the correlation function (2.8),
for which we may use the expression (2.10), except
that

and

. ( t

(Ipplp ] U~(t) ] Imp )= exp i
~

Ept+gplihmp f(t')dt' b„~;
0

( t

(Iipipi' ( U(t) [Iimi)= exp i
~

Ei—t+Q(3mi' —15/4)t+gitihmi f(t')dt'
~

p

so that we obtain

t

G(t) =-', g [ (Ippmp )
K&+&

) I,pipi) P exp[ iippt —iQ(3m—i' 15/4)—tj
~
exp i(gpntp g,mi)—tih f(t') dt'

(
. (3.2)

m09$1 0 &.v

The remaining problem is to obtain the stochastic average

(
~
exp in f(t")dt'

0 SV

where n=n(mpmi) = (gpmp —gimi)tih. This problem was solved by Anderson" and Sack" and details may be
found in Abragam's book."The average we need can, according to these authors, then be expressed in terms of
the quantities 5';;. If W is the matrix of transition probabilities with diagonal elements determined by
W;, = —P,&@o and F is the diagonal matrix whose elements are the permissible values of f(t), then

(
t

exp in f(t')dt'
) =gP;( j ) exp/(inF+W)tj [i)

p &av ij
(3.3)

Equation (3.3) can be evaluated, in closed form for the case where f(t) =+1, since then the matrices F and W
are 2)&2. If S'+ ——S' +——5', we have

~
exp in f(t') dt'

~

= (cosxWt+pt ' sinxWt) exp( —Wt),
iav

(3.4)

where g=x(pippin, ) =(n'/W' 1)'I'. A —similar, although more complicated, expression can be written down if

"H. S. Gutovrsky, D. -W. McCall, and C. P. Slichter, J. Chem. Phys. 28, 430 (1954)."R. A. Sack& Mol. Phys. 1, 163 (1958).
"A. Abragam, The Theory of Nuclear Magnetism (Oxford University Press, London, 1961), Chap. X.
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W+ N W +. We do not do this here because it is easier to substitute (3.3) and (3.2) directly into (2.8) to obtain

where

W(k) = (2/I') Rel o { (Iomo {X+&
{ I, mi) {' dt exp(i(oi o—io Q—(3mi' 1—5/4))t ——,'I' t]

momI, 0

&(Qp, (j [exp{ (inF+W)t] [i),
sj

= (2/I') Re+ -',
{ (Iomo {

X'+'
[ Iimi) {'QP (j { (P W—inF—) '

[ i),
slpmI

P = —i (oi —ohio
—

Q (3mio —15/4) )+ oi I'.

(3.5)

This expression may be evaluated numerically for each value of oi —ooo by inverting the matrix p —W —inF. It is
nevertheless of some interest to examine the analytical expression for the line shape which is obtained by sub-
stituting (3.4) and (3.2) into (2.8), since we will then be able to discuss the behavior of the line shape
as a function of O'. We have

W(lr) = (2/I') Re2 l I (I mo I
X'+'

I Iimi& I'
mgm1

dt exp i co —~0— 3m~' —15 4 t——,'I't cosxS't x—' sinxS't exp —8't . 3.6
0

The integral in (3.6) may be written as

dt expLi(oo oio —Q(3—mP 15/4—) )t——',I't] I L1—(i/x) ]exp(ixWt) + { 1+ (i/x) ]exp( —ixWt) I exp( Wt) .—
0

(3 7)

In the limit of very slow relaxation LW«n(momi)] we have xW= (n' W') —'~'~n, and x&&1, so that the integral
becomes

dt exp/i(oi —coo—Q(3mi' —15/4) + (gomo gimi) tih)t —(-', ry W)—t]
2 0

+ expI i (oi oio Q—(3m—P 15/4)——(gomo —gimi) ph)t —( o I'+ IF) t]
Substituting in (3.6) and performing the integration we obtain

W(lr) =4Z { (Iomo I
~'+'

I Iimi) I' {1/L~ —~o—Q(3mB —15/4)+ (gomo —gimi) t h]'+Lo I'+ W]'
mPmI

+1/{ oi —oIo
—Q(3mi' —15/4) —(gomo —g,m )tih] +{ -', I'+I'V]'l. (3.8)

This is, as expected, just the Zeeman pattern for a
nucleus in a magnetic 6eld +h superimposed on one
with a magnetic Geld —h. Since the relaxation rate is
slow, the line shape is the same as for a static Geld,
except for the slight broadening of the lines by the
transition probability O'. In the case of very rapid
relaxation we expect to see the magnetic effects dis-

appear, leaving only the quadrupole splitting. This is
because the Quctuations are so rapid that the nucleus
cannot follow them and as a result the nucleus will

only feel an average magnetic Geld, being zero in the
cases considered. That this is predicted by (3.6) can
be seen by examining (3.7) in the limit W»n. We have
xW=(n' —W')'I'~~iW; x~i; so that (cosxWt+(1/x)
sinxWt) exp( —Wt) 1, and the line shape has no
dependence on the magnetic field. It also follows
from (3.6) and (3.7) that the spectra collapse when
x=O„ i.e., when (gomo —gimi) ph= W. This condition is
satisGed for a diGerent value of JV for each pair of

lines. The inner pair of Zeeman split lines will collapse
onto their center of gravity for a smaller value of 8'
than will the outer pair.

In Fig. 1(a) we show a series of spectra which are
calculated from (3.5) for fixed values of Q and h and
different values of S'. As shown previously' the fact
that the condition x=0 occurs for a different value
of S' for each line leads, in a range of values of kV, to
asyxnmetric quadrupole spectra. These spectra will be
compared later with the theoretical results for a Quc-
tuating magnetic field perpendicular to the quadrupole
axis.

B. Fluctuating Magnetic Field Peryendicular to Electric
Field Gradient Axis

The problem treated in the preceding section has a
number of features which greatly simplified the calcu-
lations. First, the Hamiltonian (3.1) is diagonal in I„
so that the quantum-mechanical aspects of the calcu-
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lation are simple, and the only problem is the evalua-
tion of the stochastic average. Also, the Hamiltonian
at one instant of time will commute with the Hamil-
tonian at a later instant. This property enables us to
dispense with the time-ordering in the deGnition of
U(t) t Eq. (2.'/) j. These features mean that the
Quctuating magnetic Geld does not induce transitions
between the eigenstates of the quadrupole term in the
Hamiltonian. The broadening and narrowing effects
are due to the frequency modulation ("adiabatic"
effects) by the fluctuating 6eld. In some systems,
however, the Hamiltonian (2.1) is not a good approxi-
mRtlon to the physical situation, Rnd it is necessary to
consider a Hamiltonian which does not have the above
properties of (3.1). This is the case, for example, if
the Quctuating magnetic Geld does not jump along the
axis of the electric Geld gradient, but jumps perpen-
dicular to it. This appears to be the case in a series of
organic Fe compounds, the penta-coordinate dithio-
carbamates, " where the axes of quantization of the
electronic system and the electric Geld gradient do not
coincide. Let us consider, then, a nucleus governed by
the Hamiltonian

302
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3'.(t) =Xo+Q'(3I,' P)+g—IIhI, f(1), (3.9)

where again f(t) =+1,at random. Equation (3.9) does
not have the two properties discussed above; it is not
diagonal in I„and it does not commute with itself at
different times. The fluctuating 6eld in (3.9) is now
capable of inducing transitions between the eigenstates
of the quadrupolar term, since it does not commute
with that term. %e expect, then, that the line shape of
a system with the Hamiltonian (3.9) will show features
which are not exhibited by (3.1); in particular, the
"nonadiabatic" effects due to the inducing of transitions
by the Quctuating Geld should occur here. Equation
(3.9) can be transformed into a more convenient form

by noting that 3I,2—I2= —
2 (3IP—I2) +r', (I+'+I '),

where I+——I,~iI„.This is a special case of an asym-
metric Geld gradient, one of whose principal axes is
along the direction of the magnetic Geld. Ke will there-
fore treat the somewhat more general Hamiltonian

3'.(t) =Xp+Q(3I.'—P+-',g(I '+I ') )+gphI f(t)
(3.10)

When the asymmetry parameter g~0 we recover (3.1);
while if Q-+—',Q', g-+—3, we obtain (3.9) .

ln calculating the Mossbauer line shape for systems
with the Hamiltonian (3.10) it becomes apparent that
the stochastic and quantum-mechanical aspects of the
problem do not separate, as is the case for (3.1).The
appropriate axes of quantization depend on the rate of
fluctuation of f(t). If f(t) fluctuates very rapidly, the
nucleus will be unable to follow the magnetic Geld, so
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l,6-
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Q6-
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' 40
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I
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Fxo. 1. {a}Line shapes for a nucleus with the Hamiltonian
X(t}=XO+Q(3I~—I'}+gphI f(/}, for di6erent values of the
jump rate 8' off(/). In units of the natural linewidth I'~we have
used Q=0.8&36 and k= 143.Q'. Also Iz ——~3, Io=-'„&go=0.102, and
g5= —0806 as for Fe57 (b) Line shapes for the Hamiltonian
(&) =3'5+Q(3I~' —I')+ gp,hI,f(t), with the same values of Q
and h as in (a).

that, if Lf(t)1.~=0 (i.e., if W+ ——W +) the motion of
the nucleus will be governed. by the quadrupolar
Hamiltonian. On the other hand, if the rate of Quctua-
tion of f(t) is very slow, the properties of the system
will be determined by the eigenstates of the quadru-
polar Hamiltonian together with the Zeeman term.
The latter eigenstates diGer from the former since, due
to the presence of the asymmetry term g, the Zeeman
term and the quadrupolar part do not commute mith
one another.

Our object now is to evaluate the expression (2.8)
for the line shape with the Hamiltonian (3.10). We
will in this calculation consider explicitly the case where
I&———,

' and Io——~, the level scheme for Fe'~, since this
case is soluble in closed form. %e againwant to evaluate
(2.10) wi th

(ID' ( U(t) I Iamb')

~~ H. H. Wickman and F. R. Merritt (to be published). Ke are
indebted to Dr. Kickman for drawing our attention to this work,
and for sending a prepublication report.

~ exp $EOI $gop f dI 8 ~ 3 j.i
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and To simplify the problem further we will assume that
the emitter is a powdered sample. We must then
average W(lr) over all directions h of emission of the

t p ray. Since we already require ~=no', the average= (Iltttl'
I exp I

—iE1&—i («(&')+ V)d&'
I Iltttl)t

p
7

where

3' (~) =Q(3I*' I')—+gl hI*f(i)

V = pQ~(I+'+I ')-

(gx) 'fdt(gm
~

get &(tt) (gm )(i m (ggte&(tt) (i m ')

requires that in addition ml'=tttl (see, e.g. , Rose,"
p. 74). With this assumption, then

W(k) = (2/I') Re dt expl i(p) —p)p)t —-,'I'tg —4'g I (Iptttp I
K(+)

I It'll) I'G„,„,(t),

with
t

G, ,(t) = (e p igemg f(t')dt' (im,
~

e p —i (gg (t')+V)d ~itm)
0 0 8V

(3.12)

so that we require only the diagonal matrix element of the time development operator in (3.11). It should perhaps
be noted that these nondiagonal elements can also be calculated using the method described below. Ke consider

in detail now the calculation of G, p(t) . Using the identity'4

( t

exp~ —i. ( (gg)+gV) t d=exp '~
—i ig (i)dg exp —t V(g)dg)

p p 0

where
t tt' t

v(t) = exp I
i «(t') dt' v exp

I
4«—(t') d)!' I,

p
j'

we may write

t'

G, ,(t) =
I exp i(gptttp gltttl) —ph f(i')di' iQ(3tttlt 15—/4)t (Iltt—z) I exp

I
i v—(t') dt'

I I Iltttl) . (3.13)
0 p SV

Expanding the exponential in the matrix element (3.13) in a time-ordered series gives

I' t I
G„,„,()l) =

I exp —i(C1—Cp) f(&')d&' iP& (Iltttl—I g(—i)" dig d4V(4) V(4) V(t„) I Iltttl&
I

0 n=o p p i. '

(3.14)
where

Cl ——gltttlph, C()——gpmpph, and P=P(tttl) =Q(3tttl' —15/4).

Because V has the selection rule httt=&2, the matrix elements with tt odd in (3.14) vanish. Also, since Il ——2,
these selection rules require

(Iltttl I v(il) v(ip) " v(it.) I Iltttl&

=(It~1
I v(~1) v(&4) I It~1&(It~1 I v(i, ) v(~4) I I,ml) ~ ~ (Ilm, I v(tp, ) v(tp„) I Iltgl&

because V(il) V(t2) is diagonal for I&pP. Now

(Iltttl I v(tl) v(ip) I Iltttl) = (It'll I v(tl) I Iltttla2&(Ilmla2 I v(tl) I
Iltttl)

tj
= (Il(tttl I exp

I
i «(t')dt'

I I Iltttl)(I14441 I v
I
I14441~2)(Ilttt1~2 I exp i «(&—') d&'

I I Il(tttl+2)
E() i p

t

)&(Iltttla2 I e"p I
i «(i') di'

I Illtl+2&(Iltlla2 I
V I Iltttl&(Iltttl I exp i «(i') d~'

I I Iltll& (315)
p 0 ]

2' M. E. Rose, Elementary Theory of Angular Momentum (John Wiley 8z Sons, Inc., New York, 1957).
'4 See, e.g., U. Fano, Rev. Mod. Phys. 29, 74 (1957).
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nly one of
Q((3hhth~2)

the
15 )

hh

Q(3hht &—15/4) h

f ) we find

f(t') '~(lhmh

f(t') dt' exP
o

x "p~,-"" ' '
o

d. Also, hf p =
2 l'=

a ly hlh

~
y ) Ihmh+

For example~
p d noting that I ( '

~2) actu»iy o " . '

C I =gh(mh+2)& '

t rms ( Ihhohh,
4 Setting

0

3

th;s in (3 14) g' "Substituting t is in

h o = i(—Ch Co—) f(t' dt' —i tG„o(t)=
~

exp i —— t' dt s t

t

x Q( 3Q'rP) jd—t,"~

n~o

in the termsor onon rearranging

~ —' .—' (t')dt' ~,—'Pt „—'C,t') dt' ~ ~ exphPth iCh-dt2„exp i

'(c —co)/—fo d!G -.(t) =Z(-3QY) exp —hp(t h)
tj

t' dt' . (3.17)

—to) be the 2X
t

t')dt'
i

exp
~

—iP(t —th
—) i(Ch —Co) —f(

tg

and of

tnt
n=0

P( —o h
— t' dt' ~ exp P

0

i C—h' —Co) f t

'ect to the condi-

th —to) —&

a~erage subjec o

X exp i y
—z

o" an in rtroduce the av
ce in our cas=' tt Th' t' t

a 2X2 matrix. Let

G„, , t = Q(—3Q'ht')" dt, ~ ~ (3.18)

i h
—

o
' '—C) f(t')dt' ~,i (th —to) i(C, ——,

endix A) that Eq.above. Then it is readh y ss on f(t) given above.ective, ' ct to the conditions onectively, subject to
' '

s on

t —to) ~ ~ A(t,„) ) i),'~A(t —t,)2t t,

(3.17) can e wr'

dto p; j

he ro a
'' t (0)=i. Taking the

f (3.18) simplifies
l is a 2s foldb aus

ansform o
s. Hence

p
pro ucd t of the Lap ac

..(t)dt exp( pt) G~hygo

=Z — " 'IA(p)L&(p)&(p)3" i= Z. (—3QV) "Zp'(i
sj

(3.19)

n=0

'vel, the Laplace, respecti dy,
t The series inof A(t) d B(t .transforms o

now be summed, y'ielding

OO

dt exp( —pt) G, ,- (t)
0

~(p) 1»QV&(p)~(p)? '
I i). (3.20)-Zp (~ I

'
n for (3.20) we must

over the matrhx e

A ) =Lp —W—i(C,—C,
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and
B(p) =Lp —W —i(Cg' —C0) F—ig-'

where W is again the matrix of transition probabilities,
and

is the diagonal matrix whose elements are the possible
values of f(t) . We then 6nd

W(lr) = (2/I') Re-,'Q
I (Igmg I

sc&+&
I I~m)) I'

mPm1

xZpi(i I &(p) I 1+3QV&(p)~(p) 3 '
I i)

where

(3.21)

Obviously this equation can easily be reduced in a
straightforward way to an algebraic expression. The
result is given in Appendix B. In the limit ~0, Eq.
(3.21) reduces to (3.5), as it should. The additional
eGects discussed above are contained in the matrix B.
In Fig. 1(b) we give a series of spectra calculated from
(3.21) with values of Q and q chosen so that the
parameters Q' of (3.10) and Q of (3.1) are equal, and
with h equal to the h used in obtaining Fig. 1(a).
Several diGerences between the two sets of spectra can
be observed. In the slow relaxation spectra of the two
cases (small W) which are essentially those produced
by a static magnetic field the apparent quadrupole
shifts diGer. The quadrupole shift for the perpendicular
case is —~X the shift for the parallel case. This follows
from (3.10) with Q= ——',Q', since for h))Q, the non-
diagonal (asymmetric) terms produce only second-
order shifts. There is a small line (corresponding to the
—,
'—+—~~transition, which is normally forbidden) which
is allowed in the perpendicular case by the admixture,
due to the oG-diagonal q terms, of the —~~ and ~3

sublevels of the excited state. The corresponding —
~

—

-&

transition gives a line that is buried under an allowed
transition. As the jump rate S" is increased each of the
spectra broadens until, for 8' 3.0, the central pair of
lines collapses onto its center of gravity. These lines
proceed to narrow as the jump rate is increased, and
eventually the other magnetic lines collapse onto their
centers of gravity. The parallel and perpendicular cases
diGer considerably in this regime. The high-energy line
(consisting of &,' .-&-,' transitions) is more broadened
in the parallel case, while the low-energy line (consisting
of &—',~&& and &—,'~%~, with quantization along the
x axis) is more broadened in the perpendicular case.
This can be understood in the following way. The
adiabatic broadening represented by the matrix A is
morepronouncedfor the &~—+&~ than for the ~~—++~
transitions, due to the larger effective Zeeman energy.
On the other hand the broadening due to the non-
adiabatic terms, given by the matrix 8, is larger for

the ~-,'~&—', than for the &~—+&-,'transitions, as can
be seen from the expression for B.Due to the presence
of the nonadiabatic terms in the perpendicular case the
low-energy line is more broadened than the high-energy
line. Obviously the nonadiabatic eGects dominate over
the adiabatic ones in this case. In addition to the above
diGerences in broadening, the peaks in the perpendicu-
lar case move successively as the relaxation jump rate
is increased to their positions with a splitting of 6Q'.
This movement occurs as the nondiagonal (asymmetry)
terms become eGective with the averaging out of the
magnetic field. A considerable variety of behavior can
thus be seen as the jump rate is changed.

Calculations similar to those shown in Fig. 1 can
easily be performed for the case, 8'+ /8' +, which
represents a model for a ferromagnet, by using (3.21).
Spectra similar to those found by van der Woude and
Dekker5 should result, with appropriate allowance for
nonadiabatic effects. Generalization of these results to
fiuctuating fields which take on more than two values
is also immediate. Equation (3.20) still holds, but the
dimension of the matrices A and 8 is then given by the
number of possible values of f(t) .

rv. DISCUSSIOm

In the previous section we have described some
stochastic models which can be solved exactly. It was
found that there exist marked diGerences between the
cases in which there are nondiagonal matrix elements
between diGerent sublevels of the nucleus and in which
these elements are not present. In particular the
broadening of a definite line in the Mossbauer spectrum
due to these nondiagonal elements is quite diGerent
from the broadening by the diagonal elements. Further-
more, instead of six lines there wi11 be in general eight
lines because Am=2 transitions will now also be
allowed indirectly.

The calculation given above may present a fair
description in general for the Mossbauer line shape in
the presence of hyperfine fields. However, it is well to
consider briefly a few experimental situations to which
it does not apply. It is possible to do an experiment
using coincidence techniques in which only those
photons emitted by the nucleus within a time t after
the birth of the excited state are counted. "Equation
(2.6) is then not applicable, since the derivation of
Eq. (2.1) assumes that all photons are counted,
regardless of the time at which they are emitted. It is
not sufhcient to take the integration in Eq. (2.6) from
0 to t instead of from 0 to ~ in order to adapt that
expression to coincidence experiments, unless I't&)1.
Also, in going from Eq. (2.3) to Eq. (2.6) we have
assumed that averaging over the initial states can be
accomplished by multiplying by p&, and summing over X.

This implies that the initial configuration of the system
is an equilibrium distribution in that this initial distri-

",F.J.Lynch, ~R. E.Holland, and M. Hammermesh, Phys. Rev.
j.20', ~So (~WO~'.
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bution of states does not change in time. In other words,
we assume that the density matrix of the system com-
mutes with the Hamiltonian. Equation (2.6) is thus not
entirely capable of describing the line shape in the
presence of phenomena such as "local heating'"' of the
lattice (caused by distortions of the lattice due to the
effects of earlier decays of the Mossbauer nucleus).
Some of these eGects may be treated in the stochastic
model by taking the Hamiltonian to be a nonstationary
random process, but great care must be exercised in
that case. For a discussion of these points see Ref. 27.

The applicability of the models discussed in the

present paper to a specific system must be decided by
a consideration of the Hamiltonian for that system. A
solution for the line shape for more general situations
will be given separately.

Finally, it should be noted that the calculations
performed here can be taken over to the treatment of
perturbed angular correlations of successive p rays, "
as well as to the case of nuclear magnetic resonance.
The expressions for the matrix elements of U(t),
Eqs. (3.3) and (3.11), can then be used in the similar
expressions [e.g., Ref. 28, Eq. (9)] to derive the
perturbed correlation or the NMR line shapes.

APPENDIX A

In this appendix we show that the restricted average of the second-order term of Eq. (3.17) can be written as

t t tg

X= dt) dt's exp —iP(t —tz) i(C—y Co)—f(t') dt' exp iP(t2 t&) —i(C—)' Co)— f(t') dt'
0 0 ti tm

with

X exp —iPtm —i(C&—Ca) f(t') dt'
0 ) SV

t tj

dt) d4, (j I A(t —4)B(tg—4)A(t2) I i),
0 0

t~ i j
(j )

A (i) ( i) = (exp —iiii —i(c,—c ) f(i )ch'
0 SV

(A1)

(A2)

( j ( ii(i) (i) = (exp iPi —i(C,' —C)f(i')d, i' (A3)
0 ) LV

Here the superscripts i, j mean that the average over the quantities should be restricted to the conditions that
f(t) =i at t =0 and f(t) =j at t. In order to show this let us expand the exponentials in (Ai) in a series of time-
ordered integrals

X= dt, dt, exp[ —iP(t —t,)]exp[iP(t, —t2)] exp( it3@) Q—( i) +"+&—(Cg Co)"+&—(C)' Co)"—
0 0

where

t &n- j. t~-g tg

X dory' ' ' dT'gg dTj ' ' ' &~ 8T'y

0 0 0 0 0

any

&p-1tl

dry"Yir(ri' 'rmi rx' ' re", rx" ry"), (A4)

Y,; (r). ~ ~ r; r)' r '; rq" 'r„")= '(f(rq) f(riii)f(r)') f(r„')f(ri") 'f(r~") ),„"'. (AS)

Due to the ordering of the times in (A4), rz& rm& ~ ~ ~ & r & ri'& ~ ~ ~ )r„')r&"& ~ )r~", we may write in view
of the Markoff character of the stochastic process for (AS)

Y;, (rz ~ ~ r; r)' ~ ~ r„', r& ' 'r~ ) =(j I P(t r()FP(ri —rm) ~ FP(r~ ) I i),
where the matrices P(t) and F are given by

P(t) = exp(Wt),

0)

(O -1)
With the aid of the property

P(r„r~') =P(r„—t() P(t—,—r~'),

"P. P. Craig, B. Mozer, O. C. Kistner, and R. Segnan, Rev. Mod. Phys. 36, 361 (1963)."M. Blume, Proceedings of the Asilomar Conference on Hyperfine Structure {tobe published).' R. M. Steffen and F. Frauenfelder, in Perturbed Angular Correlations (North-Holland Publishing Co., Amsterdam, 1964).

(A6)
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Eq. (A6) reduces to

with
Y"(rt'''r ' rt''''r ' rt"'''ro") =(j I

Y'Y"Y"'
I i),

Y'=P(t r,)—F" FP(r t,),—
Y"=P(t '—)F ~ FP( „' t )—,
Y"'=P(ts rt")—F" FP(ro").

(A7)

(A8)

On substituting (A7) into (A4) we see that the equality (A1) indeed holds. In a similar way it can be shown
that the general term in Eq. (3.17) is correct.

APPENDIX B

(B2)

The expression (3.21) only involves an inversion of a 2)(2 matrix and hence can easily be reduced to
an algebraic expression. First we note that Eq. (3.21) can be rewritten as

W(Ir) =(2/r) Re+ x'
[ (Iso I 3."+'

I I&m&) I'Zp~(g[[A '(p)+3Q'rp&(p)?' I i). (B1)
tsPtsI

Then on substituting the explicit expression forJ and B into (B1)and performing the matrix inversions we obtain

gp, (j [ [ 5 (p)+3Q g B(p)j t [i)=&/D,

where

with

&=d(p+iP+2W)+3QY(p oP)—
D= d[(P+i (P C&+—Co) +W) (P+i (P+Ct Co) +—W) W' j—

+3P 'E(p+ (P+C C)+W)(—p '(P C'+—Co)+—W)

+ (p+i(P Ct+Co)—+W) (p i(P+Ct—' Co)+W—)+2W'+3QYj
d=(p sP)'+(Ct' -Co)'+2W(-p iP). -

We have used here the fact that p;= ,', and we h-ave taken W+ ——W + =W.
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Mossbauer Spectra in a Fluctuating Environment II.
Randomly Varying Electric Field Gradients*

J. A. TJowf AND M. BLIJME

Physics Department, Brookhaven National Laboratory, Upton, New York

iReceived 4 August 1967)

We derive an expression for the Mossbauer line shape in the presence of an electric Geld gradient which
jumps at random between the x, y, and z axes. This Hamiltonian represents an idealized model for the
effects on a nucleus of Jahn-Teller distortions, jump diGusion of vacancies, or electronic relaxation. A
simplified calculation based on a model in which the field gradient jumps between positive and negative
values along the z axis is also given. In certain limiting circumstances the two calculations give similar results:
The Mossbauer line shape consists of a single unsplit line for fast jumping, and of a quadrupole doublet for
slow transitions. The results of the calculation agree with experiments of Pipkorn and Leider and of
Chappert, Frankel, and Blum, as interpreted by Ham.

I. INTRODUCTION

EVKRAL recent Mossbauer-effect experiments on

~

~ ~

~

Fe'+ in cubic materials have yielded spectra which
are interpreted as being produced by a fluctuating

*Work perfurmed under the auspices of the U.S. Atomic En-
ergy Commission.

f Permanent address: University of Nijmegen, Nijmegen,
The Netherlands.

electric Geld gradient at the nucleus. ' ' Such Quctua-
tions have been attributed to jahn-Teller effects, jump
diGusion of vacancies, or electronic relaxation. Ham
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