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We generalize the method of deriving a kinetic equation for a gas laser developed in the first paper of
this series to include radiation-matter correlations. As a consequence, we are able to show that the first Born
approximation with asymptotic conditions which contain radiation-matter correlations is sufhcient to
explain the nonthermal photon distribution observed in photon-counting experiments. Qur derivation
includes the spatial and velocity eGects of the motion of the gas atoms. After adiabatically eliminating the
matter variables, we obtain a master equation for the radiation density matrix R with nonlinear coefEcients.
Qur radiation master equation for stationary atoms without spatial e6'ects is the same as the generalized
Fokker-Planck equation of the Langevin-noise-equation treatment of lasers. We show that the generalized
Fokker-Planck equation is the result of the first-Born-approximation treatment of the j A interaction and
is not dependent upon the microscopic structure of the reservoirs. In the first Born approximation, the
diagonal and oG-diagonal matrix elements of 8 do not interact with each other. Consequently, an initially
diagonal radiation density matrix remains diagonal. However, we show that even though the stationary
state is diagonal it is necessary to know the propagator of the oG-diagonal part of R to answer
time-dependent questions about quantities, such as the line shape, that depend on phase.

I. INTRODUCTION

t iHK experiments with gas lasers fall into one of.two rough categories. The first category consists
of those experiments which are mainly explainable by
knowing the dependence of the electromagnetic in-

tensity of the laser light on such parameters as the
frequencies of the cavity modes, the pressure of the
gas atoms, the number of modes, the magnetic field,
and the inversion density of the atoms. The second
category of experiments consists of the photon-counting
experiments which measure the nonthermal photon-
distribution function itself and not just the intensity
which is the second moment of the photon-distribution
function. A complete theory of the full distribution
function contains an explanation of the intensity experi-
ments. However, it is often useful with the many
variables that appear in intensity experiments to ignore
the complications involved in the full photon-distri-
bution function and retain a description on the intensity
level.

We previously showed' that the 6rst Born approxi-
mation for the radiation-matter interaction in a gas

laser was suQicient to explain the first category of
experiments for all realizable pump power. In order to
explain hole-burning phenomena (phenomena which
depend on the correlation between the atom's motion
and its internal excitation), we found that it was
necessary to require that the density matrix of the
matter was not factorizable into a center-of-mass
(c.m. ) matrix and an internal variable matrix at any
time even in the asymptotic past. The main result of
the present paper is that the fi.rst-Born-approximation
treatment of the radiation-matter interaction is suK-
cient to describe the nonthermal laser distribution if
we require that the density matrix of matter and
radiation is not factorizable even in the infinite past.
In other words, by simply changing the asymptotic
conditions in the derivation of the kinetic equations
for a laser, we find that the kinetic equation for a
small parameter is sufhcient to explain the nonthermal
laser distribution.

We make the discussion in the above paragraph
precise by comparing the starting equations of I with
the starting equations of this paper. Equations (I2.3a)
and (I2.3b) for the radiation density matrix R and the
matter density matrix p are

BR/Bt= —(i/h) PXt, Rj+X„R—(yu)0)'1V tr, tr,tr„, dr LH~, LH, (r), Rp(~, t)(pj's,

Pp(g, t)/Btg= —(i/h) Lh(1), p(x, t) g—(i/h) P(P /2m), p(g, t) j+X; p(x, t)+g, (x, t) p(x, t)

—(y~o)' tr.tr„. dr t K, (A(r), Rp(x, t)(plj,

where Hf is the electromagnetic field Hamiltonian, X„is the radiation reservoir operator, y is the dimensionless
dipole moment, A is the number of two-level systems, fuoo is the two-level energy difference, Bj.is the j A inter-
action between the two-level systems and the radiation in the rotating wave approximation, p is the one-particle
density matrix, (P is the density matrix of all the reservoirs, h(1) is the two-level system Hamiltonian, X;„tis
the matter reservoir operator including pump, and Z, is the c.m. collision operator.

*Research sponsored in part by the U.S. Air Force Cambridge Research Laboratories, Qf6ce of Aerospace Research.' C. R. Willis, Phys. Rev. 156, 320 (1967).
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The fundamental equations of the more general theory of the present paper are

»/~~= —(~/&) Le„Z7yX„Z—(p~,) X tr.tr.tr,„dr(e„[e,(~), F,677,

BFg/Bl= (i—/A) Lh(1)+By, FQ (i/—h) LP'/2m, Fj7+x Fg+z.Fg (ya—p)' tr, tr, dr LK, I Hg(r), Fg(P77,

where Iij is the one-particle radiation density matrix
and depends on the radiation variables u, the internal
atomic variables 0., and the c.m. variables X.

Equation (3.6) differs from Eq. (I2.3a) only in that
the product density matrix Ep is replaced by the density
matrix F~ which contains correlations. The trace of
Eq. (3.8) over the radiation variables reduces the
equation for I'j to the equation for p. The new equation
for p, Eq. (3.7), differs from Eq. (I2.3b) only in that
the product density matrix Ep is replaced by F~. The
replacement of Ep by F~ results from a change of the
asymptotic condition or, alternatively, from a diGerent
truncation of the hierarchy.

Recently, several authors' ' have presented theories
for models of lasers that lead to nonthermal distri-
butions. Except for Ref. 3, these models refer to
stationary atoms and omit spatial eGects. Haken and
co-workers' consider a traveling wave-gas laser and
give results to third order in the electric held.

Although Refs. 2 and 3 are not identical, they have
in common the same fundamental approach through a
Langevin formulation. The authors of Refs. 2 and 3
take the exact equations of motion for the operators
with the 3 A interaction ln the rotating wave approxi-
mation, and add a systematic dissipative term and a
fluctuating noise term dehned through its stochastic
properties. These nonlinear Langevin equations then
represent the foundation of their theories. These are
called noise theories. They then obtain Fokker-Planck
(FP) formulations, which are equivalent to the Lange-
vin equation, using a generalization of the method
used to treat the motion of a Brownian particle. In
this paper, we show that their resultant FP equation is
equivalent to the hrst-Born-approximation master equa-
tion of a system of E atoms interacting with each
other and with reservoirs. Consequently, to order y',
the Born-approximation master equation and the
Langevin noise approach give the same results if multi-
particle effects are omitted from the master equation.
In addition, our derivation holds for moving atoms
and spatial eGects due to standing waves.

~ M. Lax, Phys. Rev. 15'7, 213 (196'7). This reference contains
complete references to the author's earlier work on noise and
lasers.' V. Artz, H. Haken, H. Risken, H. Sauermann, Ch. Schmid, and
%. %eidlich, Z. Physik 197', 207 (1966). This reference contains
complete references to earlier work of Haken and co-workers.

J. A. Fleck Jr., Phys. Rev. 149,&309 (1966); 149, 322 (1966);
152, 278 (1966).' M. Scully and W. E.Lamb, Phys. Rev. Letters 16, 833 (1966).

The starting points and initial assumptions of the
Langevin-equation and Born-approximation-master-
equation approaches are diGerent. It is difBcult to
formulate asymptotic conditions concerning correlations
ln the Langevln-equation appl oach. Stochastic noise
variables do not appear in the Inaster equation. The
microscopic structure of the reservoirs in the sense of
whether or not they are Gaussian plays no role in the
master equation. The FP structure of the master
equation is due mainly to the Born-approximation
treatment of the 3 A interaction, not to detailed reser-
voir properties.

Recently, Fleck4 has completed a series of papers
based on a master-equation approach that has many
similarities with the present work. His work includes a
discussion of many-body eGects and super-radiance
effects within the hrst Born approximation. In addition,
he has found numerical solutions for many of his
equations. We have generalized the master-equation
approach to include oG-diagonal matrix elements, corre-
lated c.m. motion, spatial eGects, and an analysis of
the structure of the time-dependent equations. We hnd
the method Fleck' developed for hnding stationary
states remains valid in the presence of these additional
complications.

It is easy to generalize the Bogoliubov method of
derivation of kinetic equations to include asymptotic
conditions that contain correlations. Bogoliubov' found
it necessary to include asymptotic correlations to treat
Debye shielding in plasmas. However, during the deri-
vation, much time is spent on formal questions. Prigo-
ginev has given a careful analysis of the derivation of
the Born-approximation master equation for a wide
range of asymptotic conditions. The derivations of the
Horn-approximation master equation are just Fermi s
golden rule applied to the density matrix. The crucial
requirement is the existence of a time long compared
with an "interaction time" and short compared with a
"relaxation time, " or equivalently, a suitably dehned
interaction time must be small compared with the
relaxation time. The gas lasers and some solid lasers
would seem to be simple examples of the Born-approxi-
mation master equation because there exists a small
parameter which is the dimensionless dipole moment.
However, the definition of the interaction time is

N. N. Bogoliubov, in St@Ches in Sfatisfica/ Mechanics, edited
by J. de Boer and G. E. Uhlenbeck (North-Holland Publishing
Co., Amsterdam, 1962), pp. 5-118.

L Prigogine, Eon-Eqgihbrilnz SIatistica/ Mechanics {Inter-
sciencc Publishers Inc., New York, 1962).
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complicated by the fact that the lifetime of the atom
plays a dual role as an interaction time in one part
of the problem and as a relaxation time in another
part of the problem.

We show in Sec. II that the parameters of a gas laser
are such that the inequality for the validity of the
Born-approximation master equation is satisfied even
in the presence of the atomic-lifetime complication.
In Sec. III we apply the well-known form of the
Born-approximation master equation to the gas laser.
Section IV contains a solution for the stationary state
of the radiation density matrix for three physical situ-
ations: (a) moving atoms with traveling waves, (b) sta-
tionary atoms with traveling waves, and (c) stationary
atoms with standing waves. The case of moving atoms
with standing waves is considerably more dificult and
an approximate solution is found in Sec. V. We adia-
batically eliminate the matter variables and study the
time dependence of the diagonal radiation density
matrix in Sec. VI. Section VII contains a derivation
of the equations of motion for the oG-diagonal matrix
elements of E. In Sec. VIII, we compare our theory with
the Langevin-equation theories. Appendix A contains
a derivation of the truncation of the hierarchy. In
Appendix B, we analyze the frequency-shift operator.

[Bp(f)/Btj —i[p(t), Ho]=X' [V, [V(r), p(t) jj dr,

where
V(o.) = exp(iHor) V exp( —iHor)

(2.1)

and p(t) is the density matrix of the system. There is
sometimes a term linear in 'A which either vanishes or
can be transformed away. The right side of Eq. (2.1)
has a real and imaginary part. The imaginary part
can be written as a commutator, and represents the
shift of Ho due to the perturbation. The real part
causes transitions and represents the lifetime of the
unperturbed system. The derivation of Eq. (2.1) con-
sists of applying Fermi's golden rule of perturbation
theory to the quantum-mechanical density-matrix equa-
tion for p. The crucial condition for the validity of
Eq. (2.1) is o.;o&«t«r„& or, more simply, o;ot«r„&.
The relaxation time r„iis proportional to X ', and so
is large as X goes to zero. The interaction time v.; & is
a rather subtle but very familiar quantity. Applying

II. VALIDITY OF THE MASTER EQUATION

We begin our analysis of the first-Born-approxi-
mation master equation by considering an arbitrary
system with the Hamiltonian Ho+tV, where the di-
mensionless parameter is small compared with unity.
For convenience, we will refer to the first-Born-approxi-
mation master equation throughout the rest of this
paper as simply the master equation, although the
term "master equation" is often used for a more general
equation. If a master equation exists, it has the follow-

ing form:

Fermi's golden rule for the transition probability per
unit time lV, we obtain

W=
j ti —' f(co) dko 7rf(O) (2.2)

The condition for validity of the approximate equality
in Eq. (2.2) is that

~
t ~)) (Ace) ', where Boo is the width

of f(co) which is mainly a product of density over
states times the square of the interaction Hamiltonian.
The definition of r; t, is r; o= (Ace)—'. In single-body
problems such as an atom in an external field, it is
rather easy to find ~;„tand r„&and to see if the in-

equality v.;„&((v;,& is satisfied. In a problem with many
degrees of freedom, the difhculty usually is that the
inequality is satisfied for most degrees of freedom, but
violated by a special set of degrees of freedom. In a
plasma, such a special set are those particles whose
velocity is the same as the wave velocity. In a gas laser,
the special set are those atoms whose Doppler-shifted
frequency is equal to the cavity frequency; i.e.,
a~o—& ~ =~

A frequently occurring physical situation in which
the master equation is valid is a system weakly inter-
acting with a reservoir. The resultant equation is

(Bp/Bt) i[p, Ho—'j=Vtr„, [V, [V(r), p5'jg dr= Xp, —

where
(2.3)

H=Ho'+Ho"+yHg+o V +o,V„ (2.4)

where Ho' and Ho" are the unperturbed system and
reservoir Hamiltonians, and y, e, and e„aredimension-
less constants measuring the strength of the j A inter-
action of the laser atoms, the strength of the internal
atomic variable-matter reservoir interaction, and the
strength of the radiation —radiation reservoir interaction,
respectively. If we attempt to derive a master equation
in the simultaneous limits y—+0, e„—&0, and e„—+0, we
find that the reservoir terms e ' and e„'are well behaved,
but the particles whose Doppler frequencies equal the
cavity frequency, oro —k V =0, cause the 7' term to
diverge. This divergence occurs because v; ~ is infinite

V(r) =exp[i(Ho'+Ho') r]V exp[ i(Hp'+Hp") rg.

The terms Ho' and Ho" are the system and reservoir
Hamiltonians, respectively, V is the system-reservoir
interaction Hamiltonian, and (P is the reservoir density
matrix. The two new features that have appeared in
the reservoir master equation are a trace over the
reservoir variables and the assumption that in the
infinite past the system and reservoir were expressible
as a product p(P. The reservoir master equation is
usually easier to justify than a master equation for
internal interactions because the reservoir often pro-
vides a physical mechanism for a small v;„&.

The Hamiltonian for the combined system and reser-
voirs of a schematic model for a laser is
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for a permanent two-level system exactly on resonance
with the radiation 6eld, and thus the conditions for the
first Born approximation are not satis6ed. One physical
resolution of the problem is clear. In a gas laser, the
atom's lifetime in the laser states is 6nite because the
atom decays to the atomic ground state with lifetime
v2 . If the CGect of the radiation-matter interaction is
small during the lifetime of the atom, then we can
still have a master equation. As we show in Sec. III,
the small dimensionless parameter Xy'co»'/&onv2 in the
gas laser is precisely the ratio of the two-level system
lifetime to the CGective radiation-matter relaxation
time between the two laser states.

The formal dBBculty is that v~ ', which is proportional
to e„',plays two roles. The 6rst is as the relaxation
time of thc atom to its gI'ouIld state. The second role
is as v;„~for laser absorptions and emissions between
the two levels of our two-level system. Consequently,
if we naively let ~ -+0, then r; t for the two-level
system becomes larger than the laser interaction relax-
ation time, and we cannot describe H~ by the Born
approximation. The solution is to let y'—+0 holding e~'
6xed, then lct ~ '~. Actually, we never have to let

—+0 unless the physics indicates this limit is reason-
able. The crucial requirement is that y'—+0 relative to
c '. The requirement for the validity of a reservoir
Born-approximation master equation for V is the same
as the requirement for the validity of the Wigner-
Weisskopf approximation for the decay of an atom to
its ground state in a nonresonant cavity.

As we see in Sec. III, we need terms such as
LH~H~(r)], —=f(r), where the average is over the
matter reservoir. However, because we do not let t.

go to zero until after y' goes to zero, the v. dependence
of f(r) is a function of », i.e.,

Hq(r) =expLi(H»'+Ho"+» V ) r]Hg

&&exp) i {II;+H;+»—„V)«].
If we had let ~ go to zero at the same time as y went
to zero, the e V would not have appeared in the r
dependence of Hq(r), and f(r) would, not have gone to
zero as 7. went to infinity. The inclusion of the e V
term in the r dependence of Hq(r) corresponds to the
decay of the excited atom to the atomic ground state.

The particular terms we need for the explicit evalu-
ation of the master equation are averages such as

Jot(r)~], . Because of the term»„V in the r de-
pendence, the correlation fat(r)o], decays with r .
We can define the two-level lifetime ~2

—' as the width
of } 0 t(r) 0], . Lax' has shown that if there is a master
equation for the matter reservoir, then Pot(r)o], .
equals 0 to exp( —v2«) . This result corresponds to letting
~ ' go to zero after letting p' go to zero.

If the system Hamiltonian Ho' contains E degrees
of freedom, then p will depend on X variables, and the
interaction potential will consist of a sum of X terms;
otherwise, there is no change in the formal development
analyzed in this section.

HL MASTER EQUATION FOR A LASER

We use the same Hamiltonian as we used in I for X
two-level systems interacting with a single Inode of
the electromagnetic 6eld. This Hamiltonian is

H(X) =h{IV)+Hr+H, +H;,
where

h(N) =-',h, g ~„, e,=In(a&a+ ',)-
H, =S(o»y Q 1"(X ) (uto. +ca t) =—Q Hg(n),

a a

H. =Q(F '/2m)+-, ' Q V(X —Xs)

+g g II(X.—&;),
a 0

~=(f~,)-'(rn)-', »(o ~. r
~ h)(4 /V)~t2

&(X ) =E(X ) V'". (3.l)

The normalized eigenfunction of the cavity correspond-
ing to the frequency 0 evaluated at the position of the
nth particle is Z(X ) . A full discussion of the terms in
the Hamiltonian is given in I and in Ref. 8.

The equation of motion for the density matrix of the
combined system and reservoir density 5' is

ih, (BF/Bt)+t'P, H'(1V)+H, +»V, ]=0, (3.2)

where H„,represents the Hamiltonian of the reservoirs
aIld Vges ls tlic system 1cscl volI' interaction«

The master equation in the limit that y and ~„
(the system-radiation-reservoir interaction parameter)
simultaneously go to zero is

BF~/Bt = (i/8, ) LHr+ Q—h(n) +Q(F '/2m), F~]+X„F~+Z,F~

OO t—y'~»' Q Q tr LHg(8), PHg(n, r), F~(P]]dr+ 2 (t t') F~(t') dt', (3.3—)
a P 0 0

where

H (n r) =exp Ii(H +Hf+h(n)+ (F '/2m) j» V ]r}Hj(n) exp f iPH, +Hr+h( ) +—(F '/2m)+» V ] },
and F~(0~X~, ».»X2, ~ ~ ~, 0~, X~, a, t) is the density matrix of the X two-level systems with internal degrees
of freedom g; and c.m. degrees of freedom X, and of the radiation oscillator e. We assumed that the reser-

8 C. R. %illis, Phys. Rev. 14/, 406 (1966).
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voirs and the system were uncoupled in the infinite
past. Consequently, the radiation reservoir master
equation X„is a linear time-independent operator on
F~. We did not let the system-matter-reservoir inter-
action parameter go to zero; thus Hz(n, r) depends on
the system-matter reservoir interaction potential V .
Also, we have written a general time-dependent kernel
for the system-matter-reservoir kernel that depends
only on the fact that the system and reservoir were
uncoupled in the infinite past. We now let e go to zero,
and the last term in Eq. (3.3) becomes X F~, where
X is a linear time-independent kernel.

The operator Z,F~ represents the effect of the col-
lisions of the Ne atoms with the He atoms and other
Ne atoms and is a result of letting the density go to
zero. For gas lasers, Z, is basically a linear Boltzmann
operator. Collisions also inRuence Hz(n, r) through
I'[X (z.)g, which is the mode function evaluated at
the c.m. of the nth particle at the time r. In the re-
mainder of this paper, we consider collisionless atoms,
but the inclusion of collisions does not fundamentally
alter the qualitative results of this paper.

As a result of the above discussion, Eq. (3.3) becomes

aF~/at= —(z/h) [Hg+Q h(a)+g(P '/2zzz), Fzzj

++rFN+~N 7 &0 trres

a P 0
[Hz(p), [Hz(n, z), Fp (Pggdr. (3.4)

In Eq. (3.4), the terms with nAP in the interaction
term represent two particle-correlation effects. Dy-
namically, the first Born approximation correlates a
single particle with the radiation field and we must go
to a second-Born-approximation master equation, i.e.,
to p4, in order to obtain dynamically induced two-body
correlations. However, there are two ways that two-
body correlations could appear kinematically. One is
by superradiant eGects due to the degeneracy of two
or more particles within a wavelength of the radiation
of each other. The relevant dimensionless parameter for
superradiant effects is (N/V) X', which is about 10 ' for
gas lasers. The second way is that the pump might
create two-body correlations. However, in a gas laser,
where the pump produces inversion by collisions, the
pump does not create two-body correlations among the
pumped atoms. Consequently, the terms with n&P
are unimportant in a gas laser. However, Eq. (3.4)
describes kinematically produced two-body correlations
in those solids for which a first Born approximation is
valid. A good example where two-body effects are
important in Eq. (3.4) is the Q-spoiled laser solved
numerically by Fleck.4

For a gas laser, the double sum in Eq. (3.4) reduces
to a single sum. When we sum Eq. (3.4) over all

particles but one, we obtain

aFz(1) /at = —(i/h) [Hf+h(1) + (Pzz/2m), Fz(1)j
+X,Fz(1)+X Fz(1) —y'cupztr„„

X [Hz(1), [Hz(1, r), Fz(1) tpggdr
0

—y'-(up'(1V —1)tr„,trz

X [Hz(2) ) [Hz(21 r), Fz(1) 2) 5'jjdz, (3.5)
0

where tr2 means the trace over all variables of the
second particle including c.m. variables. The subscript
i on the F; means that the distribution function depends
on i particles in addition to the radiation oscillator.

The summation of Eq. (3.4) over all particle vari-
ables yields

aZ/at = (z/fz)—[H„Zg+X Z—7'~ 'Ar

Xtrz I Hz(1), [H, (1, r), F,5'j7dr, (3.6)
0

where we use 2=—triF~ and tr «X F~ ——0.
Equations (3.5) and (3.6) do not constitute a closed

theory because Eq. (3.5) depends on Fz, which depends
on Fe, and so on until we reach F~ again. The term
proportional to E—1 is very large compared with the
fourth term on the right side of Eq. (3.5). However,
as we show in Appendix A, the y'(1V—1) term is
almost exactly cancelled by the X„F&term. Conse-
quently, the terms remaining after the cancellation of
the ~ and yz(X—1) terms depend only on Fz, and
Eqs. (3.5) and (3.6) constitute a complete closed
theory.

The trace of Eq. (3.5) over the radiation variable
after cancelling the X„term and the y'(X —1) term
gives the following equation for the one-particle density
matrix:

ap/at = —(i/h) [h(1)+ (Pzz/2zzz), p]+ X„p

—y coo'trrestle Bi 1 ~ H] 1& T, F](P 8r. 3.7
0

We do not need the equation for p in this paper; how-
ever, if we replace Fj by Ep on the right side of Eqs.
(3.6) and (3.7), we obtain the initial Eqs. (I2.3a)
and (I2.3b) .

We have treated the c.m. variables as quantum-
mechanical; however, since they are essentially classical,
we replace their commutators with Poisson brackets.
We showed in I that the neglect of the Poisson brackets
in the interaction term is equivalent to neglecting the
recoil of the atom on emission and absorption which
constitutes an error of less than one part in 10 '.
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The trace of Eq. (3.5) over the reservoir variables of Eq. (3.5), omitting the X„andy (X—1) terms, is

BFg/Bi = (—i/5) [h(1)+hQata, F~] —V (»~/aX) +X Fg

y—'raP [ato+aot& [a~a exp(iver)+aot exp( i—Ar), Fq]jFF(r) exp( —vmr) dr, (3.8)
0

where d—=«—0 and tr, ot(r)o(P=oto exp( —iver) exp( —v2r) for a Born-approximation reservoir. The separation
of the right side of Eq. (3.8) gives

»1/~i+(~/&) [h(1)+&ala'a+~&ly Flg —V(»l/&X) =X Fl+&(Xp V) [a'o+«'y [a'o+«'~ Fl]li (3 9)

where

E(X, V) =— exp( —v2r) cosL&FF(r) dr

and

AHg=—y'cop'fi exp( —
vier) sinhrI"1'(r) dr(aatoto ata—oot)

In I, we treated the equations for the density matrix in their operator form. We find it somewhat more illumi-
nating to solve the equations in this paper in the number representation. The simplihcation arises because in the
6rst Born approximation the diagonal matrix elements interact only with diagonal matrix elements. The o6-
diagonal matrix elements divide into mutually exclusive sets such that matrix elements in a set interact only with
members of the same set and do not interact with diagonal matrix elements.

The diagonal matrix elements of Eqs. (3.6) and (3.9) are

(»+/~r) (~, y, &, r)+5(»+/~y) (~, y & r) =—»[F+(~ y 5 r) —~(~)p'(+) j
—2(v+1)E(y, $) [P+(e, y, f, r) F(m—+1,y, $, r) j, (3.10a)

(»-/~ )(~, y, G )+5(» i~y)(~,-y, 5, )=—~[F-(~, y, k, ) —~(~)p'( —)3

2eZ—(y, $) [P (e, y, t, r) F+(I 1, y,—$, r) $,—(3.10b)
and

BZ /8 =.L'NR„=—(m+1)v~, ]+2v f dy dEZ(yt),
X I (n+1) [F (n+1, y, $, r) F~(e, y, $, r—) j+e[P~(e 1, y, $, r) F— (e, y—, $, r)]I, (3.10c)

where we introduced the dimensionless variables y=—kx,
V/Vr, —and r= ~&i, and a fre—quency with a bar over

it has been made dimensionless with the Doppler fre-
quency co&. We represent the diagonal matrix elements
of Pf (a, I

~
P&(y, $, r)

~
a, rl) by the symbols

F+(m, y, $, r), and the diagonal matrix elements of R,
E.„„bya single subscript E„.The solution for E. does
not depend very sensitively on the precise form of X„
because its magnitude r„is the smallest reservoir pa-
rameter in the problem. For X„,we take a zero-temper-
ature harmonic-oscillator reservoir. A 6nite-temper-
ature reservoir can be included with ease. We take a
simple form for X that preserves the commutation
relations. The pump creates a population inversion

Q (+)—p (—)j without creating particle-Geld corre-
lations. For convenience, we take p'( —) equal to zero
and for moving atoms p'(+) = (2~) 'I' exp( ——',P).

%'e conclude this section with a discussion of the
dimensionless parameters in the theory. In I, we showed
that in the absence of collisions and with rectangular

geometry, E is

E—=y'O)p'

0
exp( —v2r) coshrI'I'(r) dr

= sin'y(p'«2/coD2) -', rm

&& {[(5+~)'+»'3 '+[(5 ~)'+»'r'I
k(7«/~n )»[(P+»)1 (3.11)

When Eq. (3.11) is substituted, in Eq. (3.10c) and
after an integration over a Maxwellian population in-
version, we obtain the parameter y'(uplV/conv2. Con-
sequently, our relaxation time y'&vo'X/&un consists of
two parts, The first part p'cop% is the probability that a
two-level system spontaneously emits a photon and
goes to the ground state of the two-level system, sot
to the ground state of the atom. The spontaneous
emission time is divided by con/«, which is the motional
broadening of the spontaneous two-level system emis-
siop line shape dye tg Doppler motion, The jntcractjon
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time v;„~is the lifetime for the decay of the atom to
the ground state of the atom, i.e., r; ~=v2 '. Conse-
quently, the requirement for the validity of the Born
approximation (r; p/r„)«1) is satisfied if yao)oaE/o)r)o)a

is much less than unity. For a He—Ne laser, the ratio
is approximately 2)(10 . For a He-Ne laser, v2

' is
able to fulfill its dual role as v; ~ for the laser transition
and v„&for the decay of the atom to its ground state.
The main reason that v2

' can be a "short time" for
the laser transition and a "long time" for the decay of
the atom to its ground state is that the density of the
final states and the matrix elements of the decay of the
atom to the ground state are much larger than the
corresponding transition from the laser excited state
to the laser two-level system ground state.

IV. STATIONARY STATE

We now find the stationary-state solutions of Eq.
(3.10) for a number of physically different cases. We
consider the following four physical cases of lasers:
(a) moving atoms with traveling waves, (b) stationary
atoms with traveling waves, (c) stationary atoms with
standing waves, and (d) moving atoms with standing
waves. The standing-wave cases are more dBBcult to
solve than the traveling-wave ones because the former
are spatially-dependent. The first three cases are alge-
braic equations in y because either (=0 Leases (b) and
(c)7, or the interaction term is spatially independent
Leases (a) and (b)7. We discuss case (d) in Sec. V
because in this case we have a diGerential equation in
the spatial variable y.

In the absence of collisions, the expressions for E in

Case (a):

E~+] 2$ 4 K g+

the four cases are

(a) K 7ao)oa va j [($+g) a+vaa7 —1+t'(5 io)) a+v a7—1}

(4.1a)

(b) @=yap) a/j 2(gayvaa) 7 (4.ib)
(c) K=sinayyao)pa/(6a+vaa) (4.1c)

(d) K=yappoavaa '(sin'y)

j j (3+g)a+vaa7 1+}($ g)a+v a7—I} (4 1d)

For stationary atoms g equals zero, o)aa is replaced by
va, and p'(+)+p'( —) = (2yr) '" exp( —aP) is replaced
by p'(+)+ p'( )=—1.

The simplest case and the one most authors use is
case (b). We use the method developed for case (b)
by Fleck' to solve Eqs. (3.10) in the three cases (a),
(b), and (c). When we set the time and spatial de-
rivatives of Eqs. (3.10a) and (3.10b) equal zero, we
obtain

[K(n+1)+va7yj+(n) =K(n+1) g (n+1)+vtpo(+) 2 ',

(4.2a)

fK(n+1)+va$g (n+1) =K(n+1)yj+(n)+vtp'( )2 '—
(4.2b)

where g+(n) —=F+(n) /R„and where we have set
R&„+»/R„equalto one in Eq. (4.2b) .

The solution for g+(n) is

j:1+~(n+1)7p'(+) ~(n+1)p'( —)
1+2n(n+1) 1+2ia(n+1) '

where a=—2K/va. For convenience, we set po( —) equal
zero, i.e., the pump excites atoms only in the upper
state. When we substitute Eq. (4.3) in Eq. (3.10c)
and perform the indicated spatial and velocity inte-
grations, we obtain the following recursion relations
for cases (a), (b), and (c).

(4.4a)

The formal solution is

R„"'="yap)pa¹a d(e '*r p+vaa)1+ (yao)pa/viva) (n'+1) 7l

Ri) y p (2yr) (P+va ) P+ va ]
where

'r o)p Eva dfe (va ('r p)p /viva) ('n +1)
(2)r)')a (P+v ') ) P+va"

(4.4b)
—.a"—=—

va'j 1+(2v'~o'/»va) (n'+1) 7.
We have set g =0 for convenience in Eqs. (4.4) . The rX 40 case can be obtained simply by replacing p+ra' every-
where by a j[($+6) +ra'7+[($—&)'+va'7}.
Case (b):

The formal solution is

Case (c):

&(V'o)o'/va') q+ (n)
v„+X(pap)pa/vaa) g (n+1)

-jZ ~(v'-"/»');( )
=„y,vE+( ypao/)a)vsa(n'+1)

(4.5a)

(4.5b)

(py2~ 2

R~& ——~, E — dy sinayy)+(yy n)
~2~ 2+, N — dy sin'y, y iy, e+))) N„,

P2 7i 0
(4.6a)



where

1+2 Sill y{T40/"I"2)
S+(y' ) 1+4sin'y(v'~0'/»»)

TT I
~

N — dy sill y}/+(y~ '+ )
0

R„R
dy'"yn (»~'+» ~&Pp

VR % (}

(4.6b)

If the numerator rs less than
0

the denominator for
onotonlc decreasingII=0 in the three cases, R„is a Inonoton'

of m. If the denominator is less than or equal

reases vrith e. The dividing line betaken t e vr

e uals the numerator is the thres o
number of systems q

'
nonre uiredforapea e non

as E~, the threshoM number of systems in I. e
results for the three cases are as followers.

Case (a):

Case (c):
'Y «N slnuyLI/+(y, 0) —g (y, 0)ldyPf. —

0

= (y'(oo'/PRR) N,

(4.9)Nr =P„PR/y'«'.

hich E' e has its maximumThe value of II at whic
e n is the solution of the equation evalue sp, 18 e n s

I(!(II).In other words, v/e ls t e va u
nunmrator equat quals the denominator j,n qs.

The results for the three cases are as follmvs.

P Mp
p = %72

OPg)

d5 cxp( 2P)
(2~)"'(8+»')

= (7'~o'/~~') I(PR) N,

, t:~+(40)—n-(t, 0)3
(P+PR')

Case (a):
PIPR NI(PR') ' "R"~ PIPR

(4.10a)
(4.7) where

PR'=v(}L1+ (2y'«'/PIPI) (IIO+1)$'/'.

I{PR)= exp( —pRa) exp( ——,'x') dx

Case (b):
IIS= (PIPR/2y'«') L (N/NI ) —1).

Case (c):
(4.10b)

ancl tllc thrcshol(l Np is (P„Q7n/7 « ~ PR

Case (b):
-"=(v' "N/") t:~.(0) -~-(0)1

= (y'«'/PRR) N,

NI =P~PR/'P« (4.8)

E '«~
4N-1'~-~ 1+8— . (4.10,)

8v'~o'

f 6ndin the best Gaus-Wc' llsc Fleck s tcchnIquc of fin g
scan 6t centere arount d around ~ by erst rewriting Eq.

R.=R., g 2R f R(E(E}g~(I,N'} r,+2N d& E(f)I/ (&, II'+1) (4.11)

x onent holds for e&mg and thewhere the positive exp and the
negative expon . Cx vfeex onent holds for n&~. ex @re

the logarithm of R„in a Tay or serie
result is

I(.'„=(-', Ir) '/'0 ' expL —(n—N(})'/20'j,

(I —= s—5(}) ) Rv. Tll cxplcsslons fol' a' 111 thc
three cases are as follows. We are a s

1s ls the hmlt 1n %'hlchth lout as X—+E~ becauseln e
the photon-counting experimen sents are done.

Case (a):

2y'~, '
~

I'(P&'

IIO f LNI(PR')/NrI(PR) j'—1)
P(»')/I I'(»')

I 0(N/Nr+ 1)

I/~I/R (2)1/R t'N ) f2 I/I

&N,

where R=—(N Nr) /Nr. —
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Case (b):

I

—
I

—+1 I,
viv2 (N (N

~2«2 ENr ENr

Case (c):

2)1—(Nr/N) j ~"~'

(N/Nr)+1
(4.13)

no[1+(Nr/N) j
gI4(Nr/N) —2D —(2Nrnoy2«'/~'viv2) j'I'

¹Ng
So 0 2 ~ 4 (414)

In all three cases, 0-' is greater than eo and approaches
mo as X increases. However, as X becomes of the order
of 1.5', the distribution becomes more sharply peaked
than a Gaussian distribution. Case (a) has the broadest
distribution, case (c) has the most peaked distribution,
and case (b) lies roughly halfway in between, at least
near threshold. In Sec. V, we show case (d) of moving
atoms with standing waves has the same value of
no/o' near threshold as case (b).

In case (b), when we take the limit as N approaches
Nr, the expression [1+(y2«2/vi 2) (n+1)] 'is replaced
by 1—(y2«2/viv2) (n+1) in Eq. (4.5b). The resultant
equation for E„is the same as Risken's' and Lax's"
master equation integrated over the phase variable for
the rotating-wave Van der Pol equation. Risken's'
stationary solution is

W(r) =(N/2r) exp) ——,'r4+-,'(ar2) g.

In our notation, —', (ar2) =1—Nr/N=~ o/2and his pa-
rameter p/g equalS y'~o/viv2. Our reSult far no/o' iS

2(1—Nr/N) (N/Nr+1) ' which reduces to1 Nr/N—
near threshold. However, the threshold limit is the
limit in which we are permitted to replace q+(n) and

p (n) by the erst two terms of their Taylor series.
Thus near threshold the best Gaussian 6t is exact.
For a typical He—Ne laser, a value of 10 for Risken's a
corresponds to an e between 10 ' and 10 '. Conse-

quently, the photon-counting experiments are done in
a range where our & is less than one percent. Although
cases (a) and (c) do not correspond to Risken's model,
they have the same functional form with different
values of the ratio ~/a2.

V. STATIONARY STATE: MOVING ATOMS WITH
STANDING WAVES

It is more complicated to obtain the stationary state
for case (d), moving atoms with standing waves, be-
cause we must solve a differential equation for p+,
instead of just an algebraic equation as we did in cases
(a), (b), and (c). We illustrate the difhculties by first
solving for [g+(y, «) —g (y, «) g. The time-independent
solution of Eqs, (3.10a) and (3.10b) is

«(~i@)E~.(y, «, .)-.-(y, «, )j
Ln+(y—, «, n) —n-(y, «n) —(2 ) '"e p( —l«) j

—L4»n'y)/(«+»') 3»T'«'E~+(y, «, n) ~ (y,—«' n-) 3

(5.1)
The solution of Eq. (5.1) is

~+(y, «n)-~-(y, «, n)

ping A pj
=(2x) "'exp( —

—2,«2) exp ——— sin'zdz

vi " (vix sinozdz
X 1+— expI —exp rixA dx, (5.2)

«o &«o
where A= kyo~oovo—n/(«2+v22) vi and where we have as-
sumed in the solution of the homogeneous equation that

~+(y=o) —~-(y=o) =(2 ) '" e p( —l«).
We can combine Eq. (5.2) with

+(y, «n)+ -(y, «n) =(2 ) "'(—l«),
solve for q+ and t—,and substitute the results in the
time-independent form of Eq. (3.10c) for R. However,
we are unable to perform the resultant integrals over

y and « in closed form. Consequently, we expand the
solution of Eq. (5.1) to order y2 and obtain

2

exp( —12@) «2A ((vi '. , 2r1 .
v+(y, «, n) —

p (y, «, n), , 1—,
I I

— sin'y ——sinycosy+2
I

—2exp—
4«'+-" &'««) (5 3)

12 exp( —-',«2), '
v12

1——',A 1+
(2x) 1/2 («2+v 2) ~ 2(4«2+v 2)

v2 ezp( —12P)

(2~) 1/2 ( 2+v 2)
V2~ a I(v2)&

=I(v,) ~y'"o —I—
Vl) BV2 V2X[g+(y, «'n) —

g (y, «, n) jdyd«. (5.4)

The result of the substitution of Eq. (5.3) into y2~22nv12v, a exp( —-'2«2) d«

2(2~)"'vi ~v2 (P+v2) (4P+v2))' H. Risken and H. D. Volmer, Z. Physik 201, 323 (1967).
"R.D. Hexnpstead and M. Lax, Phys. Rev. 101, 350 (1967).

In order to obtain the equation for E, we need inte- Eq. (5.4) is
grals of Eq. (5.3) multiplied by functions of y and «.
One integral we need is
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The integral in the last term is not expressible in
closed form. However, we can estimate the ratio of the
third term of Eq. (5.5) to the second term quite
accurately because the Lorentzian linewidths are much
narrower than the Gaussian linewidth. For the pa-
rameters of a He-Ne laser the ratio of the third term
of Eq. (5.5) to the second term is approximately

13/98. With this result, Eq. (5.5) becomes

2' s)( 222 8 2

I(vp) (svl 98 Bvp vp

%e use the method of Sec. IV to obtain the steady-
state solution for R„for moving atoms with standing
waves:

22„"(22','¹ sinsyss (2, 2, n') ay@' 2 '2,' ¹f i s' nys(y, 1, n'+ 2) 2222)vn+
Ep s (1 ( (22r)21P (P+»') (22r) 'I' p22

%e obtain the integrals of g+ and g from 8 by using the following relationships:

~.(y, S.)+~-(~, r, .) =(2-)-'"-p(-le),
+(y 4 ) =lf(+(X 4 ) —~-(X & ) )+E p( —lP)/(2 )'"jI.

The solution of Eq. {5.7) to order f ls then

1+(y'(pp'vpn/2vg) (111/98) (B/Bl 2) Ll(vp) /rpjE= Ro,
p Xp/1V+ (p p)pvpn/2v2) ( 111/98) (B/Brp) Ll(vp) /vp j

(5.7)

(5.8)

(5 9)

where Xp =—(v~g)) Ly'p)p'I(rp) j '.
When we use the methods of Sec. IV to 6nd eo and

the best Gaussian fit, we obtain

np = (av2vp/y'p)p') (1 Er/S), —
a—= (98/111) (1+2'122r "'rp)-'~~jj, (5.10)

o'=-', (Xr/X+1) (v2vpa/y'p)p'),

np 1 Ãr/&—
(5.11)

The above result for np/o' is important and rather
surprising. It states that near threshold, where the
photon-counting experiments are done, the ratio np/o'
for moving atoms with standing waves ls the same as
for stationary atoms with traveling waves. Conse-
quently, the inclusion of both velocity and spatial
eBects cancel each other near threshold. The inclusion
of the motion of the atoms broadens the photon-distri-
bution function. However, the separate values of No

and a-' are di6'erent for the two cases. In conclusion,
we see that the case of moving atoms with standing
waves is much more complicated than the other cases
because of the operator &B/By

VI. TIME DEPENDENCE OF THE MASTER
EQUATION

The master equation for the diagonal matrix ele-
ments of E, Eq. (3.10c), has a complicated time de-
pendence. In some lasers the rate of change of Iij. is
fast compared with the time dependence of E, and so
the matter variables can be eliminated adiabatically.
In the He-Ne laser, a rough measure of the ratio of
the time dependence of E to the time dependence of
F2 is given by v„f(X/Xr)—1]/v2. For the photon-
counting experiments, this ratio is between 10 and
IO . Consequently, the adiabatic approximation is
valid. However, well above threshold the ratio may
approach 10 ', and a more careful investigation of the
adiabatic approximation is needed.

The adiabatic approximation consists simply of
putting F&(r) equal to &E(r), where p is the stationary
solution of Eqs. (4.2a) and {4.2b), and inserting the
result in the time-dependent equation for E. The re-
sultant equation for E. is

BE„/Br= (n+1)~)t r„+C(n+1)7+nE„2PC~(n)j
E.ink"—+C (n) j+(-n+1)C+(n+1) I, (61)

C~(n) = 2N d(I( ((}g+($,n)

p Mo Ep2 d p2 j. p Gpo 's p]p2
exp( —lP),

vpp)n(22r) '" (P+vpP) P+vp"

o (n)—= 2N f diK(2)s ((n),
d$.

gp2ppErp exp( ,'p) frpp(y'p—)p'—n/v2vp) 7
v~z (2~)'" (P+vp') (P+»") (6.2a)
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Case (b)
'1e MO 1+'r (Op S/Vivp

C+(n) —=

vp 1+2« (op s/vivp'

Case (c)

y (oo +~ y (oo s/vivo
C s —=

vo / 1+2'r Mo s/vivp

2y'(oo'E ~ . , 1+2 sin'y(y'(oo's/vivp)
C+(s) —= , dy sin'y

xvo o 1+4 slil y('r Mp s/vivp)

(6.2b)

'~o'
C (s)—=

'7PPg p

2 s111 y('PMo s/vivp)
dy sin~y

1+4 sin'y (yo(oo's/vivp)
(6.2c)

We demonstrate that the adiabatic approximation
leads to a proper kinetic equation for E by showing
the kinetic equation for R is negative semidefinite.
Furthermore, it is Hermitian as a consequence of a
generalized detail balance condition.

We write Eq. (6.1) in the following form:

aR„/ar=+LL(sI")R„,-J(s Is)R„j, (6.3)

L(s I
s') =b,~i(s—+1)t(v„+C (s+1)

The Green's function for Eq. (6.1) is

gdI s
I n; rj=Q exp( —xpr) up(n) up(n)

P

=0

or symbolically,

g~(r) =g I P) exp( —~pr) (P I

=0

for v&0

fol T+0)

(6.6)

for v)0

for ~40,

y&„.,„,SC+(S),

Q L(S'
I S) =Sfv„+C(S)j+(S+1)C~(S+1)

The "amount entering minus the amount leaving" form
of Eq. (6.3) with the L(s I

s') positive guarantees that
Eq. (6.1) for R is negative semidefinite and preserves
the normalization. "

The L(s I
s') are not symmetric, but they are sym-

metrizable because they satisfy the following condition:

L(s I
s')R„"=L(s'

I s)R„', (6.4)

where R' is the stationary solution of Eq. (6.1). The
proof of Eq. (6.4) follows from the definition of
L(s

I
s') and the stationary state, Eq. (4.4b).

When we substitute the definition r„(r)—=R„(r)/R„*
into Eq. (6.3), we obtain

R-'L«-( )/d j=Z 1(s I
s') I:»- ( ) —«-( )3, (6 5)

where l(s
I
s') =L(s

I
s') R„*is symmetric because of

Eq. (6.4). The eigenvalues of Eq. (6.5) are real, and
the eigenfunctions are orthogonal. The eigenfunctions
satisfy the equation

Q l(s
I
s') I up(s') up(s) j=——XpR„'up(s),

where d represents the fact that Eq. (6.6) is the
Green's function for the diagonal matrix elements of
R. Once we know g(r), we can answer all those ques-
tions that depend on the propagation of diagonal
matrix elements of E. As an example, we consider the
intensity correlation which is

(a'(o) a'(r) a(r) a(o) )
=trat(r) a(r) aR'at

=Q sgp(s I s; r) (s+1)R~i'

=g exp( —X.r) ZLsu. (n) X(s+1)u. (s)3R~i'.

(6.'7)

However, if we try to treat phase fluctuations, we
6nd that our diagonal equation for R is not sufhcient.
Consider the following expression for the line shape:

exp(ups) (at(r) a)dr

Qo

=ee~~ e' e p((epp( )d e*O)
p

=Q(s I
at

I
s 1)g.oIs, s-—1

I
s-1, s;(og

Xp&0, g u *(s)up(s)R„'=B,p,
n

g up*(s) up(s') =8„„.
P

"C. R. Willis, Phys. Rev. 127, 1405 {{962).

&& (s—1
I

a I s)R„'
Sgo&IS&S 1 IS—1 S MgR (6.8)

where nd indicates that g„o is the Green's function
for the nondiagonal matrix elements of E, Even though
R' is diagonal in I, we still need to know how the off-
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diagonal matrix elements of the density matrix propa-
gate. In Sec. VII, we obtain the equations of motion
for the off-diagonal matrix elements of R „ofF.

VII. OFF-DIAGONAL MATRIX ELEMENTS OF R

The equations of motion for the diagonal matrix
elements of R, Eq. (6.1), do not depend on the off-
diagonal matrix elements of R, and, as we show in this
section, the equations of motion for the off-diagonal
matrix elements of E. do not depend on the diagonal
matrix elements of E. If R is diagonal at (=0, it
remains diagonal at least in the Born approximation.
Even when R is diagonal, we need the propagator for
the off-diagonal matrix elements to compute multitime
correlation functions.

The diagonal and off-diagonal matrix elements do
not interact with each other in the first Born approxi-
mation because the general condition on the kernel of
the equation for the density matrix requires that a
relationship exists between the matrix elements that
influence each other. "The condition on the kernel E

in the Born-approximation master equation is repre-
sented by the restrictions on the sum in the following
equation:

i(BR „/Br)+(R,Ho) „=Q'K "'R„„

where the prime means that p and. (t must satisfy
E '—E„'=E„'—E,'. This condition on the sum divides
the states into mutually exclusive sets which do not
influence each other. In the Born approximation, the
sets are the diagonal matrix elements and elements
that lie on the same line parallel to the main diagonal.
The equations of motion for the off-diagonal matrix
elements of E depend on matrix elements of F~, which
are off-diagonal in the radiation variables but diagonal
in the matter variables because of the trace over the
matter variables in. Eq. (3.6). We apply the same
method to solve for the off-diagonal matrix elements
(nz

~
Ii+(y, (, 7)

~
n) as we used to solve for the diagonal

matrix elements F+(y, ], n) in Sec. IV. The solutions
are

(m
~
P, (y, t, .) ~

n& =C, (m, n) R„„(.),
C+(m, n)+C (m, n) =(22r) '~'exp( ——',P),

v)(22r) '" exp( ', P) [—iQ-(m n)+—v~+I&(m+1+n+1)] v)(22r) 'I' exp( —-', P)c,(m, )n= .
[iQ(m —n) +v)]+K(m+ 1+n+1)'—4K'(m+1) (n+1) iQ(m —n) +v~+K(m+1+n+1) '

where the arrow indicates the result when we neglect
depletion; —i.e., we set F equal to zero—and where

dr exp( —v2r) coshIT(r). (7.1)

We derive the expression for bQ in Appendix B. We
need. the Green's function. b[n, m

~
n, m; 7] of Eq. (7.2)

to answer questions about the propagation of off-
diagonal phase information.

When we substitute Eq. (7.1) in Eq. (3.6) for R, we
obtain

BR„„/Br+i(m n) (0+—()Q)R„„
I'

XR „~(m+n) K(()—c (m, n, t)dP

+ (m+1+m+1) fZ(2) C~(mm, ()R(),
+2RR, (mm)'~ fR,(2)C~( 1, m —1, 1)md2

+2XR~~,~&[(m+ 1) (n+ 1)]2"

X & C m I n 1, d v„m 1 I
XR~r ~x p„(myn—)R (7.2).

~ C. R. Willis and P. G. Bergmann, Phys. Rev. 128, 391 (1962) .

VIII. DISCUSSION

The double commutator structure of the first Born
approximation for a harmonic oscillator leads to a FP
structure in the variables at and a. However, in the
laser problem we also have a double commutator struc-
ture in the matter variables. The adiabatic elimination
of the matter variables changes the FP equation with
linear coeKcients to the generalized FP equation with
nonlinear coeKcients which have the form

[1+(r(co /v2v2)a a] '.

The generalized FP structure which results from the
Born approximation of the j A interaction is completely
independent of the radiation reservoir. The form of the
radiation-reservoir term, X„E., depends only on the
existence of the radiation reservoir and weak coupling
of our system to the reservoir. Nowhere do we require
the existence of any microscopic property of a reservoir
such as requiring the reservoir to be Gaussian. Our
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generalized FP equation is not determined by the type
of reservoirs but comes only from the first Born ap-
proximation, from the existence of the matter reservoir
which provides the lifetime for our two-level systems,
and from the adiabatic elimination of the matter
variables.

If we consider the case of stationary atoms with
traveling waves and let the lower state population F
go to zero, then our equation for R is equivalent to
Lax's equation' for p in the e representation. Lax'
showed the equivalence of the quantum-mechanical
nonlinear FP equation with the equation for p in the
e representation. Consequently, our equations including
the case of moving atoms with spatial dependence are
equivalent to the quantum-mechanical nonlinear FP
equation. All four cases have the same structure in the
n, m dependence but the coefficients depend in diferent
ways on such parameters as 1V/Arz For ex. ample, the
average radiation energy depends quadratically on
1V/i' in the cases of moving atoms and linearly on
1V/1V~ in the cases of stationary atoms.

An interesting alternative way to derive the nonlinear
FP equation directly would be to eliminate the matter
variables adiabatically from the operator Eqs. (3.6)
and (3.9), and express the resultant equation of motion
for E. in the representation where the creation operator
at is diagonal" instead of in the number representation.

Lax" showed that near threshold the nonlinear FP
equation reduces to the rotating-wave Van der Pol
Fokker —Planck equation. Thus, our master equation
reduces to the FP equation for the rotating-wave
Van der Pol equation, and our time-dependent Green's
functions are related to the eigenvalues and the eigen-
functions found by Lax and Hempstead" and Risken
and Volmer. ' Our Green's function for the diagonal
matrix elements of R corresponds to the classical
Green's function integrated over the phase variable
which is the case of X=O of Ref. 10. The Green's
function for the off-diagonal matrix elements corre-
sponds to the Fourier transforms of the classical
Green's function with respect to the phase variable.
In particular, the line shape defined in Eq. (6.8)
requires A=i. The easiest way to obtain the Green's
function near threshold is to express Lax's and Risken's
results in the F(n) representation and transform to the
n representation with the known (n

~
n).

The first Born approximation depends crucially on
the assumption that atoms change little during their
lifetimes. It is possible for some atoms exactly on
resonance to change a great deal during their lifetimes.
For these atoms, the Born approximation is no longer
valid, and it is necessary" to go to a Boltzmann equation
that treats the individual particle-radiation interaction
to all orders in &, not just to order p'. For the range of

"R.J. Glauber, Phys. Rev. 131, 2766 (1963).
'4 M. Lax, Phys. Rev. 145, 110 (1966)."C. R. Willis (to be published).

parameters where the photon-counting experiments are
performed, the results of the Boltzmann-equation ap-
proach are numerically very close to the Born-approxi-
mation results.

The steady-state deviation of the correlated distri-
bution function F+(n) from the product R~„&pfor the
case of stationary atoms with traveling waves is

F+(n) R(n) p—(+)
R(n) ~(+)

(1+x)/(1+2x) —((1+x)/(1+2x) )

((1+x)/(1+2x) )

where x= (y'a)pP/vip) n
From Eq. (8.1), we see that the correlation between

radiation and matter is large for photon numbers e
which deviate a great deal from (n) or np In th. e
photon-counting experiments, x is small through most
of the range of n, and we have x(+) (x)—x, which
is positive for n((n) and negative for n) (n). It is
this relatively large correlation for large and small n
that causes the photon distribution function to be
sharply peaked. As the distribution function becomes
more sharply peaked, the correlation between radiation
and matter decreases and the coherence of the radiation
increases.

APPENDIX A. TRUNCATION OF THE HIERARCHY

We show the ansatz

=Rp(1)" uP)+Z[Fi(J) —R~(i) jII ~(p)

=Re(1) "~(&)[1+Ex(i)j, (A1)

where

x(i) —=[n(i) —~(i)3~ '( J)

truncates the hierarchy so that we obtain the closed
Eqs. (3.6) and (3.9) for R and Fi. In particular,
Eq. (A1) for F2 causes the following inequality to be
satisfied:

X[Hi(2), [IIi(2, r), Fp6'jg«X Fi. (A2)

We can replace Kq. (3.5) by Eq. (3.9) only if Eq.
(A2) is valid. We show the inequality is true for the
stationary state, and thus it is true for the time-
dependent equation because in a gas laser the pump
term increases and the left side of Kq. (A2) decreases
with time.

When we substitute Eq. (A1) into the left side of



Eq. (A2), we obtain

LH»(2), LH»(2, ~), (P»(2)) (1)+FI(1)u(2) —&i (1)P(2))6'jj«

+y'(00' tr2tr, /HI(2), LHI(2, r), F26'j «=X„tF»(1)—Rp(1)j

' tr tr„, LH (2), tH (2, ), (F (1)—Ep(1) )p(2)(fjjd

+y'~0' tr2tr, „)H»(2),LH»(2, r), Fs6»jjdr X„LF»(1)—Ep(1)g

—ySoro trmtr„, Bj 2 ) By 2, r, Fy j. —Ep 1 p 2 5' dg, A3

where we used the exact time-independent Eq. (3.6) for Z multiplied by p(1), which is

p(1)X,Z=)()(1)y'co02E tr»tr, f H»(2), LH»(2, r), PFI(2) ljd».

The approximate equality in Eq. (A3) follows from neglect of the Fm term, which we later show is negligible.
The (n, e) diagonal matrix element of Eq. (A3) is

g" 1—() (+)—~(—)) —fn(P»(1, n) —~.I (1))ISr Bs

S a
n—(n)(p(+) —~(—)) —fn(P»(1 n) —~I (1))l(e) Xr 8'I

= " —L(n/(1+2*) }—(n)((1+2~)-»)1—fn(P»(1, n) —R.p(1) )I, (A4)
v„E 8

(n) Ez Bs

where x=—y'coo'n/1»»2, and where we use the exact equation for (n). The derivatives with respect to e appear in
Eq. (A4) for the following reason. If we replace R„+»and F»(1, n+1) by R„andF»(1, n) in Eq. (A3), the in-
cqllRllty Eq. (A2) ls satlsf»cd because tile left side VRIIIslles. HowcvcI', thc IncquRllty Is being used to jllstlfy 'tllc
discarding of terms that are proportional to S, which is very large, and the retaining of the y'cua' term in Eq. (3.5)
for F». Therefore, to make sure that the inequality is strongly satisfied, we replace R„+»——exp(B/Bn)E„not by
just F but by R„+BE/Be.

Below threshoM and vray above threshoM the square bracketed term vanishes. In the region near threshoM
where the photon-counting experiments are done, the ratio of Eq. (A4) to X„FIis

x [f(t)I v' tt)tt tt tt f—(ttt(t), [zt(2 ) f (1)p(t2)tp]7 xtttt
Q

», X y'»0O' (e')—(e)' (n) (n') —(n)',
»I Nr»I»2 (n)' V (e)~

where f(1)—=F»(1)—Ep(1). The inequality occurs because for a thermal distribution the curly brackets equal 1,
and they become much less than 1 when the distribution becomes sharply peaked as it does in the laser.

Tllc n, n (ilRgoIlal II18,tl'1x element of tllc term dropped 111 Eq. {A3) Is

= 2I» fest'(1, +, n) +P»(1, —,e) —FI(1, +, e—1)—P2(1, —,n+1) )+F2{1,+, e) —F&(1, —,n+1) I

~O+g{B/Bn) fnf Fs(1, +, n) —F2(1, —,n) jI. (A6)
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The leading terms cancel exactly, and the ratio of the
remainder to X„Fiis of the order 7~coo'/viv2~~10 ', and
so is negligible.

Thus the ansatz Eq. (A1) satisfies Kq. (A2), and
so the term proportional to p'(1V—1) in Kq. (3.5) is
effectively cancelled by the term X,Fi. Since p'(S—1)
is the only term that depends on F2, Eq. (3.5) is a
linear inhomogeneous equation for Fj.

We conclude with some remarks about our ansatz
Eq. (A1). Since the trace of Fi( j) over the matter
variables is R and the trace of Fi( j) over the radiation
variables is p( j), the trace of Fir over all the variables
is unity. If there are no two-particle correlations, the
most general ansatz of the master equation is

=&p(1) "p(&)III1+x(j)3. (A7)

Consequently, our ansatz is just the linearization of
the most general ansatz without two-particle corre-
lations. When the ansatz Eq. (A7) satisfies the in-

equality Eq. (A2), the resultant equations for Fi and
R are the same as Eqs. (3.6) and (3.9), and the differ-
ences in Eqs. (A1) and (A7) are inconsequentiaL For
e near the center of the photon distribution, the ansatz
Eq. (A7) is essentially as good as Eq. (A1). In the
wings of the photon distribution, the ansatz Eq. (A7)
is less exact than Eq. (A1).

APPENDIX B. FREQUENCY-SHIFT OPERATOR

= —zp cop E exp( —vmr) sinArl'I'(r) dr

= —iy'foo'X d$ exp( —v2r) sin&% cost
—CO 0

P+v22
8 8)

P+v~ $~+ ('Phoo /»»)a a3

iTata, B—n.,Rj. (31)

XsinArl'I'(r) drt p+($, t) —p ($, t) j, (32)

which is the same as Eq. (I3.8).
In a strict sense, there is no simple frequency shift

when there is a correlation between radiation and
matter variables, and one has to find the complex
eigenvalues of the Green's function for the off-diagonal
matrix elements of R. However, we obtain a very good
approximation of the frequency-shift operator by re-

placing

p~ (t, t) —p (P, t) = {P+v2'{ 1+( t'coo'/viv2) (it)jI
—'

As a consequence of the correlation between the radi-
ation and matter variables, the frequency-shift operator
80,~ is an operator in the radiation variables instead
of just a frequency shift. When F& is a product Ep,
the frequency-shift operator in Kq. (31) becomes a
simple number

80(t) Ãy', 'f di d exp( ——,)

The imaginary part of the last term on the right side
of Eq. (3.6) in dirnensionless variables is

'Lp Mp Xtr& exp( —r2r) sinArl'I'(r)

Xf(ataotcr, Fi)+ (Fi, ataoot)+ (o to., Fi) 7

in Eq. (B2) . We obtain Eq. (33) when we approximate
(at (it+—it ) ) by (at) (it+—

~t ) in the equation of motion

for at.


