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Kawasaki has shown how to construct a nonequilibrium theory which relaxes to an equilibrium described
by the standard Ising model. The main significance of Kawasaki s work is his proof that transport co-
efhcients do not diverge near the critical point in his model. In this paper, his approach is generalized. Two
master-equation models of transport are examined: one gives spin diffusion and thermal diffusion but no
sound waves; the other gives thermal diffusion and sound waves. The first model involves a Hermitian
transition matrix in the master equation. The Hermiticity enables one to prove a variational theorem
which requires the transport coeKcients to be finite. However, sound waves appear as complex eigenvalues
of the relaxation time. Hence, they must come from a non-Hermitian master equation. A model is con-
structed which includes sound waves. In this case, the proof of the finiteness of transport coefBcients fails.
Aside from formal questions, the main physical point of this paper is the speculation that infinities in trans-
port coeKcients might be tied to the existence of oscillatory transport modes (like sound waves) coupled
into the dynamics of the phase transition.

I. INTRODUCTION
' 'N a very interesting series of papers, ' ' ' Kawasaki
~ ~ has investigated the behavior of transport coeK-
cients near the critical point. Basically, his model is an
Ising model in which spins on neighboring sites are
interchanged at a given rate. The details of the inter-
change are arranged so that the system relaxes to the
usual Ising model equilibrium state. This model then
describes spin diffusion in an insulator or particle
diffusion in a binary alloy like P brass.

Kawasaki formulates his model in terms of a master
equation. Glauber' and Heims' have also applied
master equations to Ising models. However, a special
feature of Kawasaki's work is a variational theorem
which enables him to calculate an upper bound to the
transport coe%cients in his model. This upper bound is
finite so that the exact transport coefficients derived
from this model cannot possibly diverge near the critical
point.

This model is a rough description of the situation in
materials' such as P brass. Indeed, experiment indi-
cates that the particle self-di6usion coefficient does not
appear to diverge near the critical point in these
materials.

However, other critical points are accompanied by
divergent transport coefhcients. In the liquid gas phase
transition the thermal conductivity Xp appears to
diverge as the critical point is approached. ~' In iron, '
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the spin diffusivity does not appear to go very strongly
to zero, so that the spin dift'usion transport coefIicient
is probably diverging rather strongly. There are
theoretical arguments'~' and experimental evidence"
that the shear viscosity p diverges at the critical point
of Quid mixtures. The thermal conductivity apparently
diverges as the superQuid transition of He' is approached
from above. '4 "

Therefore, Kawasaki's arguments seem to work well
for the specific situation in which the physics is closest
to the conditions of his model. However, in other
situations, Kawasaki s basic conclusion —that the
transport coefficients are finit- fails.

At first sight this failure appears to be a great
mystery. The arguments for 6nite transport coefficients
seem very simple and general: The existence of a master
equation, the proof of a variational theorem, and 6nally
the explicit calculation of a finite upper limit. However,
there turns out to be one feature of the argument which
is not universally applicable. The proof of the varia-
tional theorem depends upon the Hermitian nature of
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the transition matrix in the master equation. The
transition matrix then has real eigenstates and these

eigenvalues have the physical significance of being the
relaxation times of the different modes in the system.
Of course, di6usion processes involve real relaxation
times. For example, thermal diffusion produces an
inverse relaxation time for a disturbance with wave
vector q which is r '= (Xr/pC„)q'. But, sound waves

and spin waves are oscillatory phenomena. Insofar as

they are not damped, they are represented by pure
imaginary relaxation times. When damping is included,
these eigenvalues of the transition matrix become
complex. Hence, as soon as we admit sound waves, we

must abandon the Hermitian transition matrix in the
master equation. Then the proof of the finiteness of
transport coefFicients fails because the variational
principle no longer exists. It seems possible, at least,
that infinities in transport coefficients are tied to the
existence of oscillatory modes coupled into the dynamics
of the phase transition and their consequent non-
Hermitian representation in the transition matrix.

In this paper, these basic ideas are examined through
the consideration of master-equation models of trans-
port phenomena. In the next section, the formalism of
master equations is described with a view to seeing how
equilibrium behavior and conservation laws are fixed
into the structure of these equations. Section III de-
scribes a model for transport which relaxes to the
standard Ising model in equilibrium. The spin-exchange
processes are constructed in such a manner as to
conserve the Ising model energy and the total spin.
Therefore, the master equation implies two diAusive
transport modes: spin diffusion and thermal di6usion.
For T& T, and zero magnetic field, we prove that the
two transport coefficients involved are finite at T,. (As
a consequence, the spin di6usivity goes to zero as the
inverse susceptibility and the thermal diffusivity
vanishes as the inverse specific heat).

Section IV describes a model of dynamical behavior
that includes sound waves. This model is then appro-
priate for Quids. To bring in sound waves, a momentum
variable is introduced in addition to the "spin" variable
of the standard lattice gas.""The model is arranged
so that, in equilibrium, the momentum may be elimi-
nated from the partition function in a trivial way. This
same elimination occurs in classical statistical me-
chanics. Then, the remaining partition function is
chosen to represent the lattice gas or Ising model.

In this model, the momentum is tied into the dy-
namics in a nontrivial manner. Particles tend to move
in the direction of their momentum. Coupled conserva-
tion laws for momentum, number, and energy are shown
to reduce to standard linearized hydrodynamic equa-
tions. The model then includes both thermal di6usion
and sound waves.

However, the transition matrix of this model is non-
Hermitian. The proof that the transport coefBcients are
finite at the critical point fails. Therefore, the divergence

or nondivergence of these transport coefficients in the
Quids is left as an open question in this analysis.

A. Notation

We describe a system like the classical Ising model.
There is a lattice and at each lattice site, r, there is a
spin variable 0; which can take on two values, &1.The
complete state of the system is given by specifying all
the values of all these spin variables. We find it con-
venient to associate a state vector with every spin
configuration. This state vector is written as la), where
0. is an index which defines all the values of all the
diGerent spins.

The time dependence of the model is given by
specifying the equation of motion obeyed by p (t), the
properly normalized probability of finding the system
in the state a. We take this to be a first-order equation

(2.1)

so that a determination of all the p (t) at any time will
define the values of the probabilities at all later times.
If PWn, T s is the probability per unit time that the
system will hop from state P to state n while —T is
the rate of hopping out of the state o.,

It is convenient to write the purely classical master
equation, Eq. (2.1), in a matrix form. To do this, let us
assume that the basis states

I n) are orthonormal so that

(2.2)

This equation means that two basic states la) and IP)
are orthogonal if the value of the spin at any site is
different in state la) from that in state IP). The
statistical state of the system at time t is given by

It&=Z p-(t) la&

so that (n t) is the probability of finding the system in
the state a). If we also define a transition matrix

(2.3)

then Eq. (2.1) can be written in the simple form

(2.4)

An important auxiliary quantity in the analysis is
the special-state vector

I &=2 ia& (2.5)

IL MASTER EQUATIONS

In this section, we review some of the formalism of
master equations and construct a notational system
which will be useful for the rest of the paper.
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and the Hamiltonian

H= —goo, =Cs
(r,r'&

(2.11b)

Fzo. 1. Some interchanges described by the T~ matrix. The s's
represent or=+j. at the lattice site while the unmarked inter-
sections represent or= —1 at that site. The solid lines indicate
allowed interchanges between spin "up" and spin "down". The
broken lines indicate forbidden interchanges. The forbidden inter-
changes shown above involve either a change in energy or the
interchange of two like spins. There are other allowed and non-
allowed interchanges for the situation shown above which are
not shown for the sake of clarity.

For example, we can use this quantity to give a compact
formulation of the concept of conservation of proba-
bility. This is the statement

be conserved. Lln Eq. (2.11b), (rr') indicates that the
sum is to be taken over all pairs of nearest neighbors. ]
From Eq. (2.10) we can see that the conservation laws

(d/d~)(C;), =0
can be equivalently stated as commutation relations

LC;,T]=0 conservation laws (2.12)

B. A Specific Example

It is easy to construct transition matrices, T p, which
satisfy the requirements stated above. For example,
consider a model in which Ising spins are distributed
upon a square or cubic lattice. Let there be a probability
per unit time m~ that any pair of next-nearest-neighbor
spins will interchange their values of o,. This inter-
change is only allowed if the process does not change the
total energy H. Examples of possible and impossible
interchanges are shown in Fig. 1."

Mathematically, this model is represented by

From Eq. (2.5) we then see that the statement of
conservation of probability or detailed balance is

T—TA —ZEST, A (2.13)

X=+ Ia)(aIX . (2.7)

( I
T=O detailed balance. (2.6)

Given any physical quantity, X which has values X
in the state a we define a diagonal operator representa-
tion of that quantity as

T,...~=w~(l, , —l)h, ,, ~. (2.14)

Here T,,, " is the operator which describes the transi-
tion probability resulting from interchanges of spins at
the nearest neighbor sites r and x'. The off diagonal
operator I... represents the actual interchange process

(x),=( I XIr). (2.S)

For example, the spin at site r is given by taking
X =(o,) to have the values &1 depending upon the
sign of o, in the state a. The statistical average of X at
time t is given by

I„,o,=o;.I... ,
I,„o;=o.,I, ,

Ll...,o;,]=0 for r~ different from r and r'.

Of course, I,... obeys
Ir,r'= Ir', r q

(I, , )'= l.

(2.15)

(2.16)

From Eq. (2.5) this obeys the equation of matrix

(d/+)&x& =( I xTI~& &29)

when we apply the detailed balancing condition (2.6)
we Gnd that this equation of motion can also be written

(2.10)(d/dt)(x), = ( ILx,T] I t&.

M=+ o;=Cg,
(2.11a)

Transport properties are intimately be~ed with con-
servation laws. We denote the e conserved quantities
in the system by the symbols C;,i=i, 2, ~ ~ e. For
example, in the analysis of the usual Ising-model
ferromagnet, we would like to have the total magneti-
zation

Note that I, ,. is not a matrix in x and r'; instead these
coordinates are labels for I, , The matrix elements
of I„,. are between states with speci6ed values of the
spin variables, i.e.,

The delta symbol, 6,,, ~, delimits the allowed inter-
changes. It is defined by

IP 'I, ,VHI, , =H
1 rf o;=—o,

.r and r' are next-nearest neighbors.0 otherwise (2.17)
"This choice of the transition matrix makes the magnetization

on two diferent sublattices separately conserved. However, we
may add nearest neighbor or next-next-nearest neighbor inter-
changes to the transition matrix to destroy this conservation law
without changing the results in any essential way.
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The first condition in Eq. (2.17) is energy conservation;
the next is inserted because exchange of equivalent
spins has no effect; the third condition limits the inter-
changes to next-nearest-neighbor sites. The condition
of energy conservation can be restated with the aid
of Eq. (2.11b) as

ur= Nr' ~ (2.18)

Here I, is the "potential energy" for a spin at site r,

(2.19)

with

Z(Pth) =g exp( PH—+khan ), (2.22b)

where P is a dtmensionless inverse temperature and h is
a dimensionless magnetic field. This is the same as the
requirement that the state

I e(7) = (1/Z(p, h)) exp( —PH+hM) I ) (2.23)

be a time-independent solution of the master equation.
Since the master reads

The notation r'Qr indicates that the sum covers those
values of r' which are nearest neighbors to r. Thus the
"energy conserving" operator h. .." can be written as

a..."=lt(tt„N, )-', (1-a,a, ),
when r and r' are next-nearest neighbors.

Notice that the transition matrix (2.14) contains two
terms. These terms are best understood if we return to
the p, . Equation (2.14) indicates a contribution to
(Ep /(Jh which is

g w '(1,,;).(((6,-,;")((pa(t) w "(6,,;"—) p (t) .

we must require

T exp( —PH+hM) I )=0.
But, the transition matrix T commutes with H and M.
The condition that Eq. (2.23) be an equilibrium solution
is then the requirement

(2.24)

Equation (2.23) is automatically satisled in this
simple model. For I... commutes with d... so that

( I l.,"=( I . (2.21)

Hence the definition (2.14) automatically guarantees
the detailed balancing condition (2.6) since

( IT„,."=(I(I, ,.—I)A, ,."w =0.
The conservation laws (2.12) for energy and magnetiza-
tion are also automatically satis6ed in this model.
Since I... only interchanges spins, it commutes with
the total magnetization, p, o,. Also, the projection
operation which insists that N, =N, for all interchanges
then guarantees that no interchange mill change the
value of the "Hamiltonian, " H.

The first term, the "scattering-in term" indicates an
increase in p (» resulting from the scattering from all
other states, P, into the state n. The second term, the
"scattering-out term" shows the decrease in p (t)
coming from the scattering out of that state. The
projection operators 6,,, simply delimit the states in
which the scattering is permitted.

The model we have just de6ned satis6es all the formal
requirements described in Sec. (2A). Since ( I

contains
all states equally,

Then, I... I )= I ) implies

Below, we shall consider another model in which I,,,
does not commute with 6,,, In this situation, there will
be real 4&culty in constructing a model with the
correct equilibrium properties.

Notice the structure of the matrix T. It has the form

T p=(T') ti
—(l (t2 '"'. (2.25)

The 6rst term in 7 comes from the "scattering in" term
in each of the T, , Since these terms are all proportional
to I...st(1 —a,o, ), they are completely off diagonal.
Furthermore, they are positive semide6nite, i.e.,

(2.27a)

while the statement that we have a correct equilibrium
solution TI )=0 insures

(2.26)

Also, the detailed balancing condition requires(
I T=0,

or

C. Other Formal Requirements
2' out pz' in— (2.27b)We would like to demand that the equilibrium solu-

tion of the master equation be precisely the standard
Ising-model density matrices

p =exp( —PH +hM )/Z,

In the model we have just described Eqs. (2.27a) and
(2.27b) are essentially identical, because T s is a

(2.22a) symmetrical matrix. However, below we shall consider
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D. Eigenstates of T

Let the matrix T have the eigenstate
I v) such that

Tlv)= —s„lv), (2.28)

so that s„ is an eigenvalue of —T. If a state It) is a
superposition of such eigenstates

a T matrix which is not symmetrical but nonetheless
satisfies both (2.27a) and (2.27b).

A. Conservation Laws and Currents

The two conserved operators, M and H, are sums
over all sites of a magnetization density operator and
an energy density

m(r) =o,—&(o,)),
e(r) = ——,'u, o,+((-,'u, o.,)). (3.l)

The double bracket indicates an equilibrium average in
the Ising model and

lt&=Z a.(t) lv&, u(r)= +Or ~ (3.2)

then the equation of motion These two densities obey local conservation laws

implies that
(~/~t) It&= Tlt&

a„(t)= e '"'a„(—0) (2.29)

(~/~t)& lm(r) I t&+ v & I
j"(r)

I
t&= o,

(a/at) & l, (r) I
t&+v. & I j (r) I

t&= o. (3 3)

The stability of the system demands that exponentials
in Eq. (2.29) never become infinite. This is equivalent
to the statement v (lj (r)lt)= —(lm(r)Tlt) (3.4)

To 6nd the currents we make use of the master
equation. For example,

Res„&0

Re(v I T I v) & 0.

(2.30a)
so that

(2.30b) v
& Ij-(r)=& II:T, ,j

In our speci6c example, T" is a Hermitian operator
since I... commutes with 6„. This Hermiticity
guarantees that all the eigenvalues s„are real. Later on
we shall consider a non-Hermitian T. However,
Eqs. (2.30) must be equally true whether or not T is
Hermitian.

To see this point, write the eigenstate
I v) as

=5~"2 & IL(l'."~ —I),o.j~",""
=~"2 & ILl,",o j~",.'

Z ( I (or lr, r'orlr, r')~r, r'

V = Ca 0! The line of argument follows because ( I
is an eigenstate

of I, , with eigenvalue unity and also because I, , com-

(2 3l) mutes with A. ..".Since I... converts o, into o r.r we find

If
I v) is properly normalized

V j"(r)=ro"p ~..."(o;—o, ). (3.5)

2 Res„=—2 Re(vlTlv)

= —2 Re P T pa *ap
aP

= —P T p(a *ap+a,ap*).
aP

To eliminate the divergence in Eq. (3.5) multiply
by e 'q' and sum over all r.

Then,

g 1'q. jm(r)e —i1 r—1 P (e
—iq r e—i1 r )rOAg, A(O O,)

The last line follows because T p is real. Equations
(2.25) and (2.27) now give

2Res„=g T p'~la~ ap~l'.
aP

(2.32)

IG. ANALYSIS OF HERMITIAN
TRANSPORT MODEL

In this section, we analyze the transport properties
of the model introduced in Sec. 2.2.

The desired result, Eq. (2.30a), follows immediately
from the fact that T p' ~&0.

For small q, the difference of exponentials reduces to
iq (r' —r)e '1'. An inversion of the Fourier transform
then gives

jrr(r) —1OA Q (1' r)ir, A1(O O, ) (3.6)

A similar but slightly more complex calculation gives a
form for the energy current.

B. Local Equilibrium Solution

Equations (3.3) are exact local conservation laws.
However, these conservation laws cannot be used
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In Eq. (3.7), bP(r, t) and bh(r, t) have the physical
significance of being the local deviation of inverse tem-
perature and magnetic field from their equilibrium
values.

We employ (3.7) as an approximate eigenstate of T.
The low-lying eigenstates of T determine the slow
relaxation toward equilibrium which is characteristic of
transport processes. In particular, the two smallest
eigenvalues of —T for sma11 q are

Sy= Dtrg

sg= Dyg (3.8)

where D, and Dy are the spin and thermal diRusivities.
To Gnd approximate eigenvalues of T, we assume

that the disturbance has wave vector q and eigenvalue s.
The u, I t) can be written as

without a solution for the nonequilibrium state of the
system. We follow Kawasaki' in employing a local
equilibrium approximation in which the nonequilibrium
state is approximated by

I t) = —2 [bP(r, t)e(r) —bh(r, t)m(r)] Ieq) (3 7)

For example,

X-=(1/&) 2 "' "'&((.—(& »)( "—(& )&)))

is just a dimensionless version of the ordinary spin
susceptibility as calculated from the equilibrium be-
havior of the ordinary Ising model. Similarly, X„is the
speci6c heat and X, the derivative of the magnetization
with respect to temperature. All these thermodynamic
derivatives diverge near the critical point.

The right-hand side of Eq. (3.12) gives the divergence
of the currents in the presence of the gradients of mag-
netic 6eld and temperature. Hence, the X's are the
transport coefficients of the model as determined by our
local equilibrium approximation. For example, X„is the
thermal conductivity, X is the spin-di6usion transport
coefficient.

It is relatively easy to calculate the transport coeffi-
cients in this local equilibrium approximation. For
example, the spin-diffusion coefficient is given by

It)= p„e "[Im q&b)'t —Ie q)bP].

Here we have taken

bh(r, t) = (1/+)V)e'& ' "bh

In the sums over r~ and r2, the only nonvanishing terms
(3 9) are those with

and written

Im, q)=(1/QcV) g e'&'m(r) I),

le, q&=(1/v')~') 2 e" "(r)I). (3.10)

Since cr, = —0;, the expression simplifies to

—q'& =(u "/A) P 2[1—cosq. (r—r')]( I&,,, "leg).

For small q we may expand the cosine and find

x„=(m,qlp„lm, q),
—g9,„„=(m, q I Tp„l m, q). (3.13)

Equations (3.12) have a direct physical significance.
The left-hand side of the Grst of these equations gives
the time derivative of the magnetization produced by a
magnetic field variation bh and an inverse temperature
variation bP. The X's are all thermodynamic derivatives.

E is the number of sites and p„ is the equilibrium
density matrix. The master equation now reads

-sp, .[ lm, q&bh-
I e, q&bg
=TP«[ lm, q)bh —

I e, q)bP]. (3.11)

To form the local spin conservation law, we multiply
this equation on the left by (m, ql; to form the energy
conservation law, we multiply by (e,ql. The results of
this multiplication are the pair of equations

s[X bh X„,bP]—=—
q P —bh X,„bP]—

—s[—X,„bh+X„bP]=—q2[—A„,bh+X„bP], (3.12)

where

= (u "/!V) P (s—s')'((6, ..."».

In three dimensions we 6nd

=Sw~((,'(1 e;e-,.)b—(u„u;))), (3.14a)

where r and r' are any pair of next-nearest neighbors.
Similar calculations give

X,=), =4(——',)w"

X(((u,+2e,)-', (1—e;~, )b(u„u, ))), (3.14b)

where u, is defined in Eq. (2.19) and m, is the sum of all
nearest-neighbor spins of r which are not also nearest-
neighbor spins of r' and

~„=4(l) te"«[( .+2 .)'+( .-'.—"+.",)']
X-,'(1—e;e, )b(u„u, ))), (3.14c)

where e, and e„are unit vectors in the x and y directions
respectively. Equations (3.14b) and (3.14c) are given
for two dimensions since the expressions are slightly
more complicated in three dimensions due to the greater
number of nonequivalent nearest neighbors.
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The significant feature of the results (3.14) is that the
transport coeKcients, X, are all finite even at the critical
point. This foQows because A. ,.. and the cr's are all

bounded operators. Therefore, this local equilibrium
approximation gives all transport coefIicients finite
values.

To determine the relaxation rate spectrum, one would
have to find the eigenvalues, s& and sm, of the Eqs. (3.12).
There is one particularly simple case. If the magnetic
field is zero and the temperature is above the critical
temperature, there is complete symmetry between spin

up and spin down. Then X, and X, both vanish so
that Eqs. (3.12) become

—sX Sh = —q'X 5h,
—sX„bP= —q'X„bP. (3.15)

De=A /X

Dr Xee/'Xee. —— (3.16)

Therefore, this local equilibrium approximation implies
that the spin di6usivity D, goes to zero as the inverse

spin susceptibility near the critical point, while the
thermal di6usivity, DT, vanishes as the inverse specific
heat.

Equations (3.15) indicate a diffusive type relaxation
with diftusivities

as q goes to zero. In fact, there are many such eigen-
values corresponding to dNerent values of the equili-
brium temperature and magnetic field. However, in any
situation of small deviations from equilibrium at a
given temperature and field, only two eigenvalues will

count —all the eigenvalues corresponding to diGerent
equilibrium parameters v ill have zero weight. "

The two exact eigenvalues correspond to eigenstates

l l, q) and
l 2,q) which obey

s,p„l v, q) = —Tp„l v, q) (v= 1,2).

The eigenstates are normalized so that

(3.19)

(3.20)

The requirement that you cannot go too far away from
the equilibrium state for the given value of P and ls can
be stated as the demand that lv, q) be a sum of quasi-
local operators times

l ).
Since —T is Hermitian and

l 1,q) is the lowest eigen-
value with wave vector q,

s, &~(x,ql (—T)p.,lx q)/(x ql p., lx, q), (3.21)

where lx, q) is any state with wave vector q. In our
calculation, we used as an approximate eigenstate

and

sy'pp' . = X g /Xoera

s approx. ) ~2/X

(3.17a)

(3.17b)

for small q. Here X and X„are given by Eqs. (3.14).
We claim that the exact transport coeScients will be

smaller than these approximate coeKcients. The exact
coeKcients, ) T = thermal conductivity and X,=spin-
di8usion transport coeScient, may be defined in terms
of the smallest eigenvalues of —T for wave vector q.
These eigenvalues are

Sl ~eg /Xrara r

SR= XTg /Xee r (3.18)

where the X s are the spin-susceptibility and the specific
heat.

Equations (3.18) describe a slow, diffusive decay of
long wavelength excitations. This slow decay occurs
because T has a pair of eigenvalues which go to zero

C. Variational Statements

As Kawasaki' pointed out, the approximate evalua-
tions of the transport coefficients as given by Eq. (3.13)
are particularly significant, because there exist varia-
tional statements which indicate that these results are
in some cases upper bounds on the coefIicients.

Consider, in particular, the case T& T, and h=0. In
that case, we have determined two approximate
eigenvalues of —T,

Kith this approximate state, the right-hand side of
Eq. (3.21) becomes X q'/X . Therefore, it follows that

s& & X„„q'/X„„.

Equation (3.18) then indicates that the exact spin-
diRusion transport coefFicient obeys

(3.22)

Hence this transport coefIicient cannot diverge.
The exact spin-di6usion state has, for 0=0 and tem-

peratures above T„odd parity under an operation in
which all spins Qip sign. The thermal conduction eigen-
state has even parity under this operation. Since T
commutes with this spin-parity operation, there exist
separate variational principles for the lowest eigenstates
of even and odd parity. The lowest even-parity state
of —T has eigenvalue Dz'~'q'. The variational
principle for the lowest exact even-parity state gives
the fact that

(3.23)

where ) & is the exact thermal conductivity and X„ is
our approximate conductivity.

The statement (3.22) holds for all temperatures and
magnetic fields. However, Eq. (3.23) requires the spin-
parity symmetry which only holds for k=0 and tem-

"R. Haag, N. M. Hugenholtz, and M. Winnink in an un-
published report have discussed how the apparent temperature
dependence of eigenvalues may arise in many a particle system.
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peratures above the critical temperature. Notice that
both variational statements are only valid because —T
is Hermitian.

IV. ANALYSIS OP A MODEL WHICH
INCLUDES SOUND VfAVES

The last chapter discussed a model with a Hermitian
T. Now, we turn to a model rich enough to include

sound waves. In this case, we must have eigenvalues
of —T given by s, (q) =&icq where c is the sound
velocity and i is Q—1. Clearly, we must abandon any
hope of a Hermitian T at this point. Hermitian T's
cannot give the imaginary eigenvalues which are the
hallmark of sound waves.

A. A Model Which Includes Sound Waves

g, =o if 0.,=—1,
g, =(1,1), (1, —1), (—1, 1) or (—1, —1)

if (r,=+1, (4.1a)

while for a three dimensional lattice

gr=o ~ 0'r=
g, = (1, 1, 0), (1, —1, 0), (—1, 1, 0), (—1, —1, 0),

(1, O, 1), (1, O, —1), (—1, O, 1), (—1, O, —1),
(0, 1, 1), (0, —1, 1), (0, 1, —1), or (0, —1, —1)

for r,=+1,
where g, in the "momentum" of a particle at the site r.

A basis "state" of the system, ~a&, will then be given

by specifying all the spin variables and all the momen-
tum variables.

It will be demanded that in this model the following
quantities by conserved quantities:

N=Z k(1+~.) (4.2a)

In this section we describe a model which has sound
waves among its nonequilibrium modes and has as its
equilibrium solution an Ising model.

Again in this model we consider a three-dimensional
cubic lattice with E sites. There is again a spin variable,
0,=~1, for each site. In addition, there is a vector
variable, a "momentum, " for each site. For a two-
dimensional lattice, g, has the values

4gyc —1 (4.4)

for the two dimensional case. At v=Q, Z diGers from
the Ising-model partition function by only a multi-
plicative factor. The Ising-model variable h, which is
the dimensionless magnetic 6eld, is related to p, by
h=p, —p,

%'e once again make use of a master equation of the
form

(d/ch) i&)=Ti&&

Here the state ~t) is of the form

(4.5)

where the index 0, dednes the values of both spin and
momentum at each site.

T must satisfy the general requirements given in
Sec. II of this paper and commute with N, H, and G.
A T meeting all these requirements is

g—+&++B+"7c (4.6)

Here T" is the matrix described in the previous section.
It describes processes in which particles fall into holes
at next-nearest-neighbor sites. The next term, T, has
a very similar structure to T":

T~=)m" Q (f, ,, —1)LL„,", (4.7a)

of a fluid and the Ising model"" —',(1+~,) can be
thought of as the density of the lattice gas at the site r
so that g, 0,=2X (number of gas atoms)+constant-
hence the terminology employed above. If there is no
particle present 0;=—1. In that case, we have chosen
to say that there is no momentum at the site. The
momentum variable is chosen to be discrete in order to
simplify the calculations. This discreteness may be a
serious defect of the model.

Since N, H, and G are all conserved an appropriate
equilibrium state will be

~eq. )=exp(—PH+pN+v G)
~ &/Z(P, p, v), (43)

with

Z(P,y, v)=( ~exp( —PH+pN+v G)
~
).

Here P is a dimensionless inverse temperature, p a
dimensionless chemical potential, and v a dimensionless
velocity. At v=0, in two dimensions the state n, =+I
is four times as likely as the state cr„=—1. Hence the
critical value of the chemical potential is defined by

H= —p 0~, ,
(r,r'}

(4.2b)
Ts=w Q (f, ,.—1)LL, ,.s. (4.7b)

(4.2c)

N is called the number operator, G the total "momen-
tum" operator, and H is the Hamiltonian. In view of
the well-known connection between the lattice gasmodel

Now I, , is an interchange matrix which interchanges
both the spin and the momentum at r and r'. In

'8 T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (f952).
19 K. Huang, Statistical Mechanics Qohn Wiley R Sons, Inc. ,N. Y., 1963).
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Here 8... is the projection operator which enforces
condition (c). It has the structure

n—1

e.."= II (1 ~(u.,u.+--"))2(1 o—+--"), (4.1o)

where g is a vector of length H pointing from r to r'.
Some allowed and forbidden exchanges are shown

ill Flg. 2.
The whole point of this rather complex construction

of b„,.~ is to make sure that every particle has one and
only one place to go. In symbols

Frc. 2. Some allowed transitions for the T transition matrix.
The particles momenta are denoted by the arrows and holes by
unmarked intersections. The particles interchange with the circled
holes lying on the line determined by particles momenta; the
circled holes being the erst holes for which an exchange is ener-
getically allowed.

particular
~r, r'0'r=or'~r, r'

p

~ r, r' gr = gr' ~ r, r' p

[l...,o; J=O for r"Wr or r',

fl, ...g,")=0 for r"&r or r',

2 ~*, '=2(1+~.). (4.11)

Equation (4.11)underlies the condition which allows the
complicated transition matrix T to have an Ising-
model equilibrium solution.

T~ was discussed in Sec. II of this paper so we know
that it commutes with N, H, and G, conserves proba-
bility and has the proper Ising-model equilibrium
solution.

T is a more complicated object since I... does not
commute with 6, ,, In fact, if we define

(I„,.)2= 1. we discover that

~r, r'r-sr, r' ~r, r' = ~r', r (4.12)

In Eq. (4.7a) A. .." is the same diagonal matrix as
dehned in Eq. (2.17). Therefore, the term T~ describes
once again the di6usion of particles onto neighboring
unoccupied sites.

Notice that this diQusion does not depend upon the
momentum of the particle. The transition matrix, T,
introduces the momentum. Physically, we want a
particle to move in the direction of its momentum and
land in the first unoccupied site which is permissible
from the point of view of energy conservation. The
projection operator h. .. in Eq. (4.7b) is designed to
produce a proper operator for describing the motion of
a particle from r to r'. We write

h. ..~=1 if

(a) o,=+1 or ———1 u, =u, ,

and (b) there is a positive integer n such that

r+ng, = j.',
and (c) there is no site r' which satis6es conditions

a and b for a smaller positive value of e.

e= ,'(1+. o;)—',(1-~;-)8(u„u;)

X P 8(r—ng„r')e, , . (4.13)
n 1

Notice the minus sign in the term involving g, in
Eq. (4.13).The same term is Eq. (4.9) has a plus sign.
Hence 6, ,, is dBerent from 6, ,,. This difference
means that T is not a Hermitian matrix —it is real but
not symmetrical. In fact, not only is T not Hermitian
but T~ is also not normal. That is, T~ does not com-
mute ~ith its adjoint which implies that T~ does not
possess a complete set of orthonormal eigenvectors.

Physically, the difference between 6 and 6 arises
because these functions answer di8erent questions.
When 6, , =1, a particle at r can go to r'. Thus g,
points from r to r'. When 6,,, = 1, a particle at r cars
hase come from r'. Then g, must point from r' to r.

Notice that every particle can come from one and
only one place. This means that

Otherwise, A. ..~=0. In symbols

A. ..o=x2(1+o,)-', (1—o, )8(u„u, )

g 2i, ,. =-,'(1+o,). (4.14)

Notice that similarity between Eqs. (4.1.1) and (4.14).
X p 8(r+ng„, r')8, ,, (4.9) As a result of this symmetry, Te has one important

left-right symmetry property. According to Eqs. (4.7b)
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and (4.12)

Te=weg (l —1)h, e

= we Q Ll, ,el, ,.—D....e7. (4.15)

But, according to Eqs. (4.14) and (4.11) the last rV in
Eq. (4.15) can be replaced by Ze. Hence,

Te=we P a, ,.e(l,„.—1). (4.16)

Equation (4.16) has the same structure as Eq. (4.7b)—
only now the I appears on the right.

This structual similarity is quite important indeed.
The form (4.7b) for Te clearly indicates that

( ITe=O,

so that T~ satisfies the detailed balancing condition. On
the other hand, the form (4.16) is necessary in order to
see that

To= —,'we Q (J,,;—Ij)6,,;e. (4.17)

The term (4.17) is designed to allow isotropic scattering
of nearest-neighbor particles if the total momentum of
these particles is zero as depicted in Fig. 3. Hence

&.,"'=l(1+ .)l(1- ")b(g.+g",o), (4»)
when r and r' are nearest neighbors. Otherwise A. ..~ is
zero. The operator J,,, changes the values of g, and g, .
In matrix notation

(g,g" I
J... I g.g,"&=~(g*+g",0)~(g.+g,o) (4 lg')

To ensure
T'I &=( IT'=o

it is only necessary to choose

This latter condition ensures that T has the correct
Ising-model equilibrium solution.

Notice that T~ and T~ each conserve the total num-
ber of particles with a given value of g, . These terms
alone give too many "momentum" conservation laws.
In order to mix different values of g, we introduce a
scattering term

(a) (b)

FIG. 3. A process represented by the transition matrix T~. Two
particles, whose momenta, represented by the arrows add up to
zero, scatter from the configuration shown in Figs. (3a) to that
shown in (3b) where the final momenta again add up to zero.
These particles can scatter with equal probability into any
momentum values which add up to zero total momentum.

modes are crucially connected with these conservation
laws, it is probably very important that they be
included exactly rather than in an averaged sense. "
The model used here has the further virtues of keeping
the density matrix always diagonal —as it should be in
a classical system and introducing the oscillatory modes
via the memory inherent in a momentum variabl- as
actually occurs in a real Quid.

C. Local Equilibrium Solution

In this section, ~e describe the transport properties of
the model defined in the last section. %e will show that
standard, transport behavior of sound waves and heat
waves vill emerge from the local equilibrium approxi-
mation. Hence this model has some very satisfactory
qualitative features. However, one should recognize
that because T is non-Hermitian, we have not been able
to prove that the local equilibrium approximation gives
the correct temperature dependence for the transport
coeKcients very close to the critical point. In fact, we
are hopeful that the local equilibrium approximation is
very inaccurate near the critical point. Real Quid phase
transitions show infinities in transport coeKcients at
the critical point; the local equilibrium approximation
does not. Preliminary calculations indicate that this
model gives an infinite thermal conductivity at the
critical point when one employs a more accurate
calculational scheme that the local equilibrium
approximation.

The local equilibrium approximation uses the approxi-

j=4 in two dimensions, mate eigenstate

j=12 in three dimensions. (4.19) I&)=e "p«I Im, q&&p —Ie, q&bp+ Ig, q)»7, (4.2O)

The model of a liquid-gas phase transition we have
just described has one very serious drawback: It has
cubic (or square) symmetry rather than a complete
rotational invariance. On the other hand, it has some
very important virtues. Energy, momentum, and
particle number are exactly conserved. These quantities
can flow from one point to a neighboring point but they
are never increased or decreased. Since the transport

sphere

In, q) = (1/QX) Q e"'m(r)
I ),

I e, q&=(1/v'7l') 2 e"'e(r)
I ),

(4.21)
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In Eq. (4.20), 8p, 8P, and bv represent variations in the
local chemical potential, inverse temperature, and
velocity. The equilibrium density matrix is taken at
v=0.

In order to eliminate the simplest case first, let bv

point in the x direction and q point in the y direction.
This transverse momentum Bow does not involve a bp
or bp. Then the approximate master equation becomes

—sp., lg, q) bv=p. ,Tlg, q& bv.

We multiply this equation on the left by (g„q I
and find

—s&g.,ql p" I g*,q&»= &g*,ql p"Tl g., q&» (4 22)

The left-hand side of Eq. (4.22) is simply the time
derivative of the average momentum which appears in
response to the velocity disturbance. Since g's at
different sites are uncorrelated in equilibrium, the left-
hand side is easily evaluable. In two dimensions

—«l&1+«~.&))»= —
«&g*,qlP"Ig. ,q»' (423)

mation correctly describes the diffusion of the transverse
component of the momentum and predicts a finite shear
viscosity.

Now, return to the more complex structure in
Eq. (4.20) and take v and q to be parallel to the x
direction. The master equation reads

—sit&= Tl&).

If we take matrix elements of the master equation by
multiplying on the left by (n, ql, (~,ql, and (g„ql, we
obtain the following set of equations for small q:

Bn /Bn—s —bn —
I

—bp = q'[7—
bp X,bp—]

an « &88 „
iq p—bv, . (4.27a)

8n (8e)—s ——8n+I —
I

hp = —q'[ —x,„5n+x„88)
88 „(8PJ„

iq p'b—v (4.27b. )

Finally, in three dimensions, the time derivative of the
momentum density is

2 (1+« .)&)

&4 24)
—s — bv= iq/phd+ —p'bp)

3 2
«=3A/(1+((~. )&),

while

In three dimensions, there is an extra factor of 3 on the
left-hand side of Eq. (4.23). The right-hand side of
Eq. (4.22) has the meaning of V'v times the viscosity g.
Hence the approximate eigenvalue of —T is for three
dimensions

n= —&I/q')&g. ,ql p.

GATI

g.,q& (4»)
Because T~ drives particles in the direction of their

momentum, it makes no contribution to Eq. (4.25).
The contributions from T" and T~ are

1
~A Q P e jc(va vs)

~R r,r'2g r, r~

mA

[1—cosq(y —y') ]
q~ "'4A

For small q in two dimensions this gives

q'[1 +—x4n]8v (4.27c.)

In two dimensions, the factor ~~ on the left-hand side
of Eq. (4.27c) is replaced by unity.

These equations look quite complex, but they have
a simple physical interpretation. The left-hand sides
are the time derivatives of the number density, energy
density, and momentum density evaluated for local
equilibrium. The thermodynamic derivatives are evalu-
ated in the lattice gas. The only difference from the
usual case is that our n is the usual p/kT. The derivative

Bn
=Z, —«L —

&( .)&)L "—&( "»)» (4 2g)
Bp, p "E

describes the infinite compressibility of the usual lattice
gas at the critical point. Also (B~/Bp)„ is proportional
to C„.The terms involving X's are the transport coeK-
cients. For example,

=w"«$(1—0~,.)8(N„N, ))). (4.26a)
l .= —(1/q')&~, ql p"Tl ~,q) (4.29)

The last form of writing holds when r and r' are any
pair of next-nearest neighbors. In writing Eq. (4.26a),
we have taken the lattice constant to be unity.

A roughly similar calculation gives

~'=~'&&k(1+~)k(1+~")&& (426b)

in two dimensions. Here r and r' are any pair of nearest
neighboring sites. Hence the local equilibrium approxi-

is essentially the thermal conductivity. Because the
translation invariance has been lost there is a particle
diffusion coeKcient X „and a thermal diffusion coefFi-
cient P „,as in a two-component gas. The approximation
also includes an Onsager relation ) „,=),„.

The standard longitudinal viscosity which appears
in Eq. (4.27c) is

f pl~= —(1/q')&g*, ql p"Tlg. ,q), (4.30)
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—('qp= (g,ql Tp„l n, q)
= &n, ql &P"I g, q&, (4.318)

-iqp'=-&g, «leap. ale q&

= —(.,ql V'p„l g, q&. (4.31b)

Notice that p appears in two places: The drift current
is proportional to pv and the "pressure gradient" con-
tains pbbs, . These two p's are identical because there is a
kind of "Onsager relation" between the off-diagonal
matrix elements of T. In the usual transport theory
these relations appear as the statement that the particle
current is nv while the pressure obeys (ap/ap)r=n.

We can evaluate p most conveniently by employing
the second of Eqs. (4.31). The only part of T which
contributes to p is the non-Hermitian term T~. We find
when q points in the x direction

)qp= &n, ql -&'P"
I g* «)

zv~

=Z,—Z e "' "'& Ie. (f.,"—&)~..''(g. ) leq)
r,r' $f r,r'

where q points in the x direction. Finally Eq. (4.27c)
contains an analog of the gradient of the pressure as the
hrst square bracket on its right-hand side.

Sound waves arise from Eq. (4.27) because of the
drift currents pav and p'hv in Eqs. (4.27a) and (4.27b)
and because of the "pressure gradient"

(q—((pap+ p'BP5

in Eq. (4.27c). These terms appear as

$2= —ceg 2

and sound velocity squared

(4.35)

p
c2= [p(ap/an), +p'(BP/an), 5, (4.36)

«L.(g.).5»
where fixed s means

pds= p'd6

Direct calculations of matrix elements show that all
quantities in Eqs. (4.27) are finite everywhere save the
thermodynamic derivatives (an/ap)„, (an/ap)e,
(ae/ap)„which may diverge at the critical point. As an
example, a calculation of )„„is given in an appendix.

Without further ado, we may conclude that all
transport coefhcients are 6»te in this local equilibrium
approximation. However, the approximation is not
variational because T is not Hermitian. Hence we really
know nothing about the exact transport coefBcients.

The approximate eigenvalues of s in the local equi-
librium approximation are determined by the condition
that the 3X3 matrix of Eqs. (4.27) have zero deter-
minant. For small q this condition gives: first, a diffusion
mode with

)( ~(p')'+2&nrpp'+&crp'
s= q'. (4.34)

(an/ap) e(pr) '+2(an/BP) ~ p+(ae/BP) ~2

Near the critical point, the term in (an/ap)e dominates
the denominator. Hence according to this model the
thermal diffusivity goes to zero as the inverse
compressibility.

The other modes are sound waves with

Le
—rq (r—r, ) e (q (r' r—r)5—

re ir2

x & I
&, ,"'(g *)*Ieq).

Since 0, , only depends upon the value of g„at r2=r,
only the term with r~= r contributes to the sum. Thus,
for small q,

pL(an/ap) edp (an/BP)) —d135

=p [ (an/ap) —„dp+ (ae/ap) „dp5 (4.37).
Thus c' goes to zero as T~ T,.

The modes are then qualitatively correct, but further
work is necessary to establish whether or not the
transport coefhcients are actually Gnite.

or

2R
(qp= —Z(q (—r' —r)( l~.."'(g).leq&

r, r'

APPENDIX: CALCULATION OF X„„ IN
TWO DIMENSIONS

The expression for ) „ is

278
p= Z (x'—x)& l~.,''(g. )*leq&

r, r
(4.32)

Notice that 6„,~ sends a particle from r to r' in the
direction of g, . Then, inside the sum

(x' —x)= lx' —xl(g,)..
Consequently,

2m~

2 I*'—x
I & I

~.,"'L(g.).5'leq& (4 33)
r, r'

Equation (4.33) indicates that p is positive and finite.

) -=—(1/q') &n, «IP r~ln, q& (A1)

Since the process described by the transition matrix T'
involves no interchange of particles, T' does not con-
tribute to )„„.The contribution to )„„from the T"
term is)( „which is given in Eq. (3.14a) and is obviously
finite. Consequently, we concentrate on the contribution
due to T~

~.'= —(1/q')(n «I&'P" In, q)
1 m

rig' (rr r ~)

q2 QT rr'r, rs

x& I&rr(fr. r' &)B„r nrrleq& (A2).



322 L. P. KADANOFF AN D J. SWIFT

If the equilibrium state has v=0, we can easily average
over the directions of all the momenta. We represent
the result of this averaging by the replacement

A, ,.s ~ —,'(1+o,)-', (1—o, )Z...~/[2d(d —1)], (A3)

Now, the only terms which can possibly contribute to
the sum over ri and r2 are those with ri=x and r' and
also r2 ——r and r'. Otherwise the projection operators
give zero. With this restriction, Eq. (A6) becomes

where d is the dimensionality of the lattice. The factor
2d(d —1) gives the number of different g, 's which can
contribute. The factor 3„,.~ is

4d(d —1)X r,"
2—2 cosq (r—r')—((Z, ,.o)) . (A7)

a, ,, s=b(u„u;)~(1 o,o,—)8, ,;,
when r—r' is parallel to a nearest-neighbor direction
and is zero otherwise. Therefore, the matrix element in
Eq. (A2) is

M, , = ( io„(l...—l)2(1+a,)~(1+a, )6,,, eo„ieq)
X1/[2d(d —1)]. (A4)

For small q this reduces to

P (r—r')'((Z, „, )). (Ag)
4d2(d —1)Q r, r'

Since r—r' must be parallel to a next-nearest-neighbor
axis

Because of the sum over r and r' we can replace M, ,
inside the sum by Q n'((a. .. +..)),

n-l
(A9)

M,„~—',(M, , +M, ,)
= ( I

o.r(lr; 1)Z—„rnoIeq)/[4d(d 1)]—, (AS)

but I, ,, commutes with 6,,, ~. Therefore we can insert
a factor -', (1—I...) just to the right of h, ,.n without
changing the matrix element at all, since this factor is
just a projection operator. When this replacement is
made and M... is reinserted in Eq. (A2), this equation
becomes

where e is any vector which takes you from a particle to
its next-nearest neighbor. More explicitly

X„„n= Q n'
n=l

X ((8(u„u +nre)-,'(1 oror+—„.)8;+~.)r) , (A10. )

1
B— P P e iq (rr——rr)

q' 4d(d —1)X 'r'r "'
X( Io„o(&—1„,)&... 2(&—1,„)o„leq). (A6)

Since 0 requires that there be no holes which lie between
r and r+ne, the sum over n gains exponentially small
contributions from large n. Hence the local equilibrium
approximation transport coeKcient is finite.


