
PH YS ICAL REVIEW VOLUME 265, NUM BER 1 5 JANUARY 1968
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Landau s theory of a Fermi liquid is applied to investigate the size-limited transport coeKcients of a
Fermi liquid contained in a long narrow channel of diameter d small compared with the interquasiparticle
mean free path X. By characterizing the scattering of quasiparticles (QP) from the walls of the channel in a
phenomenological way, expressions are obtained for the coeKcients of spin diffusion, D, and of thermal con-
ductivity, K. These expressions show, not unexpectedly, that D is a constant independent of T, giving a
direct measure of the QP group velocity vo, while E is proportional to T and coincides with the result that
would be obtained if we had considered a noninteracting Fermi gas. Mass flow through the channel, which
for d(&X is not characteristic of viscous flow, is also considered. Under the action of an externally applied
pressure gradient, it is found that mass is discharged at a temperature-independent rate G proportional to
d: in the viscous regime (d»X) G varies as d4. The expression obtained for G is actually the Fermi-gas analog
of the clamcal result originally obtained by Knudsen. The extension of the results to the regime d~X if
is briefly considered. As a consequence of competition between Knudsen flow and Poiseuille flow, a "Knud-
sen minimum" will appear in the temperature dependence of G. Some numerical estimates are made
for liquid He.

1. SYNOPSIS

IZE-VARIATION effects in transport coefricients
occur whenever the mean free path X of the ele-

mentary carriers becomes comparable in magnitude to
the dimensions of the system under study. The theory
of these effects for a classical gas, ' and for the electron
and phonon gases of a crystal, ' has been extensively
developed on the basis of the»~etic theory of gases, or
equivalently on the basis of Boltzmann's transport
equation. Following closely the methods used in these
theories we present in this paper a theory of the size-
variation effects which can be anticipated to occur in
the transport coefficients of the quasiparticle gas of a
Fermi liquid' connned in a long narrow channel of
constant cross section. In practice such effects might be
detected in He' by measuring the transport coefficients
of the liquid in the narrow pores of vycor glass4
(d 100 A), where at suKciently low temperatures
(T~100m K) the quasiparticle mean free path will be
comparable to the mean pore diameter d. Experiments
of this nature are currently in progress. '

The theory to be presented here will deal mainly with
the situation for which X»d (collisionless regime) so
that the quasiparticle (QP) transport processes will be
determined solely by scattering at the walls of the
channel. In this case the collisionless transport equation
of Landau' may be used to solve for the QP distribution
function n~, . The boundary conditions required here
are treated phenomenologically by assuming that a

* Science Research Council Postdoctoral Fellow.'E. Bloch, The Einetic Theory of Gases translated by P. A.
Smith (Methuen and Co. Ltd. , London, 1924).' See J. M. Ziman, Electrons and Phonons (Clarendon Press,
Oxford, England, 1960), Chap. 11.

s L. Landau, Zh. Eksperim i Teor. Fiz. 30, 1058 (1956) fEnglish
transl. :Soviet Phys. —JETP 3, 920 (1957)j;Zh. Eksperim. i Teor.
Fiz. 32, 59 (1957) fEnglish transl. : Soviet Phys. —JFTP 5, 101
(1957)j.

4 D. F. Brewer, Proceedings of the Tenth International Con-
ference on Low Temperature (Moscow, 1966) (to be published).' D, F, Brewer and D, S. Betts (private communication).

165

proportion s of quasiparticles incident on the walls are
scattered specularly while the remainder (1—v) are
scattered difFusely. VVithin this highly simplified scheme
the coefEcients of thermal conductivity E and spin-
djtffusion D for transport along the channel axis are
found to be IC= ',C,voAs and D-= ,'(1+Zo/4)—vojts where
vo denotes the QP group velocity on the Fermi surface,
C, the specihc heat of the QP gas, Zo the Landau inter-
action parameter which enters the Pauli susceptibility,
and A~ a geometrical mean free path, equal to
((1+v)/(1 —v)]d for the case of a perfectly circular
channel cross section. Thus, in the collisionless regime,
D is a constant and gives a direct measure of the QP
group velocity vo. The thermal conductivity, which may
be rewritten as IC= sAsrrmks2nT/po, where po denotes
the Fermi momentum, n the number of fermions per
unit volume and kg Boltzmann's constant, is propor-
tional to T and coincides with the result that would
be obtained if we had considered a noninteracting
Fermi gas.

The theory of mass fIow through the channel, which,
in the collisionless regime, is not characteristic of
viscous Bow, ' is also considered. Under a pressure
gradient —Bp/Br applied along the axis of the channel,
it is found that mass is discharged at a temperature-
independent rate G=

~
(Bp/Br)

~
(vrmd'As/4p, ), where m

is the bare fermion mass. Like the thermal conductivity,
this result is coincident with that of a noninteracting
Fermi gas and is the Fermi gas analog of the result
originally obtained by Knudsen' for a highly rareded
classical gas. It predicts 6 to vary as the cube of the
channel diameter d: In the viscous regime (d»X) G
varies as the fourth power of d.

The extension of the above results to the intermediate
regime (X d) is briefly considered. As a consequence
of competition between Knudsen fIow and classical
Poiseuille Aow a "Knudsen minimum" will appear in the

'lI. Kng(lsen, Ann. Phys. 28, 75 (1909), See also, Ref. 1.
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temperature dependence of G. A numerical calculation
of the temperature dependences expected for the coefB-
cients of thermal conductivity and spin diffusion of
liquid He, contained in a cylinder of diameter 100 A,
is given.

Vptp V,np V 6p
' Vpnp 0

& (2.1)

where ep, denotes the energy of a quasiparticle of
momentum p and spin 0. For small deviations from
equilibrium, close to absolute zero, the QP energy
depends upon space r through its dependence on the
QP distribution function'.

2. THERMAL CONDUCTION AND SPIN
DIFFUSION IN THE COLLISIONLESS

REGIME

In the collisionless regime the steady state QP dis-
tribution function n„(r) satisfies the Landau-Boltz-
mann transport equation' 7

respect to 8np, . This procedure gives

Bn p (»p.') V
vp~' V'„ibnp~

8»p
' (2v.)'

XQ d p f(yo;y o'' )bnpi p = vpp' Vrn p(»pp)

or, in view of (2.4),

vp~ ' V rgp~= —vp~ ' Vrn p (»p~ ) | (2.5)

where v„=V'p»p, o, which, for iyi close to the Fermi
momentum po, may be written in terms of the QP
effective mass pn* viz. vp, =y/pno=vo. The right hand
side of (2.5) is to be understood to be linear in the
spacial inhomogeneities. Then by (2.3) Eq. (2.5)
becomes

Bn p (»p.') (»p.'—p)v„V',gp, = 7',p+ — V'„T vp, (2.6)

V
»p =»p o+ Q d»P'f(yo; y'o'')bnp

(2pr)' ~'

(V= volume of system), (2.2)

where»„' is the equilibrium QP energy at T=O,
bnp =np, np(»—p,o) and f(yo; y' )ois Landau's char-
acteristic function for the Fermi liquid. np(») is used
to denote the equilibrium Fermi function

np(»)= I/e~' "~i"or+1, (2.3)

Bnp(»p, ') V
Bnp, =gp +

8»p, ' (2pr)'

a'
(Pp'f(yo; y'o') bn, . (2.4)

Following Abrikosov and Khalatnikov' the transport
equation for gp, may be obtained from (2.1) by entering
(2.1) with np, =np(»p, )+bnp, and linearizing with

where p denotes the chemical potential. In the following
discussion both T and p will be regarded as being
slowly varying functions of space so that the quantity
V,np(»p, ') will involve a measure of small spacial
inhomogeneities V,T and V,p. The actual local equilib-
rium distribution function for the quasiparticles is
n p(»„).It is accordingly the deviation, gp„ofn„from
this distribution that has to enter the appropriate
expressions for the mean QP Huxes in the nonequilib-
rium situation. Because of the dependence of ~p, on
n„asspecified by (2.2), gp, and bnp are in general not
the same but are related by

=Ap~' Vp~ ) (2.7)

gp, (re, v;) 0) = pgp, (re, v;(0), (2.8)

where v; denotes the normal component of the QP group
velocity and p' is related to p by simple elastic refiection
of the QP group velocity in the surface. For a critical
derivation of Eq. (2.8) the reader is referred to the
treatise of Ziman. '

Ke first consider the case v= 0 in which the scattering
at the walls is completely diffuse. In this case Eqs. (2.7)
and (2.8) have the simple solution.

where the right-hand side may now be regarded as being
independent of space. Equation (2.6) is of the same form
of the transport equation that has to be solved in the
analogous boundary-scattering problem for electrons
in a metal. '

In order to solve Eq. (2.6) it will be necessary to
specify the boundary conditions which describe the
effects of the walls of the channel in which the Fermi
liquid is assumed to be enclosed. Following the methods
developed in Ref. 2 we employ a simple phenomeno-
logical description in which a proportion p of quasi-
particles incident on the walls are assumed to be
scattered specularly according to the laws of elastic
reffection whilst the remainder (1—p) are assumed to be
scattered diffusely, that is, the quasiparticles are con-
sidered to be absorbed by the walls and re-emitted at an
equilibrium rate appropriate to the temperature of the
walls. It will be essential for the subsequent discussion
of spin diffusion to make the additional assumption that
the scattering at the walls occurs without change of spin.
Measuring the normal to the surface at a point r~ on
the v alls into the channel, the appropriate boundary
condition may be written as

' A. A. Abrikosov and I. M. Khalatnikov, Rept. Progr. Phys. 22,
329 (i9S9). „(r)=A„ir—red v„/iv,

i (2.9)
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which, physically, describes the path of a quasiparticle
subsequent to leaving the surface at the point r& in the
direction r—r~. All such paths will figure in the calcula-
tion of the mean QP fluxes. Thus, for example, the total
mean QP flux, of specified spin orientation 0, along the
axis of the channel, is given by

1
1 ——

S

d'p df4
d.S.v„g„(r—r~), (2.10)

where j'dS denotes an integration over the cross-
section S of the channel and dQ~ an element of solid
angle giving the direction of (r—rz). Similarly, the
linear heat flux along the channel is

1
JH

~ S

d3p

(2s)'
dS '

vp&

&&( '—l)g,.(r—r ). (2.11)

For a magnetization gradient, maintained at constant
temperature along the axis of the channel, we have

Ap ——
Bn p(ey. ')

Vpp
86pg

Bnp(e, .') Bp
V',n. ,

Bfpy 8Ssr
(2.12)

with the spin-diffusion coefFicient D given by

D= —',Agr(1+Zo/4) vo, (2.14)

where As is an effective QP mean free path given by

3 dQg
AB [ dS

~

cos'8
~

r—rs ~, (2.15)
S 4n-

where 8 is the angle between the direction of r—r~ and
the axis of the channel. For a perfectly cylindrical
channel of diameter d Eq. (2.15) may be evaluated
to give Ag ——d.' The thermal flux JH which results from
a temperature gradient, maintained at constant pressure

D. Hone, Phys. Rev. 121, 669 (1961).' H. B. G. Casimir, Physica, 5, 495 (1938).

where n denotes the concentration of fermions of
specified spin a.. If the spin dependence of the Fermi
liquid function f is assumed to be of exchange origin we

may use the relation

ay/ae. = (2s'/typo)-', (1+Zo) (2.13)

due to Hone, ' where Zo is the zeroth coeKcient in the
Legendre expansion of the exchange part of f and enters
the Fermi liquid theory expression for the Pauli spin
susceptibility. Using (2.12) and (2.13) in (2.9) the
integration over momenta in (2.10) may be performed
to yield the diffusion law

along the axis of the channel, may be calculated by
setting Ap, equal to the term linear in V,T on the right-
hand side of Eq. (2.6).'~ An integration over p in (2.11)
then gives

with the coefBcient of thermal conductivity E equal to

K= ',~'A g-eTka'/po, (2.16)

where n denotes the number of fermions per unit volume
and k~ Boltzmann's constant. Since the specific heat
C, of the QP gas is C,=s'eke'T/ta*eo' Eq. (2.16) may
be written as

E=—',AggvoC. . (2.17)

The generalization of the above results to the case for
which v'/0 involves a consideration of the various
orders of multiple reflections from the walls made by
the proportion s of quasiparticles that are specularly
scattered. The net result is simply that in the expres-
sions (2.14) and (2.16) previously obtained for D and K
respectively, the mean free path A& is to be replaced by
L(1+v)/(1 —v))Agg. This result may be derived by
following precisely the same treatment of the general
boundary condition PEq. (2.8)g as given in Ref. 2 and
need not be reproduced here.

The coefficients of spin-diffusion Do and thermal
conductivity K0 of the infinite Fermi liquid (d»X) may
be written in the form"

Dp= shnvo(1+Zo/4); K0= sC,Xxvo, (2.18)

where Xn and Xx denote inter-QP mean free paths for
spin diffusion and thermal conduction, respectively.
Then, according to Eqs. (2.14) and (2.17), and the re-
marks made in the preceding paragraph, the spin diffu-
sion and thermal conductivity in the collisionless regime
(d«X) are obtainable from Eq. (2.18) by substituting
the geometrical mean free path L(1+v)/(1 —v)]A~ in
place of )~ and X~. Thus, in the collisionless regime D
is a constant and gives a direct measure of the QP
group velocity vo. The thermal conductivity K is pro-
portional to T and, s,s may be seen from Eq. (2.16),
coincides with the result that would be obtained if we
had considered a noninteracting Fermi gas with the
same value of n. Since the same mean free path appears
in D and K the ratio K/DT is a constant, independent
of p and the geometrical cross section of the channel,
given by

7l n Ogpu
K/DT =

9 4(1+Zo)

where we have used the relation pa= (3s'I)'".
' In the presence of a temperature gradient we should also

include in Ap the term linear in V,p, .The neglect of this term, how-
ever, introduces a relative error of order (kgT/p)', as can be
checked by invoking the constraint on the thermal conductivity
that there should be no net QP current.

'~ J. C. Wheatley in Qucetum Fllids, edited by D. I'. Brev er
(North-Holland Publishing Co., Amsterdam, 1966).
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1 Bnp(cp.') BP
VPl'

86p Br

=Ap. - Vp. ,

(3.1)

(3.2)

~here we have made use of the thermodynamic identity
(Bp/Bp)r=e This h.as a solution of the form (2.9) for
the case of completely diBuse scattering, v=0. In this
case the rate at which mass is transferred through the
channel is given by

d'p
G=mg

(2w)'
ds v„g„(r—r~), (3.3)

4n.

where m denotes the mass of a bare fermion. This
expression has been written down on the basis that the
mass flux in the Fermi liquid is given by m times the
QP number fiux, i.e. we are invoking here the one to one
correspondence between quasiparticles and bare fer-
mions. Substituting in (3.3) the expression for g~,
which results from (2.9), (3.1) and (3.2) and performing
the integration over y we obtain

(3.4)

where h.s is defined by Eq. (2.15). As with D and E in
Sec. 2, the result LEq. (3.4)j for G is generalized to the
case v/0 by simply substituting P(1+v)/(1 —v) jA& in
place of Ag.

For a perfectly cylindrical channel of diameter d we

3. KNUDSEN FLOW

In the collisionless regime mass flow through the
channel will not be characteristic of ordinary viscous
flow as the rarity of inter-QP collisions prevents the
establishment of an organized hydrodynamic flow of the
Poiseuille type. Resistance to flow is, instead, completely
determined by the scattering of quasiparticles by the
walls of the channel. Thus, in order to maintain a
constant net drift velocity along the axis of the channel
it will be necessary to apply an appropriate external
pressure gradient to compensate the rate of QP mo-

mentum loss to the walls that may be caused by any
finite degree of diffuse scattering. This is the phenome-
non of Knudsen flow, originally investigated by
Knudsen' for a highly rarefied classical gas.

A theory of this effect in a Fermi liquid can be given
on the same lines as the theory of the previous section
in which the nonequilibrium QP distribution function

g„(r)is determined by Eq. (2.6) and (2.8). For an
externally applied pressure gradient, Bp/Br, maintained
along the axis of the channel at constant temperature,
(2.6) takes the form

BÃp(Epg }(Bp BP

Bt (Bp T Br

have Agg
——d' so that

s.d'm 1+v BpG=—
I

4po 1—v I Bf
(3 5)

Thus in the collisionless, or Knudsen regime, mass is
discharged from a cylindrical channel at a temperature-
independent rate proportional to the cube of the channel
diameter; in the viscous, or collision-dominated regime,
where Poiseuille's formula will hold for G, ' G varies as
the fourth po~er of d. Like the corresponding result for
the thermal conductivity, LEq. (2.16)), the above
result LEq. (3.5)j for G is coincident with that of a non-
interacting Fermi gas and is actually the Fermi gas
analog of the result originally obtained by Knudsen' for
a rarefied classical gas."

&» '=&a '+~» ' (4.1)

(4.2)

where A~ is the geometrical mean free path encountered
previously for boundary scattering. Equations (4.1) and
(4.2) clearly correspond to treating inter-QP scattering
and boundary scattering as independent scattering
mechanisms. Thus, in the intermediate regime (d X),
the thermal conductivity E and spin diffusion D are
approximately

E=KsKp/(Ks+Kp) (4.3)

D=DJ3DO/(D~+Do) ) (4.4)

where D& and Ks are given by (2.14) and (2.16)
respectively.

We have used (4.3) and (4.4) to perform an illustra-
tive calculation for liquid He', supposed contained in a

~ Knudsen's result, (Ref. 6), which was derived on the assump-
tion of completely diffuse scattering, is given precisely by Eq. (3.5)
with v=O and p0/m set equal to the r.m.s. molecular velocity ~.

"Reference 7, Sec. 10.
'4 See, for example, R. B. Dingle, Proc. Roy. Soc. A, 201, 545,

(j.950).

4. INTERMEDIATE REGIME AND
APPLICATION TO LIQUID He'

A phenomenological description of the eBects of
inter-QP collisions can be included in the transport
equation (2.1) by adding to the right hand side of
Eq. (2.1) a suitable relaxation time term. " When
boundary effects are negligible the solution of this
transport equation leads to expressions (2.18) for Do
and E0. In the int'ermediate regime where the inter-QP
mean free paths X~ and ) ~ are comparable in magnitude
to the channel diameter d, the methods used in the
previous sections can be easily extended to give solutions
for E and D that are of the same form as (2.18) but
with mean free paths A~ and A~ which, although in
detail are rather complicated functions of v and d/X»
and v and d/Xn, respectively, 2 can be well approxi-
mated by'4
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FIG. 1. E and D for liquid He in a cylindrical channel of
diameter 100A, calculated from Eq. {4.3) and (4.4) on the assump-
tion of completely diffuse scattering. The thermal conductivity
and spin diBusion, E0 and Do, of the inhnite liquid are shown for
comparison.

cylinder of radius 100 A. Using the He' Fermi liquid
parameters tabulated by Wheatley" and assuming
perfectly diffuse scattering, so that As= d= 100 A, Eqs.
(2.14) and (2.16) yield D&=6.1X10 ' cm' sec ' and
Ks/T=1. 29X10' erg cm ' sec ' 'K. ' for He' under
low pressure. We take the low-pressure data of Ander-
son, Connolly, Vilches and Wheatley" for Eo and the
low-pressure data of Anderson, Reese, Sarwinski and
Wheatley" for D0. The resulting computations of Eqs.
(4.3) and (4.4) for E and D are shown in Fig. 1 as a
function of temperature. "The experimental data on Eo
and Do is also shown for comparison. '7 The latter curves
can also be considered to represent the case of com-

' A. C. Anderson, J. I. Connolly, 0. E. Vilches, and J. C.
Wheatley, Phys. Rev. 147, 86 (1966); J. I. Connolly, thesis,
University of Illinois, 1965 (unpublished)."A. C. Anderson, %. Reese, R. J. Sarwinski, and J. C.
Wheatley, Phys. Rev. Letters 7, 220 (1961).

"The datas on D0 and E0 used here {Refs. 16, 15) were
found to be well represented by the formulas 1/DQT' =ag)u D (T/8D),
1/K0T =aI,my(T/8~) /where the functions m; {t) are defIned
explicitly in M. J. Rice, Phys. Rev. 159, 153 {1967)j, with
a~=0.75X106 sec cm ' 'K~, 8~=0.56'K, a~=2.5X10 cm sec
erg ' and |t~=1.04'K. For convenience only, these formulas were
used in computing Eqs. (4.3) and (4.4) and for representing E0
and Do in Fig. 1.

pletely specular scattering, v= |,in which the boundary
has zero net eEect on E and D. For intermediate values
of v, the curves for E and D will lie between those shown
in Fig. 1 for E and Eo and D and Do. The question as to
how representative this calculation is for measurements
of E and D on liquid He' in vycor glass is the subject
of a present investigation. '

We now consider briefly the temperature dependence
expected for G in the intermediate regime. As inter-QP
collisions become relatively more frequent, organized
hydrodynamic flow of the Poiseuille type will compete
with the "collisionless" Knudsen flow discussed in Sec.
3. The competition between these two distinct types of
flow will be reflected in the appearance of a "Knudsen-
minimum" in the temperature dependence of G. This
conclusion is based on the following qualitative argu-
ment. In the Fermi liquid region the mean free path X

decreases with increasing T(X T ', T ~ 0).' As T
is increased slightly from absolute zero, the immediate
effects of inter-QP collisions are, in view of results like
Eqs. (4.1) and (4.2), to reduce the magnitude of the
effective mean free path in Eq. (3.4) for G by a factor
of order (1+As/X) so that G begins to decrease with
increasing temperature. G continues to decrease with
increasing temperature over a temperature range for
which As/X is small by comparison to unity. In the
temperature range for which A&As however, inter-QP
collisions are sufficiently frequent to produce partially
organized hydrodynamic flow, in which case our treat-
ment of the transport equation in Sec. 3, which essen-
tially assumes a spacially-independent mean drift
velocity, breaks down. As T is increased further, so that
X«A& the hydrodynamic, or viscous, flow predominates
and, by Poiseuille's formula, ' G becomes inversely pro-
portional to the viscosity coefficient g i.e., inversely
proportional to X. Thus G now increases with increasing
T. G therefore has passed through a minimum G(TO) in
the transition region X Az. For liquid He' in vycor
glass, where d~100 A, To 100 m'K if perfectly diffuse
scattering is assumed.
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