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Starting from the partition function for ideal fermions in a thin film with box boundary conditions, the
inRuence of size effects on the speci6c heat is examined both numerically and analytically. For fairly thin
6lms the speci6c heat is depressed at low temperatures and raised at high temperatures. In the very thin
case, the behavior is that of a two-dimensional gas at low temperatures and that of a three-dimensional
Boltzmann gas at high temperatures. The relevance to He thin-film experiments is brieRy discussed.

1. INTRODUCTION

ECAUSE of the widespread applicability of the
ideal Fermi gas, or liquid, as a model in physics,

it is of interest to investigate the e6ect of finite geome-

try on the properties of such systems.
Although thin films of conducting materials may well

be amenable to experiment, the investigation was pri-
marily motivated by recent work on liquid helium, "
for which reason the specific heat was chosen as the
quantity for detailed investigation. We note that the
corresponding case of ideal bosons has recently been
studied numerically. 4

2. THEORY

A. The Model

We take as our model a system of ideal fermions of
mass m and spin S confined within a boxlike potential
well of dimensions L)&LXD and volume V.

Since L is allowed to approach infinity it is valid to
use the grand canonical ensemble thus obtaining the
partition function Z given by

1nZ=Q In(1+se e" ').

The k, integral may be done using the function f,(s)
defined in the Appendix, thus yielding

(25+1)m V
lnZ=— Q fs(se es&ks&—12m)

2+PA'D

To determine the thermodynamic functions of interest
for the specific heat, namely, the number of particles
E and the internal energy U, we use the standard
relations

U= —8 1nZ/BP, S=sB 1nZ/Bs. (6)

2; is to be eliminated by the requirement that lV be a con-
stant given by

E=npV,

where np is the number density.
For convenience we define the specific heat to be

dim ensionless:
cr ——(1/1V)BU/8(kT) .

B. Calculations

To clarify the mathematics it is convenient to intro-
duce the new temperature variable 8 defined by

|t= 2~D'kT/~'~'. (9)
We take the energy to be

e„,,= (k'/2') (k,'+ k3'), (2)

where kj is any wave vector perpendicular to the normal
to the film and k3 is given by

This gives, using Eqs. (3) and (5),

(25+1)s.V
lnZ= — e Q f2(se ""')

4D'
(10)

k3 ns./D, n=——1, 2, 3, ~ ~ (3) or

The partition function is now

(25+1)V
lnZ= d'k,

(2s-) 'D ~a

gh~
&&in 1+s exp — (kP+k3s)

2m
~ (4)

For a collection of papers on Fermi liquid theory, see D. Pines,
The Many-Body Problem {W.A. Benjamin, Inc. , New York, 1962).' D. F. Brewer, in Superguid Helium, edited by J. F. Allen,
{Academic Press Inc. , New York, 1966), p. 159.' D. F. Brewer, A. J. Symonds, and A. L. Thomson, in Proceed-

ings of the Ninth International Conference on I.ow Temperature
Physics, edited by J. G. Daunt et al. {Plenum Press, Inc. , New
York, 1965},p. 370.

4 D. F. Goble and L. K. H. Trainer, Phys. Rev. 157, 167 {1967).
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lnZ= E(25+1)s'V/4Daj inner, (11)
where we have defined the new partition function 3 by

in&= 0 Q f2(ze "'»'). —
n~l

(12)

(14)

%e also define parameters corresponding to U and E
by

'tt = 8'8 in&/88, K = sB in&/Bs. (13)

From (6) and (7) it is easily seen that the physical value
of X, which will later be seen to play the role of the
principal size-eGect parameter, is given by

m=
t 4/(25+ 1)~)n~:.
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Thus X is roughly the number of particles in a box of

side D. Equation (8) remains essentially unchanged;

c = (1/K)8U/88. (15)

After the differentiations in Eq. (13) have been per-

formed we get

e= g [n'8 ln(1+se "' ')+8'fg(se ""')j (16)
n 1

Z.=8 P ln(l+ee "'").
n~1

(17) 2/5

The foregoing functions were calculated numerically

on an electronic computer for various values of X and

8. s was eliminated numerically and c~ was calculated

by numerical differentiation of 'll, . Analytical results

may also be obtained, as will be presented in Sec. 4.

3. NUMERICAL STUDY

A. Results for X»1
It will be shown in Sec. 4 that in this case the size

effects are small and c& may be represented by the ap-
proximate formula, valid for X '"(0.3,

cv(8, %)~cv~'i(8/VL'~~)+4 (8/X i )/Xe" (18)

where cv'0'(p) is the bulk result. 4 (P) is graphed in Fig.
1. To appreciate the order of magnitude of the effect,
exact results for X '"=0, 0.5, and 1 are graphed in Fig.
2. Note that 8/K"~ is independent of D

B. Results for X(&1

It is shown in Sec. 4 that in this case

cv(8,X) cv2(8/K) for 8«1, (19)

where cv2(g) is the two-dimensional

specific

heat. In the
nondegenerate region 8»K it is shown that
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1''IG. 2. Specific-heat curves for thick and thin films.

4. ANALYTICAL STUDY

A. Zero Temperature

For s& 1 we may write

Using this substitution and the following result

f,(x) =-,'(lnx)'+-,'"—f,(1/x),

(21)

(22)

~=-' ~ ("-")+-'8'-'["j+Z h (.), (23)

In Fig. 3 v e show the curves for the cases X=0.1 and
X=0.01.

Note the two plateau regions corresponding to two-
and three-dimensional Bol tzmann gases. The physical
explanation of this is that if we construct wave packets
from the plane wave functions, the case 0& 1 corre-
sponds to wave packets of greater width than the film
which therefore constrains the particles to move only
in the two transverse directions. For 0& 1 the thermal
de Broglie wavelength is smaller than D and the particles
behave as if in an infinite three-dimensional box.

c (8,Xv) eve(8), (2O)

where cve(8) is the specific heat of particles obeying
Boltzmann statistics.

X= Q (v' —n')+Q hg(n),

where [vj is the largest integer ~& v and

hi(n) =8n' in[1+exp( —
~

v' —n'~/8))
+8' sgn(n —v) f2[exp( —

~

v' —n'~/8) j, (24)

h~(n) = 8 in[1+exp( —
j
v' —n'~ /8) j. (25)

These are actually the expressions on which the numeri-
cal calculations for low temperatures were performed.
We here note simply that h1 and h& vanish in the limit
8~ 0. Thus

ble=,' g (.4 n4) for—8=O,

FIG. 1. The deviation function C (p) for fairly thin films.

l~l

X= Q (v' n') for —8=0. (27)
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The sum in (27) is well known;

~="I.]-lL j(%+1)(2%+1)
For X»1 we get the familiar result

) (-'ot) "'
For X(&1 we get

v 1+-,'X.

(28)

(29)

(30)

S. Large K

In this case the region of most interest is 8»1 and
this is the basic approximation we make in this section.

Fr( m the inversion formula for Mellin transforms ~e
have

f( )g( ) d
2X S —sQC+IT

where 1 (s) is the Riemann zeta function, a & 1, and

(31)

g(s) = f2(ze *'")x~)dx (32)

Integration by parts allows us to evaluate g(s) in
terms of f,(z), thus obtaining

1 '"+~ 28'+"I'(2+-,'s)f 2,+(/2)lz( )s
lnb= ds. (33)

s(s+2)—zoo+0'

Because of the zeros of I (s) at s= —2, —4, —6,
the integrand is regular for all finite s save for two simple
poles at s=o and s= i.

Displacing the contour of integration to the left as
shown in Fig. 4 we find

FIG. 4. The contour for the evaluation of the partition function.

8»1 the 8 factor decays rapidly as Res becomes in-
creasingly negative, thus giving rise to low saddle
points. R is always negligible in this case.

For instance, when s 1 we may show

IRI =OLB '" exp( —2~2"8'")j (36)

~~flrll280/2fb/2(z) 182fb(z)

lrl/282/2fb/2(z) 28f1(z) ~

To linearize, write

g —2 (o)+g(i) ~—~(o)+~(i)

where s(" and'h( ' are defined by

(37)

(38)

(39)

glr'"82/'fb/2(z( ') = X, (40)

Assuming R is negligible we may now note that the
leading term is 0(()rB)'") times the second term.

Accordingly, for 8»1, we may linearize with respect
to the second term.

From (13) and (34) we get

In8 )rl/282&2 f0/2(z) -'28f2(z)+R (34) ~(0) —22rll282/2fb (z(0)) (41)

where the remainder R is given by

1 28'+' I'(2+zs) fbyg/2(z) f'(s)
R= -ds.

27ri s(s+2)
(35)

(42)

We note from (40) that z"' is a function of BK "'
alone. Also note that the zeroth order specific heat c&("
defined by

cb-(0) ——(1/K) 8'Il(0)/88

Unfortunately, because of the behavior of the inte-
grand at infinity, R is nonvanishing. However, when

is simply the bulk specific heat and may be seen to be
also a function of 8X '" alone.

The final result is

lc„(Q)
t6l.

C.

b[

I

I.bi.

tzt
ld)

I Oi-

c ~c (o)
2 f291

()rB) l fb/2 8 fl/2

(43)
fofb/2 f llbf1f2/2—

X fl -+-
f1/2 (fl/2) '—

where f, denotes f,(z(0)). This is clearly of the form

c) (B,X) cr")(8/%2/')+41(8/X2/')K '". (44)

In the Boltzmann statistic limit we have

,I.
.OOI

Fio. 3. Specihc-heat curves for very thin films.

Thus
cy 20+1/4(2rB)'/2 fo—r BX "'&5.

C (/t)~1/4(lr(f))'" for y&5.

(45)
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In the linear region we have

Thus
cy='z'D ') 'I'-1/—4Or'I'](8/Ot"')

4 (P) ——'n'P for P& 0.1 .

C. Small X

(47)

(4g)

cynic) sivrQ for f((1
cyg(f)~1 for f&&1.

(52)

(53)

To treat the rest of the 8 domain we observe that in

the 6rst plateau region X«8«1, s' has already become
small and thus for all temperatures 8&)X we may apply
Boltzmann statistics, that is, we may expand to 6rst
order in s in Eq. (12). Thus, for 8»Ot,

in& 8s P e "'I'. (54)

Prom (13) we may show cy(8,Or)~cye(8), where

d d
cye(8) = 8 ln(8 Q——e "'I')-

dg dg n-i
%e have

(55)

eye�(8)~1

for 8«1,
eye(8)—2+1/4(s 8) '" for 8»1.

5. DISCUSSION

(57)

In the Secs. 1-4 we have presented a detailed analyti-
cal and numerical study of the speci6c heat of thin
61ms of ideal fermions. We present, in this section, a
physical discussion of the interesting behavior that we
observed along with a discussion of possible experi-
mental verifications of these anomalies.

There are three characteristic lengths of importance
in this study: D, the film thickness; N0 '", the inter-
particle spacing; and the thermal de Broglie wave-
length, X= (2~A'/mXT)'12. This study was undertaken
to see the interplay of the quantum size eftects con-
trolled by these lengths, and with them we can under-
stand the general behavior of the results that we have
obtained as depicted in Figs. 2 and 3.

When X«1, we have the case where the thickness pf
the 61m is much less than the interparticle spacing and
hence the Qlln should behave essentially as a two-

When K«1 it is advantageous to consider 6rst the

region 8«1. In this region we need retain only the 6rst
terms of the summations in Eqs. (16) and (17).

'It~8 ln(1+ z')+ 8'f2(z') (49)

or.=8 ln(1+s'),

where s'=ze '". This gives cy(8,Or)~cy~(8/Or), where

cy2(if) = 2iffg(e "e 1) —e "e/—P(e"e 1) . —(51)

We may shou that

dimensional gas of fermions at very low temperatures.
In other words, one of the translational degrees of
freedom should be frozen out at very low temperatures
since the eigenvalues are proportional to D—'; at very
low temperatures it should be impossible to excite this
mode. This behavior is seen in Fig. 3. We also expect
quantum size effects to become prevalent for D=X
(8=1), that is, when the size of the particle's wave-

packet becomes comparable with the film thickness. We
observed this effect in the speci6c heat reaching its
maximum here with a value greater than the classical
value of 2. This is observed in Fig. 3. Lastly, for this
case, 8=1 and X«1, we have no) '« i. Thus the system
should be identical to a classical Boltzmann gas with

quantum size e6ects. This is just the result discussed in

Secs. 3 and 4 and seen in Fig. 3. We mention in passing
that this general thermal behavior would also occur for
thin films of bosons and was not observed4 because such
small values of X were not studied, the difference being
that at very low temperatures the gas would resemble
a two-dimensional Bose gas.

When X»1, we have the e6ects of both three dimen-

sionality and quantum size eftects simultaneously oc-
curring. For example, for temperatures such that 8= 1,
we still have a degenerate fermion situation as noh'))1,
and thus we expect to see the degenerate three-dimen-
sional fermion results modified by size effects. We see
this in Fig. 2, where the specific-heat maximum anomaly
is present along with a suppression of the specific heat
at low temperatures below that of the bulk three-
dimensional results.

It is interesting to see if any of these anomalies have
experimental implications. The work of Landau has
shown that at low temperatures, systems of interacting
fermions can have ideal-gas behavior with an e6ective
mass m* instead of the free mass m. Thus we might ex-

pect thin films of liquid He to manifest some of this be-
havior. That was our second primary objective in this
study. It is hard to compare with Brewer et al. , be-
cause they present data for 'He in Vycor porous glass
(a narrow channel rather than thin-film geometry) and
only for one thickness of approximately 30 A. Neverthe-
less, a general suppression of the specific heat below the
bulk results was observed. However, as our results in
Fig. 2 indicate, we expect from an ideal-gas model to see
the suppression take place in the very low temperature
linear region and that the specific heat would rise above
the bulk values as the temperature increases out of the
linear region. If we assume this, then the di6erence be-
tween experiment and model is even further increased.
It is hard to estimate what m* might be and we had
hoped that the results presented could be useful in a
phenomenological sense to estimate m*. Therefore, this
might be an indication that further re6nements in the
theory may be in order, for example, to determine per-
haps what the true quasiparticle spectrum (size-de-
pendent) might look like.
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Furthermore, it is interesting to see if the results de-

picted in Fig. 3 could be observed. For the density of
liquid 'He, it would most likely require 61m thicknesses
less than an interparticle spacing. Thus to see these
phenomena, we would need an experimental situation
of a dilute concentration of 'He atoms; it is also quite
possible that this situation would allow for better agree-
ment with these ideal-gas results. We therefore believe
that thin films of liquid 4He and 'He mixtures with a
dilute concentration of 'He would be a most interesting
experimental situation. If the mixture can be treated to
some extent as a mixture of ideal systems of 'He and
'He, then the 'He would behave as a size-modified clas-
sical Boltzmann gas, and there should be a good chance
of seeing the speci6c-heat maximum anomaly as well as
the long Rat two-dimensional behavior after the 'He
contribution is subtracted. It would also be interesting
to study such films to observe the eGect af the 'He im-

purity on the already interesting anomalous behavior of
thin superQuid 4He 6lms. ' It might also be possible to
see these effects in the thermal response of thin 6lms of
charged carriers, such as electrons in metals under suit-
able conditions.

The role of boundary conditions might be questioned,
and we note that no qualitative change in the results is
expected. We have investigated the role of boundary
conditions for convenience in the size-modified classical
Boltzmann region and 6nd no qualitative change.
Finally, in summarizing, we remark that the results of
this study should provide a sensitive test of quantum
size effects in systems which can be treated to a good
approximation as thin 6lms of ideal fermions.
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APPENDIX

The preceding calculations have relied heavily on the
properties of the function f,(z), defined by

f,(z)=. P (—)"+'—for ized(1
n 1

(A1)

and by analytic continuation for
~
z

~
~& 1.

This is a special case of the function studied. ' The
numerical evaluation of the function has been exten-
sively discussed, 6 where tables may be found for the
cases s= ——,', ——,', —,', ~, —,'. In the numerical calculation
of ev, f2(z) was calculated by using Eq. (22) to restrict
z to the range 0&z&1 and Euler's transformation was
used to hasten convergence.

We shall now give a compendium of the properties
used in the calculations.

For Res&0 we have the integral representation

(A2)

By using a contour integral representation similar to
that used for the Riemann zeta function' we may show

f,(z) to be regular in the s plane except for the point at
in6nity.

For z) 1 the behavior of f,(z) for negative Res may
be studied via Lerch's transformation

f,(z) =i(2z)~'F(1 —s) fe'~'I f'Ll —s, z (lnz—)/2zi j
e'~"—1[1 s, z—+(1 n)z/2 izJ) . (A3)

Equation (22) may be deduced from (A3) but may
more easily be veri6ed by diBerentiation using the use-
ful result

(A4)

Finally, we give the first two terms of the asymptotic
expansion for large s;

(lnz) ' (lnz) s-

f,(z) —+-,'ir' for
~
z ~&&1. (AS)

1'(s+1) I'(s—1)
~ Higher Transcendental Factions, edited by A. Erdelyi (Mc-

Graw-Hill Book Co., Inc. , New York, 1953), Vol. 1, p. 27.
6 J. McDougall and E. Stoner, Trans. Roy. Soc. (London)

A237, 61 (1938).
'E. T. Whittaker and G. N. Watson, A Coarse in Modern

Analysis (Cambridge University Press, New York, 1965), p. 266.


