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Using the Bethe-Born approximation for excitation and deexcitation cross sections with semiempirical
effective Gaunt factors as proposed by Van Regemorter and Seaton, and extrapolating to below threshold
energies, an “optical’’ cross section is obtained which agrees on the average to within a factor of 1.5 with
measured Stark widths for ratios of initial electron energies to threshold energies from about 0.5 to 50.
At low values of this ratio, inelastic collisions causing allowed dipole transitions are almost negligible, indi-
cating that most of the broadening is then due to elastic collisions and, probably to a lesser extent, also to
superelastic collisions and inelastic collisions involving higher multipole interactions. Comparison of this
semiempirical cross section with quasiclassical estimates shows that the dependence on two parameters
(namely, the Coulomb parameter and the relative size of the dipole matrix elements) not accounted for in the
semiempirical effective Gaunt factors is generally weak in line-broadening applications. Line shifts are
estimated from the widths using a dispersion relation, and from an expression valid for large perturber
energies. Over the whole energy range considered, the ratio of the shift d of the maximum to the (half) half
width w is found to vary between about 0.7 and 1.4 for lines where there is no cancellation between contri-
butions to the shift from various levels. For other lines this ratio is smaller, in reasonable agreement with
experiments. The measurements are also consistent (though not conclusively) with the existence of an ad-
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ditional blue shift (plasma polarization shift) corresponding typically to A(d/w)=~0.15.

1. INTRODUCTION

ITH the impact approximation, i.e., assuming

that various perturbers interact separately with

the perturbed atom or ion and that only the net changes

in the perturbed system are significant, Baranger!

derived the following formula for the width (angular

frequency separation of half intensity points from peak

of Lorentz profile) of an isolated line (whose width is

much smaller than separations between relevant un-
perturbed energy levels),
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Here &V is the perturber (free electron) density and v the
electron velocity, over which Eq. (1) must be averaged.
The ¢i; and o4, are the inelastic cross sections for
collisional transitions to levels 4/, f’ from initial (i) and
final (f) levels, respectively, of the optical transition,
and the f;, f; are elastic scattering amplitudes for the
two states of the perturbed system. The integral is over
scattering angles, dQ being the element of solid angle.

Because all of the cross sections and scattering
amplitudes required to implement the above general
expression for the impact width of isolated lines are next
to impossible to obtain from ab initio calculations or
direct measurements, further approximations are neces-
sary in practical calculations. A very successful approx-
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imation is often provided by the classical path assump-
tion for the perturbing electrons, as was first demon-
strated in the case of neutral helium lines.? Similar
calculations® were found to be almost equally reliable
(~=209%) in many other neutral atom spectra,*s in
spite of the somewhat larger uncertainties in atomic
wave functions. However, for ion lines, all but one® of
nine experiments™ yielded widths that were larger
than the (straight) classical path results® by factors of
2 to 10. Most of this disagreement can be removed!® by
using hyperbolic trajectories and assuming that for
so-called strong collisions certain additional terms
appear which are absent in the case of weakly inter-
acting systems.!® Whether or not perturbed ions and
perturbing electrons can be assumed to be weakly
interacting on the average depends on the representa-
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tion.!'” In the completely quantum-mechanical descrip-
tion, it suffices that the spread in photon energies, i.e.,
the linewidth w, be much smaller than 27. However, for
the usual classical-path approximation to be valid, also
the relevant energy-level separations must be much less
than £T. The latter is not the case for many isolated ion
lines, in contrast to typical neutral-atom lines, a fact
which makes classical-path calculations somewhat
questionable even when Seaton’s symmetrization!® with
respect to initial and final electron velocities is em-
ployed to account for some quantum-mechanical effects.

The reason!® that the classical-path approximation
works so well for neutral-atom lines is that most of the
broadening is then due to rather high ! partial waves
(12 10) so that summations over ! can be replaced by
integrals and the WKB approximation can be employed
to obtain the complex phase shifts. This results in the
classical-path approximation which is, as mentioned
above, only valid when in addition the energy exchange
is relatively small. That the latter is the case follows for
neutrals from an adiabaticity argument!? which sets an
upper limit for the relative change in electron energy of
about 2/I. For (singly-charged) ions, on the other hand,
! values are smaller (~35), and, moreover, the adia-
baticity argument is invalidated by the acceleration in
the Coulomb field, which leads to the large (if not
maximum) cross sections just above threshold.? In
spite of the much improved agreement between modified
classical-path calculations!® and experiments™* quan-
tum mechanical calculations, based more directly on
Baranger’s general formula! [Eq. (1)], would be clearly
more convincing, especially because the additional
terms introduced in Ref. 15 are difficult to evaluate
quantitatively. (Arguments'® that they should be
negligible also in the classical path approximation can

17 To make the usual classical-path approximation it is necessary
to construct wave-packet states having small spatial spreads and
to assume that the perturber trajectories are essentially fixed
regardless of the interactions. In this case the perturber density
matrix remains indeed diagonal, as in the fully quantum mechan-
ical treatment. However, for those ion lines for which deviations
between measurements and straight classical path calculations are
large, typical level splittings are of the order of thermal electron
energies. The “back reaction” on the perturber therefore is then
large, and the perturber density matrix cannot be assumed
diagonal in the wave-packet representation required for an ex-
tended classical-path approximation, even though it could still be
diagonal in a less compact wave-packet representation sufficient
for a fully quantum-mechanical theory. Since the arguments
presented in Ref. 16, that the additional terms introduced in Ref.
15 (which involve off-diagonal S-matrix elements) are negligible,
were based on a diagonal perturber density matrix also in the
classical-path limit, they must therefore be considered invalid for
the lines showing large deviations between measurements and
straight classical-path calculations. These arguments are valid, on
the other hand, for situations where relevant level splittings are
small compared with thermal energies and where therefore Cou-
lomb effects are small, such that the straight classical-path
approximation employed in Ref. 3 yields reliable results.

18 M. J. Seaton, Proc. Phys. Soc. 79, 1105 (1962).
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be refuted on the basis of rather general consider-
ations.l?)

2. SEMIEMPIRICAL AND QUASICLASSICAL
INELASTIC CROSS SECTIONS

At high perturber energies, most of the contribution
to the width comes from the inelastic terms in Eq. (1).
The need, therefore, first arises for inelastic cross sec-
tions for electrons interacting with the various excited
states of the ion. A suitable first approximation to these
cross sections is provided by the Born approximation
and by replacing the actual interaction by the dipole-
monopole interaction. In this limit Bethe? obtained,
e.g.,

1r2 H . .
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where Ly is the hydrogen ionization energy, I the
initial energy of the colliding electron, r the bound
electron position operator, and g the Gaunt factor,
which depends on initial and final electron energies. For
electron energies much larger than the threshold energy
Ey—E=AE; the Bethe-Born approximation is un-
doubtedly the proper limit for allowed dipole transi-
tions. Furthermore, since large / partial waves domi-
nate then, the Gaunt factor is in the validity range
of Eq. (2) obtained here essentially from classical
considerations.

Following Seaton!® we write
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where P;; is the probability that the transition occurs
for a collision at impact parameter p, and ¥ is the
classical path perturbation Hamiltonian in the inter-
action representation. For an electron whose radius
vector is r(f) and assuming for the time being |AE;|
<Kw/p (i.e., V=V, V being the perturbation Hamilton-
ian in the Schrédinger picture), the transition prob-
ability is therefore approximately

2
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=3 (mu/zh)? sin’a/2| (' |1|4)]2, (4)

when it is recognized® that —zer(f)|r(f)|~* is the
Coulomb force between an ion of charge z and the
electron, and when the scattering angle « is introduced

l +
Pri~ (1/1) (7]
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2 H. A. Bethe, Ann. Physik 5, 325 (1930).
2 H. R. Griem and K. Y. Shen, Phys. Rev. 122, 1490 (1961).
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and an average over angles is performed. With the
classical relation between scattering angle a, velocity
v, and impact parameter p for a Coulomb field,

262 zEnay
p=—cotja=
mv?

cot}a, (5)
Egs. (3) and (4) finally result in
87 Ex sin(3¢max)
w;z———l(i’lﬂi)lzln[—.—}———-:l ©
3 E

sin(3amin)

Qmax aNd @min being the limits of the a integral.
Comparison of Egs. (2) and (6) yields for the quasi-
classical effective Gaunt factor

V3 sin(30omax)
g~— ln— )
7w  sin(3amin)

The cutoff parameters dmax and amin must be determined
by examination of the various approximations. The
lower limit corresponds to large impact parameters at
which the approximation V=V fails. If during the
collision the ratio of the perihelion velocity @' and
distance p’ does not exceed |AEi;|/#, no transition
would be possible, i.e., a maximum impact parameter

is estimated by
¢ v’ 2 "\?
Tl \e.

’
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where use was made of angular momentum conservation
in the Coulomb field (v'p’=%p). Invoking also con-
servation of energy for the unperturbed classical path
(3mv?=Lm*+32¢%/pmax) and Eq. (5), these considera-
tions result in

1ze? |AEys| 2¢? |AE ;|
sinfamin=~— — - . :]
2 E m E
=e¢(l—2e+:-4)= . 9
F(e)

In principle, sinjamax could be as large as 1. However,
usually the perturbation theory used in estimating the
probability P, fails already at smaller values of
sinamx With the somewhat arbitrary requirement
2 PyiS% and the estimate Z|(¢ [r]i)|2=~Sntas/
(z+1)? in Eq. (4), summed over ¢/, the condition on
sinamax is therefore

ke
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In case of excitation (which is usually more important
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than deexcitation), the Coulomb parameter

352 EH 1/2
e ) (ay
2] E
is certainly smaller than its value at threshold,
Eg|'?
Nmax = 3| ) (12)
AE

which is about 10 or less for typical isolated ion lines.
For excited states (n©>1), therefore, only the second
option in Eq. (10) is relevant here, and the quasi-
classical effective Gaunt factor allowing for weak
collisions (e<amax) becomes, accordingly, dropping

indices,
V3 [ (z4+1)E |AE]|
éwz—ln[-——*<1+n——+ >:|
T 2n?| AE)| E
(z+1)E
== (Z FO). 09
™ 2n?| AE|

Clearly, cross sections based on this relation cannot
be expected to be reliable unless the argument of the
logarithm is large. To extend the validity range of
quasiclassical calculations toward lower electron ener-
gies, it is customary to add a strong collision term to the
cross section, which is at least for the more probable
transitions of the order 3mp"min, With p’min correspond-
ing to that o/ max which results in P~ . This procedure
results, with Egs. (4) and (5), in a “strong collision”
Gaunt factor

V3 V3 (z41)ze2 2
fo~— cosﬁa'm,xz——<1—[-——:| ) , (1)
27 2T 4n2hy

using the second option in Eq. (10) in the factor
€052 max.

At very low energies, amin may become larger than
@max, indicating the breakdown of the assumption
V'~V even for strong collisions. Such a situation would
manifest itself by the logarithm turning negative.
Excluding this case for the time being, the total quasi-
classical effective Gaunt factor is finally estimated by
the sum of Egs. (13) and (14),

V3 (z4+ (z+1E [
oo 14 - ]!
£ 7rl [ in? J+n[2n2;AE|r( )]J

(15)

It is therefore a function of three parameters, namely
E/|AE]| as in Van Regemorter® and Seaton’s® approx-
imation and, in addition, of 2#?/(z+1) and (mainly)

% H. Van Regemorter, Astrophys. J. 136, 906 (1962).
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through
1 z¢? |AE)| |AE)
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also of the Coulomb parameter 7. The latter varies
typically from 3 to 10 [see Eq. (11) with E=~min
(|AE|,kT)] in line broadening applications, while
212/ (z+1) tends to be between 5 and 15 for reasonably
intense isolated ion lines (using effective quantum
numbers and z=1 as appropriate for singly charged
ions). The function F(e) obeys according to the con-
siderations leading to Eq. (9)

S+4et € :\”2
142e¢+e—1(14-8¢)'2

F(o= [ a7

and provides a measure of the change in the adiabatic
limit due to Coulomb interactions. As can be seen from
Fig. 1, this effect is appreciable for all €¢Z0.5.
Effective Gaunt factors obtained from Eq. (15) are
shown in Fig. 2. At high ratios E/|AE| of initial
electron to threshold energies, they are practically
independent of the Coulomb parameter 5 and only
weakly dependent on the parameter 2#2/(z+1), which
is a measure of the magnitude of the dipole matrix
elements. At lower E/|AE|, the parameters n and
2n%/(z+1) enter more strongly, and the curves termi-
nate when the logarithm in Eq. (15) vanishes. Also
included in Fig. 2 is the semiempirical effective Gaunt
factor gee proposed by Seaton® and Van Regemorter?
as deduced by comparison with some experiments and
a few direct calculations. Its most notable feature is the
threshold value gse=0.2 and the fact that it is not a
function of 7 and 2#2/ (3+1). Similar values at threshold
can actually be estimated by returning to Eq. (7), the
perturbation theory result, which is valid here since the
corresponding transition probabilities Py ; are small.
Therefore sintamgx can now be assumed to be close to 1,
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Fi6. 1. The function F () accounting for Coulomb
effects on the adiabatic limit.
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Fi6. 2. Semiempirical effective Gaunt factors for widths (§se)
(from Refs. 20 and 23) and shifts (§,n) and some quasiclassical
estimates (§qo).

and sinjamin can be related to the adiabatic limit pmax
as estimated by Eq. (8) with the maximum velocity
being close to v'= (226%/mpmax)'’?, since the initial
kinetic energy is usually negligible for near threshold
collisions. From Eq. (8) follows therefore

Eyn

ZZGZh 1/2 1/2
e Y NV
| AE|mv AE

and with Eq. (5) accordingly at E= |AE|
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EH> )
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This quasiclassical estimate for the threshold value of

the effective Gaunt factor finally yields with Egs. (7)

and (12)
V3 4 1/2
z—ln(l—i—— ) . (20)

V3 1
gonm— In———
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Numerical values of g range from 0.16 to 0.29 for
z=1 and |AE| between 0.5 and 3 eV. (For much
smaller values of |AE| the threshold behavior does not
matter for line broadening because most electrons have
then considerably higher initial energies, and transitions
over larger energy gaps tend to be negligible.) This may
be considered an indication that the semiempirical
threshold value g:.=0.2 is probably correct to within a
factor of 1.5. A similar or better accuracy of the semi-
empirical effective Gaunt factor is suggested at higher
energies (where the present quasiclassical approxima-
tion becomes more reliable) by the rather satisfactory
agreement between quasiclassical and semiempirical
Gaunt factors on Fig. 2; only for 2#%/(2+1)=15 and
E/|AE| <25 do deviations exceeding a factor of 1.5
occur. For the corresponding levels |AE| tends to be

(19)

AE

Ex
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small (~0.3 eV), while mean energies of the perturbing
electrons are 3kT=~3 eV, i.e., E/|AE| =10, for which
Zse~ 284, However, much of this deviation may well be
due to an underestimate of the strong collision term in
Zqc which dominates in this region. It therefore seems
unlikely that the use of the semiempirical Gaunt factor
would entail errors larger than a factor of 1.5 in line
broadening calculations for any of the values of E/|AE]|,
n=3|En/E|'? and 2n?/(z+1) relevant for singly-
charged ions.

3. SEMIEMPIRICAL OPTICAL CROSS SECTIONS
AND LINEWIDTHS

While the discussion in the preceding section demon-
strates that quasiclassical considerations are usually
sufficient to obtain the inelastic cross sections needed to
calculate line widths from Eq. (1), the same cannot be
said of the elastic terms which probably dominate below
threshold for allowed dipole transitions. Nevertheless,
it is helpful to consider the classical-path approximation
for the line width? in terms of the classical path S-

matrix elements,

Wep= N{ 27rvfpdp(1—ReS.-Sf*)}
oo
V(0)dt] i)’

—o0

zN{Z‘;r'u /‘pdp(l/hz) ReX [(il

t

—+0
X / P)dr| i (| f Fdt]i)f|
+o0 5 ~+o0 _
X / Pt )+ (| / @)t )7

t

X[ @it e
—00 av
The first-order terms in the Dyson series can be omitted,
because they vanish on the average over directions
(indicated by {---}av), also for higher multipole in-
teractions; the (negative) interference term vanishes
for isolated lines if one replaces the actual interaction

by the dipole-monopole term. B
With the additional approximation V=V, Eq. (21)
is then easily seen to agree with Eq. (1), if the quasi-
classical inelastic cross sections from Eq. (3), etc., are
used and the elastic terms are omitted, but the velocity
average is extended over all velocities, including those
below threshold. These observations strongly suggest
adopting “‘optical” cross sections as given by Eq. (2)
with an effective Gaunt factor g like that proposed by
Seaton?® and Van Regemorter,® but extrapolated to
below threshold energies. Inspection of Fig. 2 reveals
that the only reasonable extrapolation leads to g=0.20
for E/|AE| <1, while quasiclassical estimates of the
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second order terms in Eq. (21) analogous to those per-
formed in the preceding section for the threshold value
of the inelastic cross section would result in

V3 + E s E\'”
for~— ln[l-}-—————— ——) ] . (22)
2r 2 IAE | H

Well below threshold, this is considerably less than the
inelastic threshold value estimated in Eq. (20), and the
above extrapolation of the semiempirical Gaunt factor
therefore (if correct) accounts for the first truly quan-
tum-mechanical effect in electron impact broadening.

Short of ab initio calculations for the elastic terms, it
now seems most reasonable to write the width with
Egs. (1) and (2), assuming the electron velocity dis-
tribution to be Maxwellian as

T 3/2 h EH 1/2
wsezs(_> —-N(—)
3 mag kT
> [l< iy —
X i\ x| g(—-->
g |AE;.|

£ ) 23
AL :l (23)

using E=3%kT and the effective Gaunt factor Fse as
plotted on Fig. 2 but continued toward E=0 as a
constant. (Since this Gaunt factor is only a weak func-
tion of its argument, it is sufficient to employ there
3m*~3kT.) Often the nearest perturbing levels to
which dipole transitions are allowed dominate in the
sum. The actual |AE| may then be replaced by those
corresponding to these levels, say, |AE;| and |AE;|.
Summing over states i’ and f/, the semiempirical ex-
pression for the (half) half width of an isolated ion line
broadened by electron impacts is in such cases (in
angular frequency units)

o .n.):ilz h N EH>1/2 e 3kT
o™ (3 m(loA <E [<1lr ‘1,>gse<2lAE11>

2 |34f£,-1>] .

For the matrix elements of 7* the hydrogenic ion value,
ie.,

+I<f’|r1f>|”g'se(l

+(flr’|f>§se<

n ,'2

2(z+1)2

@l )i)= [3n24+1-3L:31:A41)Ja, (25)

should normally provide a very good estimate for the
present purposes when #; is the effective principal
quantum number calculated from the empirical excita-
tion (£.) and ionization () energies through

nié=(34+1)2Ep/(I—E). (26)
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The orbital quantum number /; is that of the bound
valence electron and, as noted before, =1 for singly
charged ions, etc. [In case of doubly excited states, the
ionization energy of the corresponding configuration
should be employed. Also, when the nearest level only
contributes a small fraction of (i|7%|7), e.g., in case of
the highest /; for a given #;, the sum over ¢’ should be
calculated according to Eq. (23) using Eq. (36) below
for the atomic matrix elements.]

4. ESTIMATED SEMIEMPIRICAL LINE SHIFTS

Since electron impact widths and shifts are essen-
tially given by the real and imaginary part of the same
complex function [for example, in the classical path
approximation, the shift d of the maximum of the
Lorentz profile is given by a relation like Eq. (21) with
Re replaced by —Im], they are related to each other by
a Cauchy integral (dispersion) relation.? In terms of
effective Gaunt factors (gsn for the shift and, e.g., gs.
for the width) as functions of the variable x=F/AFE,
this relation is for x>0

X Zse(x')
Gon(x)= -Pf —dx’,
 Jo o' (a'—x)

ignoring questions of the proper sign for the time being.
Because of the singularity at «'=0, Eq. (27) has to be
rewritten as

(27)

dx’

¥ (x'—x)

g-sh(x) =g4h(0)+“P

X w-ﬁe /_-SQO
x/g;(x)g() 28)

for our particular choice of ge.(x). Actually the principal
value integral then only begins at +'=2, and for x<2
the following expansion is certainly appropriate:

1 »
Esh(x)=§sh(0)+—- Z P

T n=1

® Fse(®') —gee(0) il
X/ ——dx'=3 A
9 x'n+1 n=0

= 4,+0.332(x/10)40.305 (x/10)2

+0.550(x/10)+1.36 (x/10)44- - - (29)

which, however, as a semiconvergent series, should
represent g, also for x> 2.

[t remains to estimate g,,(0)=A,. Straight classical-
path calculations? yield

V3 * dp V3
Zon(x)~— / B(y)—=—b(ymin) (30)
T J pmin p T
with
[Aw|p 1 mpv 1)
= =—— 31
Y v 2 hx

2 H. R. Griem and C. S. Shen, Phys. Rev. 125, 196 (1962).
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Two limits are of interest here. For small velocities,
i.e., large y, B(y) is well approximated by the adiabatic
limit, B(y)=m/(4y), and Eq. (30) then becomes

V3 hx V3xhy V3,7 E\2
g'sh(-x)z———z——=—<——> x, (32)
2 mpmin? 4 2¢> 4z\Ej

when pmin is chosen near the Coulomb cutoff as pumin
~ze?/(3m1?), because for smaller impact parameters
there would be a much reduced contribution to the
integral in Eq. (30), if the curvature of the classical path
were taken into account. At threshold (x=1) for typical
perturber energies E~3$kT =3 eV, this estimate there-
fore yields g.n~0.20 for singly charged ions. It is more
appropriate to employ Eq. (30) for high velocities, for
which Coulomb effects are negligible and for which the
cutoff impact parameter is necessitated by the break-
down of perturbation theory. According to Egs. (5)
and (10) this criterion results in

2n® h
Pmin = — (33)
z2+1 mo
or
n 1 5 34)
min~——— —=— 34
z2+1x =«

observing that the semiempirical Gaunt factor g, on
Fig. (2) agrees best with the quasiclassical calculations
for 2n%/(z+1)=10.

The Gaunt factor g, calculated from Egs. (30) and
(34) for x=E/|AE|Z5 and using recently corrected
values® of b(y), is also plotted on Fig. (2) and is seen to
join smoothly with the dispersion relation result from
Eq. (29) for <5 when the constant term is chosen as
A0=0.163, a choice which is consistent with the above
estimate of Z.;,(1)=0.20 from Eq. (32). With the
present choice of the semiempirical effective Gaunt
factor for width calculations, there is therefore not much
of an ambiguity in the determination of the correspond-
ing factor for the shifts. One might argue that neglecting
Coulomb effects for x> 5 leads to an overestimate of
gen in this region, and consequently also for all x<5.
However, these Coulomb effects should be much less
important than in the case of the widths, because the
shifts are primarily caused by distant collisions and the
widths by close collisions. Furthermore, at x=5
(ymin=1), Eq. (30) is probably a slight underestimate
(for neutral atoms) anyway, there being at least some
contributions from strong collisions as well.

The above discussion suggests that relative values of
Zse and g, as shown on Fig. 2 are more reliable than
their absolute values, which should according to the
considerations toward the end of Sec. 2 be within a
factor of about 1.5 of the true value in most line broad-
ening applications. For lines which are broadened and
shifted essentially only due to interactions with one

% G. K. Oertel (private communication).
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perturbing level, and approximately also for lines where
all contributions to the shifts are in one direction, the
ratio of shifts and (half) half widths is simply given by
Gon/ 8se, which according to Fig. 2 varies between about
0.7 and 1.4. In general, the shifts would have to be
calculated from a formula analogous to Eq. (23), i.e.,

T 3/2 h EH 1/2

d:::—8(—> ———N(—)
3/ may \RT
XX

p [!{g—ll 7 rmvg-.,h(ﬁ%i—il)

AE 3kT
— g i) |, 69
[AE, | 2|AE; |

where, e.g., AE; ;= E;— E; is the difference in excitation
energies of perturbing level ¢’ and upper level ¢ of the
line. (For a formal derivation of the signs for the various
terms, the singularities in the complex plane of the
function whose real and imaginary parts on the real axis
yield widths and shifts, respectively, must be located.
The paths of the contour integrals leading to the
Cauchy integral formula are then chosen accordingly,
which results in a factor +1 or —1 preceding the
principal value integrals.) Unless the sum in Eq. (35)
is dominated by a single term or at least all contri-
butions have the same sign, taking averages of AF;,
etc., and summing over ¢/, f’ to obtain a relation anal-
ogous to Eq. (24) for the widths would not be justified.
However, the atomic matrix elements can still be
estimated using approximate wave functions, notably
those from the Coulomb approximation of Bates and
Damgaard.?® In that case one has, e.g.,

TN ALY
el ~21,+1<2 (z+l)>

X (n2—=PB)¢*(ni_yym,lag, (36)

where /; is the orbital quantum number of the valence
electron, 7 the larger of /; and ;. ; »; and »n,_; are effective
quantum numbers to be estimated from Eq. (26), and
¢ is a tabulated correction factor.26 (The values of
AE;.; have to be averaged over fine structure levels or,
still better, |(i'|r|7)|? has to be divided according to
the appropriate coupling scheme before summing
over 7’.)

5. COMPARISON WITH EXPERIMENT

Widths and to a lesser extent also shifts of isolated
ion lines have been measured recently in a number of
experiments,®* in which electron densities and tem-
peratures were determined independently. Measured
ratios of shifts of the intensity maxima and (half) half

2% D. R. Bates and A. Damgaard, Phil. Trans. Roy. Soc
London, A242, 101 (1949).
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TaBLE I. Comparison of measured and
calculated shift to width ratios.

Multiplet  Reference (d/w)mess  (@/W)ealo A(d/w)
Ar 11(6) 7 0.5 0.2 0.3
Ar 11(6) 10 0.5 0.2 0.3
Ar 1(7) 10 0.25 0.2 0.05
Ar11(14) 10 0.15 0.2 —0.05
Armn(31) 10 0.2 —0.1 0.3
Canx(l) 9 0.35 0.15 0.2
Si 11(5) 14 —1.0 —-1.15 0.15

widths are compared in Table I with calculated values
obtained from Egs. (23) and (35), using Coulomb
approximation matrix elements.

The values for the N 11(4,5,18,29,30,40,58,59) multi-
plets® were omitted because a comparison of measured
and calculated widths suggests some systematic error,
the origin of which is still unknown. Measured values
for N 11(4) to N 11(30) are all about d/w= —1, while the
calculations yield typically d/w= —0.3 for these lines.
(Since on the average measured widths in this experi-
ment are smaller by a factor of 1.7 than calculated here,
removal of such a possible systematic error in the width
might result in ratios of d/w=~ —0.6.) For the higher
multiplets, measured values are much smaller in
magnitude, d/w=0.2, while Eq. (35) yields d/w=0.5.
In these cases Debye shielding may have led to a
reduction, especially of the shifts,? because the relevant
energy differences |AE;| are no longer much larger
than /w,, where w, is the plasma frequency.

Whereas the evidence from the N 11 data is therefore
inconclusive, the comparison in Table I lends some
support to the notion of an additional blue shift of
relative magnitude A(d/w)=0.2, even though one
should certainly not overlook the possibility of errors
of the same order in the calculated ratios. Such an
excessive blue shift might be due to the presence of a
small excess negative average space charge in the
neighborhood of a positive ion immersed in a plasma,
which partially shields the potential acting upon the
orbiting electron and thus causes an increase in the
energies, especially of highly excited levels. (The impact
theory only accounts for fluctuations in the perturbing
charge density.) The initial estimate?” of this plasma
polarization effect was based on entirely classical
arguments and turned out to be about an order of
magnitude larger than a corresponding quantum
theoretical estimate,?® in which the plasma electrons are
considered to be in highly excited states of the atom or
ion preceding the emitting ion in the ionization se-
quence. The latter estimate combined with Eq. (24)
yields for the ratio of plasma polarization shift and

*"H. F. Berg, A. W. Ali, R. Lincke, and H. R. Griem, Phys.
Rev. 125, 199 (1962).

28 H. R. Griem, Proceedings of the Seventh International Con-

ference on Phenomena in Iowized Gases (Gradevinska Knjiga
Publishing House, Belgrade, 1966), Vol. II, 551.
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electron-impact width
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which is about d,/w=0.15 for all lines listed in Table I.
[2i=2:e(3kT/|AE:|), (ilr*|i)~2niad®/(3+1)*]. This
therefore very closely corresponds to the average excess
blue shift, and could thus provide a semiquantitative
explanation for the differences A(d/w) between meas-
ured and calculated values in Table I, were these
differences indeed real. This question cannot be
answered on the basis of the present data, because for
all but one of the multiplets listed in Table I calculated
electron-impact shift to width ratios are rather small,
indicating substantial cancellation between the contri-
butions to the shift from various levels and therefore
strong sensitivity to the various approximations made.

Many more experimental data are available for
widths of isolated ion lines. Using Eq. (24) and meas-
ured electron densities and temperatures, ratios of
measured to calculated widths were calculated for all 50
cases of different lines or different plasma conditions for
which such data have been reported. As can be seen
from Fig. 3, there is agreement within a factor of 2 in
almost all cases over the whole range (0.5 to 50) in the
parameter kT/|AE;|, where AE; is the energy separa-
tion between upper and nearest perturbing level ful-
filling dipole selection rules. The rms deviation between
measured and calculated widths is only about a factor
1.5, and the spread of this ratio for multiplets measured
in different experiments indicates that much of this
scatter is experimental. The mean value of the ratio is
0.81 with a probable error of £20.12 when Eq. (24) is
used for all lines, or 0.95 with a probable error of +0.07
when Egs. (23) and (36) are used for those lines where
the approximation leading from Eq. (23) to Eq. (24)
causes an overestimation of the width by more than
20%.

6. SUMMARY AND DISCUSSION

Judged on the basis of available measurements,® 4
the semiempirical relation for the width [i.e., Eq. (23)
in conjunction with Egs. (26) and (36) and the semi-
empirical Gaunt factor §s on Fig. 2] is on the average
and for =1 certainly reliable to within a factor of 1.5,
but may well be more accurate than that. Also, no signifi-
cant dependence is discernable on the additional param-
eters n=ze%/hv~Min[z(En/|AE|)'2, z(Eu/kT)V%],
and 2#n?/(2-+1) appearing in the quasiclassical estimates
of the effective Gaunt factor on Fig. 2. Apart from these
apparently rather weak dependences, quasiclassical
considerations are sufficient to account for the broaden-
ing effect of electrons having above threshold energies
for allowed dipole transitions. The extrapolation of a
constant effective Gaunt factor to below threshold,
however, has no quasiclassical explanation. Whether it
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F16. 3. Ratios of measured and calculated linewidths. Numbers
associated with the various data points correspond to the experi-
mental references, and the vertical arrows reflect changes in
calculated widths when contributions from various perturbing
levels are treated individually rather than lumped together. The
abscissa in all cases corresponds to the perturbing level closest to
the upper level of the line, and the exponential curve gives an
estimate of the inelastic contribution.

can be justified by @b initio calculations of the elastic
scattering amplitudes appearing in Eq. (1) remains to
be seen, even though there is little question that this
must be possible to within, say, a factor of 2 for the
following reasons: there is not much of a deterioration in
the agreement between measured and calculated widths
on Fig. 3 toward small values of #T/|AE;|. Further-
more, the inelastic contribution is here smaller than the
total width by a factor of about exp(— |AE.|/kT),
which is below 0.1 for some of the lines, in severe
disagreement® with a recent calculation.® [This factor
would arise in Eq. (24) if the velocity integration were
begun only at threshold energies, assuming the per-
turbing levels to be above the initial and final states of
the line, respectively, which is the usual situation. ]
One might argue that for £7/|AE;| <1 superelastic
collisions inducing dipole transitions or collisions in-
volving higher multipole interactions dominate. That
the former is not the case for most lines follows because
perturbing levels tend to be above perturbed levels.
Also, the latter seem not important, because the rele-
vant impact parameters contributing to the width (if
the latter is written as w=wNvp?) are according to the

2 The principal claim in Ref.30 is that practically all the broad-
ening can be accounted for by inelastic collisions calculated using
Coulomb excitation (perturbation) theory for small velocities and
the straight classical-path approximation for large velocities. The
limiting velocity between these two regimes was determined by
the equality of Coulomb cutoff and straight classical-path strong-
collision-impact parameters. This procedure leads to S-matrix
elements considerably larger than would be consistent with
unitarity for velocities below the above limit, because Coulomb
effects remove effectively the adiabatic limitation on the transition
probabilities. Because of this inconsistency, the fair agreement
between such inelastic cross sections (with §2>1.0 rather than
§20.2) and measured widths is only fortuitous.

3 J. Cooper and G. K. Oertel, Phys. Rev. Letters 18, 985 (1967).
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present estimates in Egs. (23) to (25) and with g.;=0.2

2n2 h 2nfa, Ey>”?
P z2+1 mo z+1<kT

This is for z=1 typically a factor of five larger than
excited state Bohr radii, namely #2%a,/(3-+1), and even
though perihelion distances are somewhat smaller,
quadrupole interactions which contribute in the ratio
of the inverse square of such a suitably reduced factor
will therefore almost always be negligible. The observa-
tion that quadrupole transitions often involve smaller
energy differences (including zero) does not change this
conclusion for any practical purposes, because the
acceleration in the Coulomb field removes the so-called
adiabatic cutoff to sufficiently large impact parameters.
Only for multiply ionized systems (z=2, 3 --:)
would relevant impact parameters according to Eq.
(38) come close to excited state Bohr radii, because T
is then usually comparable to or even larger than Ep.
For kT~ 50 eV the Bohr radius would actually be the
larger of the two, and any multipole expansion would
be useless. Furthermore, as indicated by the first
version of Eq. (38), contributing angular-momentum
quantum numbers are of the order 2#2/(z+41) and tend
therefore to be rather small for multiply ionized systems
(especially their resonance lines). For such situations
the quasiclassical arguments advanced in Sec. 2 are no
longer applicable, but it should not be overlooked that
any gross quantum-mechanical effects are accounted
for in the semiempirical Gaunt factor of Van Rege-
morter® and Seaton® by fitting it, e.g., to the Coulomb-
Born approximation® for the 1s-2p transition in high 2z
hydrogenic ions. As far as allowed dipole transitions are
concerned, this procedure should also take care of higher
multipole interactions (which were included in the
Coulomb-Born approximation calculations), and the
semiempirical formulas for widths and shifts proposed
here may therefore be applicable for high z systems as
well (though probably less accurate than for z=1),
because higher multipole transition rates never seem to

become larger than allowed dipole transition rates.2

(38)

3t A. Burgess, Mem. Soc. Roy. Sci. Liege 4, 299 (1961).
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In regard to applications of semiempirical effective
Gaunt factors to the calculation of excitation and de-
excitation cross sections for allowed dipole transitions,
the evidence from the (ion) line-broadening experi-
ments®* and from a comparison of line-broadening
calculations for neutral helium atoms® using semi-
empirical “optical” cross sections® with classical-path
calculations? supports Van Regemorter® and Seaton’s®
error estimate of a factor of 2 for near threshold energies
and suggests a much better accuracy than that at
intermediate initial electron energies, at least for the
strong transitions. (Note that the width is given by the
sum of such transition rates.) However, the quasi-
classical estimates in Sec. 2 as shown on Fig. 2 do
indicate that the high-energy limit adopted by Van
Regemorter and Seaton is not generally correct, even
for neutrals. (The practical consequences of this are
minor, because cross sections at, say, more than 100
times the threshold energy are rarely required.)

Finally, in applications of the present formulas, e.g.,
to opacity calculations, errors from using semiempirical
damping constants will be rather small, especially
since errors in individual lines would tend to average
out. Similarly, if electron densities are to be determined
from measured ion-line Stark widths, averaging over
the results obtained, say, from about 5 or 6 lines will
typically result in a +=209, measurement of the electron
density, which is comparable to the situation for
neutral atom lines.* (The broadening by perturbing
ions, while often a significant correction in case of
neutral atoms, is usually negligible for ion lines.?)
Electron-density determinations from measured shifts
will generally be afflicted with a considerably larger
theoretical error, at least when the ratio of shift to
width is small. Exploition of the temperature depend-
ence of these ratios for electron-temperature measure-
ments* also does not seem very promising, as the ratios
are only weakly dependent on temperature.

2 H. R. Griem, paper to be presented at the Eighth Inter-
national Conference on Phenomena in Ionized Gases, Vienna,
1967 (unpublished).

®In this case, the effective Gaunt factor is also g,’~0.20 at
threshold, but then rises smoothly to merge with Van Regemorter
and Seaton’s value at about 30 times the threshold energy.

# D. D. Burgess and J. Cooper, Proc. Phys. Soc. (London) 86,
1333 (1965).



