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Possibility of Second Sound in Turbulent Plasma*
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The propagation of energy density waves associated with the ““‘gas’ of acoustic plasma oscillations in a
turbulent plasma is investigated. It is shown that a second-sound wave exists, and that it can grow ex-

ponentially under certain nonequilibrium conditions.

HE propagation of energy density waves, or
second sound, has been observed in liquid He IT!
and solid He#*;? second sound has also been considered
as a possible mode of propagation in piezoelectric
materials following the onset of an acoustic wave
instability.® Recently, Pines* has suggested that it may
be likewise observed in turbulent gaseous plasmas
under circumstances that the growing waves (acoustic
waves, plasmons, etc.) collide more frequently with each
other than with any other constituents of the plasma;
a calculation of possible second-sound propagation
which is based on the quasilinear theory has been
carried out by Liperovskii and Tsytovich.?

In this paper we consider second-sound propagation
in the quasistationary turbulent plasma formed when
the electrons as a whole move with large drift velocity
in a weakly ionized plasma. There then exists an
appreciable enhancement over thermal background of a
given group of acoustic waves; we use the new self-
consistent theory of stationary turbulence® to show that
in the acoustic wave ‘“‘gas,” an energy density wave can
then propagate with a phase velocity s, which is
somewhat slower than the velocity s of the unstable
acoustic waves. This second sound may exhibit expo-
nential growth under certain transient conditions; since
the energy density couples directly to the electron drift
velocity and temperature via the conservation laws of
energy and momentum, a second-sound instability
should be observed in the form of spontaneous current
oscillations, a feature markedly different from the cases
of ordinary density wave instabilities.

According to the self-consistent theory, a stationary
state is brought about in the plasma by a balance
between the emission of acoustic waves by the charged
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particles and their decay due to their mutual interac-
tions, as may be clear from Eq. (8.6) in Ref. 6. We now
define the energy density e(k,k) contained in both
[kw(k)] and [—k, —w(k)] modes of the acoustic
oscillations”; we thereby restrict the domain of k in a
half space, k-V;>0. The slowly varying space-time
behavior of e(k,k) is then governed by the following
equation®:
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Here, my, T, and 7 are the masses, temperatures, and
relaxation times of ions and electrons, respectively; #
is the average number density of the electrons; V4 and
V. are the drift velocity and its critical magnitude;
k_= (4mne?/kT_)"? is the Debye wave number of the
electrons; and % is the unit vector in the direction of the
wave vector k. The first term in the right-hand side of
(1) represents the rate at which the acoustic waves are
emitted by the random thermal motion of the electrons;
the second term, the interaction of the waves with the
charged particles; the last term, nonlinear coupling
between the waves.

A detailed investigation® shows that when £-Vg
—V.>0 the energy density spectrum in equilibrium
exhibits a sharp peak around the lower wave number
limit, £y~~1/2s7,, and that the strength associated with
this peak is proportional to k- V4—V; if we expand the
equilibrium solution with respect to the plasma param-

7 See footnote 21 of Ref. 6.

8 For a collisionlessplasma the first two terms in the right-hand
side should be replaced by (wm_/2m.)2(sk) (kT-) — (wm_/2m ) V2
X[kV,(k)—k-Vi]e(k,k), where V.(k) represents the boundary
curve between the growing and damped acoustic oscillations. For
the validity of Eq. (1), the frequency and wave number associated
with the space-time variation of e(k,k) must be smaller than those
frequencies and wave numbers which contain the bulk of the
energy of the acoustic oscillations.
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F16. 1. Time development of the total energy density W in the
acoustic plasma oscillations and the resulting change of the growth
rate T' for the associated second sound. For a neon plasma at 0.5
mm Hg, the following parameters are used: #=10% cm™,
T_=50 T,=2X10*°K, 7_=1.1X10"? sec, 7,=0.79X107® sec,
5s=2.7X10% cm/sec, V.=1.45X107 cm/sec, V4=1.7X107 cm/sec.

eter, g=k_3/n, assuming g1, we find that the leading
contributions are
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where 6(x) is the unit step function; e () is a slowly
varying function almost independent of Vg; we estimate
a1 (R)/ eo~g'2.

We now integrate (1) with respect to k from %, to
k2, an upper limit for the acoustic spectrum, and over
the solid angle confined within the cone k- V4— V>0,
assuming that the spectral distribution takes the form
(2). We thus find an equation for the total energy
density W of the acoustic fluctuations®:
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where 2 is the unit vector in the direction of Vg; W,
=n2(4we)?m_k_2/4n®myst_k,5; and
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will be seen to be the velocity of the second-sound
propagation. Equation (3) may be looked upon as a
hydrodynamic equation for an additional constituent
of a plasma, the large-amplitude acoustic plasma
oscillations.

? Equation (3) is valid only when (14— V.)/s>>e/e~g!"2
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In order to investigate the wave property of the
system described by (3), let us consider a transient
situation that an external electric field is suddenly
applied to the plasma in such a way that the resulting
drift velocity exceeds the critical value. The increase of
the drift velocity may take place within a small time
scale of order 7_, while W will be built up rather slowly
with a characteristic time of order (my7r_/m_). We
may therefore separate W into two parts: a uniform,
slowly varying part, W(#); and an oscillatory part,
W’ exp[i(K-r—Qf)]. W(¢) develops in time according
to (3), where the second term on the left-hand side
vanishes because W (f) represents a uniform distribu-
tion; its asymptotic solution at t— o is'

W(o)=Wo(Va—Ve)*/sVa, ©)

corresponding to a fully developed turbulent stationary
state.

If we linearize Eq. (3) with respect to the oscillatory
part, W', we obtain the dispersion relation for second
sound ; on writing @=Qx-+:T", we find
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It follows that until W (f) reaches half of its asymptotic
value W (), I" takes on a positive value, corresponding
to a growing second-sound wave; when W (f) exceeds
that value, I' becomes negative; in particular, the
second sound is stable after the plasma reaches a
turbulent stationary state.

As a numerical example, we have computed the time
development of the growth and damping rate for
second-sound propagation in a neon plasma, together
with the total energy density in the acoustic oscilla-
tions"; our results are shown in Fig. 1. We notice that
the initial period during which the second sound can
grow persists for about 180 usec in this example; it
appears quite feasible to observe the second-sound
propagation and the associated instability experi-
mentally in a plasma.
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©7Tn a fully developed turbulence, the first term in the right-
hand side of (3) is a higher-order contribution with respect to g
and thus negligible.

11 In this computation, we have ignored for simplicity the effects
of rising electron temperature resulting from the accumulation of
W. The increase in electron temperature has a stabilizing effect
on the acoustic plasma oscillations; it increases V., and acts to
decrease Vg if the external electric field is kept unchanged. The
essential feature of the second sound instability will not, however,
be affected significantly by inclusion of these effects, since the
instability is associated with the initial stage rather than the
fully developed final stage of plasma turbulence.



