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Theory of a Turbulent Stationary State of a Plasma
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We Grst establish a self-consistent scheme to determine the Quctuation spectrum for a class of turbulent
plasmas in which a conventional linear theory predicts an exponential growth of the density-Quctuation
excitations, or instability. This theoretical approach is based on the fundamental postulate that a proper
inclusion of the correlation effects or the existence of the Quctuations in the stationary state should be able
to remove the instability and lead to a description of the most stable state for the turbulent plasma. A di-
electric response function e(k,co) for such a turbulent plasma is calculated within the validity of the hydro-
dynamic description. In this calculation, there are involved various polarization processes associated with
the interaction between the external test charge (or the induced Quctuations) and the turbulent Quctua tions
existing in the plasma; the nature of those processes is clariGed with the aid of diagrammatic considerations.
The Quctuations of the internal electric Geld give rise to an additional mechanism for particle diffusion; the
effective diffusion coefhcient in the turbulent plasma is obtained by investigating the behavior of e(k,~) in
the limit of long wavelengths and low frequencies. The effects of turbulence upon the properties of the ion
acoustic wave are studied. Following the self-consistent scheme, an integral equation is derived foz the
Quctuation spectrum associated with the acoustic mode; it is then solved for values of the electron drift
velocity Uz above and below the critical one, V.. We thus Gnd that the results indeed support our origina],
postulate, and the dielectric response function remains stable for the entire range of the drift velocity. The
over-all structure of the Quctuation spectrum is investigated. In terms of the small plasma parameter,
g—=1/noh', the energy e(k) in the acoustic mode with wave vector k is of the order of g (i.e., around the
thermal level) in the stable region; as the plasma enters the transition region, k U&~V„ the ozdez of g(k)
goes up to g'~~; in the turbulent region, ~(k) contains a part of the order of g'. It is also shown that a certain
domain of the turbulence spectrum can be explained with the aid of a dimensional argument. The results of
the calculations are compared with a fluctuation spectrum measured by a microwave scattering experiment.

I. INTRODUCTION

~ ~

EVERAL years ago, Pines, Rostoker, and one of
the authors" developed a theory of critical fluctua-

tions in a plasma. According to this theory, an enormous
enhancement of density Quctuations is predicted in the
plasma, when it approaches from a region of stability
a critical point corresponding to the onset of an in-
stability. Such an enormous increase of the density
fluctuations has been subsequently observed by means
of microwave scattering experiments. '

When an instability sets in, the plasma goes over to
a turbulent state; in this domain, the above theory of
critical fluctuations is no longer applicable. The prin-
cipal problems now will be, for example: How does the
turbulence develop and approach equilibrium in a
plasma) —or—what is the turbulent state of a plasma?
In this connection, it may be signihcant to note the
fundamental distinction which one must make between
the following two cases of turbulence problems.

One is what may be called an initial tulle problem.
Here, the plasma system is isolated from the external

* On leave of absence from the Department of Nuclear Engineer-
ing, University of Tokyo, Tokyo, Japan. Final part of his work
was supported in part by the U. S. Army Research Ofhce (Dur-
ham) under Grant No. DA-31-124-ARO (D)-114.' S. Ic»~aru, D. Pines, and N. Rostoker, Phys. Rev. Letters
8, 231 (1962).' S. Ichimaru, Ann. Phys. (N. Y.) 20, 78 {1962).

~ V. Arunasalam and S. C. Brown, Phys. Rev. 140, A471 (1965).
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energy source; initially, however, it is characterized by
physical conditions such that a certain collective mode
can grow exponentially. Experimentally, a situation
corresponding to this case may, for example, be realized
in the initial stage of a beam-plasma interaction experi-
ment when a pulsed beam of charged particles is in-
jected into a quiescent plasma. The theoretical problem
then is to analyze the time development, or approach to
equilibrium, of the combined system of particles and
oscillations, starting from such unstable initial condi-
tions. An important progress has been made toward the
solution of the problems in this category by the advent
of the quasilinear theory of plasma oscillations'; this
approach takes explicit account of the feedback action
of the growing oscillations upon the single-particle dis-
tribution function and treats the wave-wave interaction
in a perturbation-theoretical way.

Consider now a second class of turbulence problems,
which arise when a system maintains connection with
an external source and a sink of energy. Under these
circumstances, if we wait long enough, the plasma may
reach a new kind of stationary state: a tlrbllent sta-
tionary state. Experimental examples pertaining to this
case may be found in various plasma phenomena, in-
cluding the positive column of a glow discharge and

W. E. Drummond and D. Pines, Nucl. Fusion Suppl. 3 1049
(1962); A. A. Vedenov, E. P. Velikhov, and R. Z. Sagdeev, i
2, 465 (1962).
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solid-state plasma experiments. In such a state, a
steady Bow of energy is established through interactions
among particles and oscillations. We may then ask:
What is the characteristic feature of such a turbulent
stationary state, particularly if the state is character-
ized by those physical parameters for which a conven-
tional linear theory predicts an exponential growth of
oscillations, or instability? The purpose of the present
paper is a theoretical study of such a turbulent sta-
tionary state for the plasma. '

The general structure of the energy Qow pattern
established in such a turbulent stationary plasma may
be understood in the following way. First of all, we

consider a plasma which is kept in the so-called unstable
physical conditions by a certain external means (e.g.,
by application of constant electric field above its critical
value); the external source thus feeds energy constantly
into the charged particles. A part of this energy goes to
the excitation of oscillations via the wave-particle
coupling mechanism which causes the instability; the
remainder will be lost to the environment through
collisions. The large amplitude oscillations thus built

up in the plasma interact frequently with each other so
that a continuous Qow of energy toward the large
wave-number region is established; the oscillation en-

ergy is eventually dissipated into heat by collision

damping when the wave number steps out of the domain
of instability. A stationary state may thereby be set up
in the plasma and a continuous Qow of energy is main-
tained in it. In this paper we wish to take up this sort
of stationary-state problem; we shall see in the following
analysis that all those physical features are borne out
in our calculations. In particular we shall Gnd that a
certain domain of the turbulence energy spectrum may
be interpreted with the aid of a dimensional argument of
Kolmogorov-Obuknov type.

Existence of frequent collisions among large ampli-
tude oscillations may also make it possible to consider
a new mode of wave propagation of second-sound type,
as first suggested by Pines. We shall show in the subse-
quent paper' that propagation of a second-sound wave
is indeed possible in a turbulent plasma.

In Sec. II, we discuss in some detail the fundamental
considerations which lead us to establish a self-consistent
scheme of determining the Quctuation spectrum in a
turbulent stationary plasma. As a first step along the
self-consistent approach we consider in Sec. III the
dielectric response function e(k,a&) for a single-com-
ponent turbulent plasma within the hydrodynamic
description; the various polarization processes which
lead to the dielectric response function are studied with
the aid of diagrammatic techniques in Sec. IV. Section
V extends the calculation of e(k,co) to the cases of two-
component plasmas. The behavior of e(k,co) in the limit
of long wavelengths and low frequencies is studied and

' A preliminary account of the present theory was reported in
S. Ichimaru and T. Nakano, Phys. Letters 25A, 163 (1967).

g S. Ichimaru, following paper, Phys. Rev. 165, 251 {1968).

the effective di6'usion coefiicient in a turbulent plasma
is obtained in Sec. VI. The nature of ion acoustic waves
in the turbulent plasma is investigated in Sec. VII;
an integral equation for fluctuations associated with the
acoustic mode is derived and solved in Sec. VIII.
Section IX contains physical discussions on the assump-
tions involved and an interpretation of the spectrum
in terms of the dimensional consideration; a comparison
of our result with the Quctuation spectrum measured
by a microwave scattering experiment is given in Sec.
X. The dielectric response function for a turbulent
plasma in a magnetic field is treated in Appendix A;
some of the calculational details are given in Ap-
pendices 3 and C.

II. FUNDAMENTAL CONSIDERATIONS

For a theoretical study of the stability of a plasma,
a first step that one naturally takes is to specify the
unperturbed stationary state of the plasma. In a hydro-
dynamic analysis, this is usually accomplished by as-
signing specific values to hydrodynamic or thermo-
dynamic parameters such as the density, Qow velocity,
and temperature; in a kinetic theoretical treatment, one
ordinarily uses a more refined description of the plasma
by means of single-particle distribution functions. One
then applies a weak external disturbance and studies
the characteristic response of the system; if a certain
growing disturbance is found possible in the system, the
plasma is said to be unstable against that particular
kind of disturbance. If the state of the plasma is kept
unchanged by a suitable external means, this would
imply that the plasma would collapse by endless de-
velopment of such disturbances in itself. ~

In reality, however, we encounter various examples
of plasmas in which a stationary state is maintained
even under the so-called unstable circumstances; al-
though such a plasma is generally "noisy" and fre-
quently accompanied by anomalous transport phe-
nomena, ' we must regard such a state as stable because
it is realized and sustained in a stationary way. We
therefore seem to be faced with a gap between physical
reality and what theory would indicate about its
stability.

In order to resolve this gap, it may be instructive to
go back and recall the physical significance of the sta-
bility analysis; it is clear that all that a stability analysis
can tell us is whether or not the particular state origi-
nally speci@ed is stable against external disturbances; if
a diGerent state is chosen, a diferent stability criterion
mill result. The seeming discrepancy between physical
reality and a theoretical analysis may therefore be

' We remark here on an important difference between the quasi-
linear calculation and the present theory: In the quasilinear
theory, the state of plasma, being isolated from the external energy
source, is subsequently modi6ed toward stability by the feedback
action of the growing oscillations.

See, for example, F. C. Hoh and B. Lehnert, Phys. Fluids, 3,
600 (1960).
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traced simply to the inappropriateness of one's original
selection of the stationary state; a better choice would
lead to a stable description of the plasma, in accord
with the actual physical observations.

How do we then find a new stationary state which
should be appropriate to describe the true situation? A
clue to this problem is already apparent if we look more
closely at what the theory of critical Quctuations" in-
dicates. In this analysis we started with the given
velocity distribution functions to characterize the state
of the plasma; Quctuations, or space-time correlations
between the physical variables, are implicitly neglected
in this description of the plasma state. %hen the
plasma is in thermodynamic equilibrium, it is well
known that the Quctuations are so small that one can
legitimately disregard their eGects on the properties of
the system; under these circumstances a stability
analysis which ignores the presence of Quctuations in
the stationary state can be well justified. However,
when the plasma approaches from the region of stability
a critical point corresponding to the onset of an insta-
bility, there occurs an enormous increase of Quctuations
above the thermal level; the amplitude of Quctuations
would seem to diverge to inhnity at the critical point.
It is in this divergent behavior of density Quctuation
that we sense a danger signal which points to the
inadequacy of our original specification of the stationary
state by means of the single-particle distribution func-
tions only; the tremendous enhancement of the Quctua-
tions should be regarded as a signal which demands
that one must take a proper account of the existence of
fluctuations (or correlations between the physical vari-
ables) in order to describe correctly the properties of
the plasma in the vicinity of the critical point and in
the turbulent region.

In fact we may Gnd a number of examples in sta-
tistical physics in which inadequacy of a theoretical
treatment is signaled by the onset of an instability; a
proper inclusion of correlation eGects can in many
cases remove such an instability and lead to a correct
description of the ground state of the system, an aspect
which has been so clearly demonstrated in the theory of
superconductivity, 9 for example.

We now make a fundamental assumption: To the
extent that a stationary plasma may be realized, it
should be possible to determine a state which is stable
against weak external perturbations even though the
plasma be turbulent. With the aid of this fundamental
assumption, we may then establish the following self-
consistent scheme for calculating spectral functions of
fluctuations in a turbulent plasma: (1) Assume a sta-
tionary state of a uniform turbulent plasma which may
be characterized by the existence of finite Quctuation
spectra superposed on an ordinary quiescent stationary
state; the amplitude of the spectral function S(k,co) is

' J. Bardeen, L. N. Cooper, and J. R. SchrieGer, Phys. Rev.
108, 1175 (1957).

left undetermined at this stage. (2) Apply a weak per-
turbing field to this turbulent state, and calculate
various linear response functions. (3) Make use of the
dielectric superposition principle for a nonequilibrium
plasma, ""to write the Quctuation spectrum in terms
of the above response functions. (4) Those response
functions in turn contain the spectral functions of
Quctuations; our final step is to solve the resulting self-
consistent equation for S(k,co).

We remark that the present approach is nonperturba-
tive in its nature; time secularities involved in the
individual terms of the perturbation solution~ are
simply absent at the onset of our treatment. In this
scheme, we can pass smoothly from a stable region to a
turbulent region. In the stable region, the S(k,a&) thus
calculated will turn out to be so small in magnitude
that the resulting corrections are negligible; the Quctua-
tion spectrum will be essentially equivalent to the one
obtained from a quiescent calculation. In the turbulent
region, the stationary state is characterized by macro-
scopic intensities of Quctuations associated with certain
modes of oscillation.

The entire analysis contained in this paper is based
upon a certain set of hydrodynamic equations, repre-
senting macroscopic moment equations of conserved
quantities; the analysis therefore fails to describe such
delicate microscopic phenomena as the resonant inter-
action between the particles and the oscillations. In-
stead, the basic equations contain phenomenological
constants which measure the rates of momentum re-
laxation for the charged particles; growth or damping
of the collective oscillations due to their interaction
with other particles is thus described in our analysis in
terms of those relaxation rates.

Such a hydrodynamic treatment may be contrasted
with a kinetic theoretical approach starting from the
Vlasov equation. We remark that, while a kinetic theo-
retical analysis is capable of handling much detailed
information concerning the microscopic properties of
the plasma, the theoretical basis of the Vlasov equation
becomes rather questionable when it is applied to the
description of plasma turbulence. It is well known" that
the BBGKY hierarchy of plasma kinetic equations can
be truncated if one makes use of an expansion pro-
cedure with respect to the discreteness parameters (&,

m, and 1/I), or equivalently, the small plasma param-
eter, g—= 1/m'en', i.e., the reciprocal of average number of

"This principle has been established for quite some time in the
literature (Ref. 11), and will be briefly discussed later in this
section. The name "dielectric superposition principle" is first
proposed here."P. Nozieres and D. Pines, Phys. Rev. 109, 762 (1958);Nuovo
Cimento 9, 470 (1958); %. B. Thompson and J. Hubbard, Rev.
Mod. Phys. 32, 714 (1960); S. Ichimaru, Phys. Rev. 140, $226
(1965); see, in particular, D. Pines and P. Nozieres, The Theory
of Quantgm LiycQ's (W. A. Benjamin, Inc., New York, 1966),
pp. 204-215.

12 E. Frieman and P. Rutherford, Ann. Phys. (N. Y.) 2S, 134
(1964)."N. Rostoker and M. N. Rosenbluth, Phys. Fluids 3, 1 (1960).
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charged particles contained in a Debye cube; the Vlasov
equation is then obtained from the lowest-order equa-
tions in g by making an ansatz, equivalent to the
Hartree factorization, that a many-particle distribution
function is expressed as a simple product of single-
particle distribution functions. Implicit in this ansatz
is an assumption that the sizes of the higher-order cor-
relation functions are of higher order in g as compared
with that of the single-particle distribution function
and thus negligible when only the lowest-order con-
tributions are retained. This assumption can be well
justified for a quiescent plasma, in which the Quctua-
tions remain in the vicinity of the thermal level; the
Quctuation spectrum and the space-time pair correlation
are connected with each other via the Fourier trans-
formation. When the plasma goes over to a turbulent
state, however, there is no general guarantee that the
level of Quctuations will remain small; on the contrary,
we may expect that certain modes of Quctuations may
grow to such an extent that the Hartree factorization of
the many-particle distribution functions breaks down.
It is perhaps only after imposing careful limitation on
the sizes of higher-order correlation functions" that
one can make meaningful use of an expansion procedure.

In connection with the plasma parameter expansion
of the hierarchy equations, it may also be important
to remark on the applicabilities and the differences in
the two kinds of superposition principles which may be
used for the calculation of the Quctuations in the
plasma.

Starting from the hierarchy equations which take
account of the 6rst-order contributions in g, Rostoker"
has given an elegant proof that there exists a super-
position principle for the calculation of the pair correla-
tion function which involves the single-particle dis-
tribution functions and conditional probabilities deter-
mined from the Vlasov equation. This proof depends on
the assumption concerning the ordering of the correla-
tion functions which we have just pointed out in
connection with the use of the Vlasov equation; it
therefore follows that the superposition principle in the
form proved by Rostoker (we shall call it the "hier-
archy" superposition principle) is not strictly applicable
for a turbulent plasma.

In our subsequent calculations, we shall evoke another
superposition principle, which super6cially looks similar
to the above in some cases but differs significantly in its
origin and therefore in its applicability; we shall call it
the "dielectric" superposition principle. Historically,
this was proposed earlier" than the hierarchy super-
position principle. Nevertheless, the difference between
the two has not been well recognized hitherto in the
literature. It is particularly in the treatment of a
turbulent plasma that the diGerence plays an essential
role.

4N. Rostoker, Nucl. Fusion 1, 101 (1961); Phys. Fluids 7,
479, 491 (1964).

The dielectric superposition principle is based on the
observation that for each many-particle system consist-
ing of charged particles, one can imagine a fictitious
neutral counterpart which may be constructed by adia-
batically turning off the long-range part of Coulomb
interaction between the particles in the real system;
the turning off can be achieved by subtracting the
average self-consistent Geld of each particle, and thus
the screened short-range Coulomb forces remain in the
resulting 6ctitious system. The matrix elements of the
density fluctuation excitations in the fictitious system
are then given by the product of those in the real charged
system and the dielectric response function Lsee Eq.
(4.45) in the book by Pines and Nozieres "].We remark
that both the density Quctuations in the real system
and the dielectric response function are always physi-
cally well defined quantities; the above statement may
thus be regarded as a mathematical definition of the
6ctitious system. We thereby separate the calculation
of Quctuations in the Coulomb interacting many-
particle system artificially into two parts: the calcula-
tion of the Quctuation spectrum in the 6ctitious system
and that of the dielectric response function in the real
system.

So far it might appear that we have been successful
only in dividing a dificult problem into two difhcult
ones. We now wish to illustrate the signi6cant gain
which may be achieved when we apply the dielectric
superposition principle to a plasma turbulence problem.

First of all we note that while the real plasma system
may be turbulent, the fictitious counterpart cannot be
so, because by its construction the latter system is
devoid of the long-range Coulomb interaction which is
responsible for the instability. The Quctuation spectrum
in the fictitious system should therefore be insensitive
to the anomalies which generally accompany the onset
of turbulence; although we know of no rigorous theo-
retical method to calculate it for a given nonequilibrium
stationary plasma, we may well expect that any reason-
able evaluation of the Quctuation spectrum for the
fictitious system should provide a suQicient basis for the
calculation of the turbulence spectrum.

The complexity arising from the plasma turbulence
greatly affects the calculation of the dielectric response
function. We emphasize here an important difference
involved in this connection between the hierarchy
superposition principle and the dielectric superposition
principle: In the former scheme, the dielectric response
function should inevitably be the one determined from
the solution of the Vlasov equation; in the latter, it
must be the one which describes the true density re-
sponse of the system against an external test charge.
For a turbulent plasma, an external test charge intro-
duced in the system will induce Quctuations not only
from the average quiescent background but also from
the turbulent Quctuations, owing to the nonlinear
coupling. The induced Quctuations can couple again
with the background or the turbulence; such polariza-
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tion processes thus proceed endlessly, and the central
problem involved in the calculation of the dielectric
response function is to find a way to take account of
those higher-order interaction processes in as meaningful
a way as possible. In the following treatments we shall
show that it is possible to sum an important subset of
all those higher-order interaction processes with the aid
of relatively simple techniques; we shall thereby find a
stable dielectric response function which describes the
turbulent stationary state of the plasma.

E(x)=ik(4n. e/k')n(x), (3.9)

where we have used four-vector notation

In terms of the Fourier components, Eqs. (3.6) and
(3.3) are expressed as

[ pP—ia&—/r+ (D/r) k']n (x) i—(en p/m) k E'(x)

—i(o/m)k En(x')E(x —*')=o, (3 g)

x—= (k,co), x'—= (k', a~') (3.10)
III. DIELECTRIC RESPONSE FUNCTION

FOR A TURBULENT ELECTRON GAS
for brevity.

In order to calculate the dielectric response function
o(k, op), we introduce a test-charge Geld —eQ(k, a~) in
the system; there then arise induced density Quctua-
tions n'(k, ai) of the electrons, and the dielectric re-
sponse function" is defined in terms of their statistical
average (n'(k, a~)) as

As a first step in the self-consistent approach de-
scribed in the previous section, let us consider the
dielectric response function for a weakly ionized turbu-
lent plasma within the region of validity of the hydro-
dynamic description. ""For the sake of simplicity, we
begin with a single component plasma, or the electron
gas, in the absence of the magnetic Geld; the dielectric
response function for a turbulent plasma in a uniform
external magnetic field will be considered in Appendix A.

The basic equations are the equation of continuity,
the equation of di6usion, and Poisson s equation:

(3.11)1/o (k,a~) = 1+(n'(k, ai) )/Q (k,ai) .

E'(x) = i k(47re/k') [Q(x)+n'(x)], (3.12)
(3 1) we Gnd(a/at)n(r, t)+V r(r, t) =0,

Linearizing (3.8) with respect to the test-charge Geld
and the induced fluctuations, and noticing that the
additional electric Geld E'(x) is given by

(a/at) r (r, t) = (1/r)—[r(r,t)+DVn(r, t)

+tin(r, t) E(r,t)], (3.2)

V E(r,t) = 4pre[n(r—,t) no]— (3 3)

ti = er/m,

D=pKT/K= rKT/m,

(3.4)

(3.5)

where m is the mass of an electron, T is the temperature,
and K is the Boltzmann constant. We eliminate 1 (r,t)
from (3.1) and (3.2) to obtain

Here, n(r, t) and F(r,t) represent the local density and
flux of the electrons, E(r,t) is the total electric Geld,
D and p are the diGusion coeKcient and mobility, 7- is
the relaxation time of the electrons due to short-range
collisions, and no denotes the constant mean value of
n(r, t) We also no. te the following basic relations:

[ ~' i'/r+ (D—/r)k']n'(x)+ai„o[n'(x)+Q(x)]

+ (pp„'/no) Q C(x, x—x') [n(x')n'(x —x')

C(x,x')=—k k'/i k'i', (3.14)

and a&„= (4n.npe/m)'t' is the plasma frequency of the
electron gas.

For a quiescent plasma, one can ignore the presence
of fluctuations n(x) in its unperturbed stationary state.
There are no contributions arising from the last con-
volution terms of (3.13). The dielectric response func-
tion o'oi(x) appropriate to such a system is readily ob-
tained from (3.11) and (3.13) as"

+n(x')Q(x —x')+n'(x')n(x —x')]= 0. (3.13)

Here, C(x,x') is a coupling constant defined by

(8/Bt) (8/Bt+1/r)n(r, t) (D/r) V n(—r, t)
—(e/m)V [n(r, t)E(r, t)]=0. (3.6)

oio'(x) = 1+47ra"'(x), (3.15)

Let us now expand n(r, t) and E(r,t) in Fourier series
with periodic boundary conditions for a cube of unit
volume and for a period of unit time interval:

n(r, t) =no++ n(k, op) exp[i(k r—apt)],
(3.7)

4p.n"'(x) = rcpt„'/[Dk' —ia~(1 —i r)]. (3.16)

For a turbulent plasma, it is important to take ac-
count of the fluctuations in the stationary state; since
we do not expect any correlations between the external
test charge Q(x—x') and the Guctuations n(x'), i.e.,

E(r,t) =P E(k,ai) exp[i(k r a)t)]. —
k, ru

(Q(x—x')n(x')) =0, (3.17)

5 S. Ichimaru, J. Phys. Soc. Japan 19, 1207 (1964); 21, 996
(1966).

'6 V. H. Ichikawa, Phys. Fluids, 9, 111 (1966}.

"J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. -Fys.
Medd. 28, No. 8 (1954);for a review and further references on the
dielectric approach, see e.g. , A. A. Rukhadze and V. P. Silin,
Usp. Fix. Nauk 76, 79 (1962).
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the statistical average of (3.13) becomes

[- '- / +(D/ )&')& '(*))+ .'L( '(*))+Q(*)]

~(co,'/no) P C(x, x—x')L(n(x')n'(x —x'))

+(n'(x')n(x —x'))]=0. (3.18)

To evaluate the statistical average (e(x')e'(x —x')), we

shall make use of an iteration and truncation procedure
similar to that employed by Ichikawa. "There are, how-

ever, crucial differences between Ichikawa's treatment
and ours which will play a critical role in determining

the nature of the analysis.
In order to see this difference, let us explore the

structure of the iteration calculation in some detail. For
this purpose we first write a direct solution of (3.13)
for n'(x):

4s.n&'& (x) 1
n'(x) =- Q(x)+—P C(x, x—x')

e&'&(x) SQ

XLn(x')n'(x —x')+n(x')Q(x —x')

+n'(x')n(x —x')] . (3.19)

We then immediately note that, when this expression

is inserted in the average of (e(x')n'(x —x')), the first

term, —(4sa&" (x)/e&~ (x)]Q(x), makes no contribution

to that average simply because of (3.17); generally,

owing to the fact that there are no correlations between

Q(x) and n(x), a statistical average involving Q(x) can

be factored into a form which requires no further itera-
tion. Typical terms involved in the calculation of
(e(x')n'(x —x')) may thus be expressed as

xj n x2

Q.~„„A(xl,x4)(n(xi)n(x, )n'(x, )) (3.20).

In view of the fact that

(n(x)}=0, (e'(x))WO, (3.21)

the statistical average of the triple product can now be
factored as

(n(x, )e(x~)n'(x4)) = (n(xi)e(xa)), (n'(x4))

+(n(x, )n(x3)n'(x4)). , (3.22)

where ( ), means the corretated average of the product
of the statistical variables involved.

In Ichikawa's treatment, " the last term of (3.22) is

neglected. Truncation is thus complete at this stage
and one can substitute (3.20) with xi+x2=x in (3.18)
to calculate the dielectric response function.

It is our conviction, however, that the contribution
from (n(x&)n(x&)n'(x4)}, must be retained partially at
least. , in order to describe the essential nature of a
turbulent stationary state for the plasma. We therefore

proceed to investigate its structure by substituting

(3.19) in place of n'(x4); we find that the typical terms

are

1 n X3 n X4 c., &(*,x )((n(x )n(x )n(x )).(n'(x ))
+(n(* )n'(x )).(n(x )n(x )).+(n (x )n (x,)),
X(n(x3)n'(x6)), +(n(xi)n(x~)n(x~)e'(x6)), ) . (3.23)

The erst term in the curly bracket involves the intrinsic
ternary correlation (n(xi) n(x&) n(x&)), of the turbulence;
the next two terms contain the pair correlation of the
turbulence and the correlated average of the product
between the turbulence and the induced Quctuation;
the last term is the correlated average of the product of
four density variables.

We can go on to decompose the last term of (3.23)
by means of another substitution of (3.19) for n'(x6);
we will find that it consists of the sum of the terms like

(n(xi) n(xs) n (xq) n (xr) ),(n'(xg) ),
n x1 n X3 n X8 n X5 n Xz

n x1n X5n' Xs, n X3n Xz

X8 c n X1 n XZ

n Xl n X3 n XZ c n X5 n XS c7

(n(xi)n(x~) n(xr)), (n(xq)n'(x8))„

x3 n x5 n xz n x1n x8
and

xz n xs c

where xz+ x8 =x6. The last term can then be decom-
posed into the sum of still higher-order products, and
so on. The iteration procedure thus proceeds endlessly,
a general feature of a perturbation theoretical analysis
for a nonlinear problem.

Based on simple physical considerations, however, we
can take into account a certain and important subset
of all those correlated averages of higher-order products
in our calculation. The size of the subset is rather small.
Speci6cally, we neglect the ternary and the higher-
order correlations in the turbulence; the erst term in
the right-hand side of (3.23), for example, is therefore
outside the scope of our consideration. We shall later
discuss in Sec. IX how the neglect of those higher-order
correlations may be reasoned from our basic considera-
tions. The second term in (3.23) will be fully taken into
account, but the third term cannot be summed within
our scheme; finally the fourth term will be partly re-
tained through the terms (n(xi) n(x3)e'(xs) ),(e(x~)e(x7)).
and a part of (n(xi)n(x~)n(x, )n(xr)n'(xs))„' the latter
contains still higher-order terms.

In order to carry out such a partial summation of
higher-order products, we erst write a response relation:

» (x) = —It (x)kQ(x)+0(x)], (3.24)
where

Q(*)=—(1,'no) g C(x, x x') jn(x')—n'(x x)—
+n(*')Q(x—x')+n'(x')n(x —x')]. (3.25)
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Equation (3.24) would become identical to (3.19) if E(x)
is given by

E0(x)=km&»(x)/e &»(x). (3.26)

This would then require i~&nite series of iterations, as
we have just indicated. Instead, we find it possible to
go around this circumstance by means of a simple
technique: We modify E(x) from the form given by
(3.26) in such a way as to take into account the effects
of turbulence; the expression (3.24) is then used for the
calculation of (n(x')e'( x x—')) W.e must now disregard
the contributions arising from the terms (n(x')n(x" x—')
Xe'(x—x")). in order to prevent overcounting of the
effects of turbulence. The truncation is thus complete
at this stage and the result includes a partial summation
of all the correlated averages of higher-order products.
Discussions in the following paragraphs are devoted to
clarify certain physical aspects in connection with this
method of calculation.

We first remark that by virtue of (3.17) we may forget
about the first term in (3.24), —E(x)Q(x), insofar as
this iteration procedure is concerned. Secondly, we ob-
serve that the term (3.25) plays the role of another
external test charge to the system; this observation
stems from the fact that (3.26), which is the originally
suggested form of the response function E(x) from
(3.19), assumes an expression appropriate to the density
response function against the external charges (not
against, e.g. , the total charges") ~ Although we shall
have to modify (3.26) to take account of the effects of
turbulence, the modification will be made in such a way
that the validitv of the above argument remains
unaffected.

I„et us explore the latter aspect further. As is clear
from its expression, the response function (3.26) char-
acterizes the density response of a quiescent plasma
against an external test charge. We have been arguing
that a quiescent stationary state does not correspond to
physical reality for a plasma in turbulent domain; an
external test charge introduced in the system can induce
fluctuations not only from the quiescent background
but also from the turbulent components already present
in its stationary state. We are therefore led to conclude
that the response function E(x) appearing in (3.24)
may be the one describing the density response of the
turbsclent stationary plasma against external test charge.
The above argument, at this stage, may still sound a
little intuitive; in the following section, we shall clarify,
with the aid of diagrammatic considerations, what addi-
tional sum of higher-order polarization diagrams is
involved in the propagation processes of the test
charge when we replace Eo(x) of (3.26) by a true re-
sponse function E(x) appropriate to the turbulent
system. We shall thereby show that our method of
calculation indeed enables us to carry out partial sum-
mation of all correlated averages of higher order prod-
ucts as indicated before.
"S. Ic»~aru, Ref. 11.

E(x)=4 a*(x)/a'(x) (3.27)

in (3.24) for the iteration calculation based on the
turbulent stationary state; in (3.27), e(x) and 4'(x)
are the dielectric response function and the polariza-
bility of the turbllent plasma, respectively, and the
asterisk implies that the function should be calculated
with the advanced boundary conditions.

We now proceed to calculate (N(x')e'(x —x')); with
the aid of (3.24), (3.25), and (3.27), we find

(n(*')n'(x —x'))

1 4 a*(x—x')
P C(x—x', x—x'—x")

no e*(x—x')

XDri(x )n(x-)Q(x —,—,-))
+ (n(x')n(x")n'(x —x' —x"))

+( (*')&'(*")+(*—*'—*"))g. (3.28)

The poles of E(x) in the complex co plane dete™ne
the nature of the density-Quctuation excitations in the
system. It has been our fundamental postulate that the
turbulent stationary state should be a stable one; it
then follows that E(x) can have poles only in the lower
or the upper half of the complex co plane depending
upon the choice of the boundary conditions for Fourier
transformation. If E(x) is calculated with the retarded
boundary conditions, we find the poles only in the lower
half plane; if the advanced boundary conditions are
chosen, in the upper half plane only. It now becomes
necessary to determine which of the two boundary
conditions we must choose for the response function
E(x) ~ For this purpose, let us take another look at
(3.24), with Q(x) now being omitted. Formally, E(x)
is the density response of the system against the dis-
turbance g(x); it is the character of the disturbance
which imposes the boundary condition on the response
function. As is clear from (3.25), g(x) is expressed as
the convolution sum of products like n(x')e'(x —x'),
n'(x')n(x —x'), and N(x')Q(x x')—In .the real time
domain, n'(/) will behave in accordance with the ex-
ternal test charge, which may be a simple sinusoidal
variation. n(t), however, has nothing to do with the
behavior of the test charge; it represents the fluctuations
already present in the system. By virtue of our funda-
mental assumption that the turbulent stationary state
be stable, those fluctuations, once created by the motion
of charged particles, must subsequently decay in time,
because the system does not sustain growing oscilla-
tions. We must therefore interpret Q(t), which essen-
tially consists of the products between the above two
kinds of density variations, as a decoying disturbance;
this observation leads us to the choice of the advanced
boundary conditions for the calculation of E(x)~

All the discussions in the preceding paragraphs indi-
cate that we may choose
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XIX

(a)

X

XIX

(b)

and the spectral function S(x) of the density Quctuations
is dehned by

1 1
S(x)=——(n(x)n( —x))=—(~n(x) ~'). (3.36)

2g 2x

We may regard (3.32) or (3.33) as a self-consistent
equation for e(x).

FIG. 1. Fundamental diagrams of interaction processes.

The Grst term may be simpliGed as

(n(x')n (x")Q (x x' —x"—)}
=(n(x')n( —x'))Q(x)l&,-. .. , (3.29)

while we must truncate the ensemble average of the
last two terms by neglecting the contributions from the
correlated average of the product of three density
variables:

IV. DIAGRAMMATIC CONSIDERATIONS

Polarization processes of the plasma associated with
the introduction of test charges can be analyzed by
means of diagrammatic considerations. Such considera-
tions, supplementing the calculations of the previous
section, enable us to understand or visualize more
clearly the nature of the physical processes involved.

(n (x')n (x")n'(x —x'—x"))
= (n(x')n( —x')}(n'(x))i&," .. . (3.30)

+ 0- —91 + + Q--Q& + ~ ~ ~

FIG. 2. Polarization of the quiescent background;
pp(x) =—%ra(p) (x).

accordance with the definition (3.11).We find

1 4&rn&o& (x)—[P&(x)+P,(x)$=1—
~(x) e&'&(x)—[P&(x)+Pg(x)+P»(x)+P4(x) j

(3.32)

4sa&" (x)—[Pg(x)+P», (x)j
~(x) =1+ (3.33)

1—[Pa(x)+P4(x) g
where

P&(x) 4 ~*(x—*) C(x, *—*)
e'(x —x') C(x,x')

XC(x—x', x)S(x'), (3.34)

4&ra*(x—x') C(x, x—x'}

e*(x—x') C(x,x')

XC(x—x', —x')S(x'), (3.35)

2Ã-"&ra &'& (x)
noPg(x)

P»(x) 2~
=—4&ra &'& (x)

P4(x) n02

n x' n' x" n x—x'—x"
= (n(x')n( —x'))(n'(x))8. .. (3.31)

In these expressions b. .. represents a four-dimensional
Kronecker's delta.

With the aid of all these calculations, it is now pos-

sible to calculate the dielectric response function in

Fro. 3. Sum of the polarization processes for the
quiescent background.

The fundamental diagrams are shown in Fig. 1. A
vertical line stands for propagation of either the test
charge or the induced Quctuations; a line entering the
pentagon-shaped vertex from a horizontal direction
expresses the contribution of the turbulent Quctuations
existing in the plasma; and the vertex represents a
process in which an incoming test charge, or induced
Quctuation (with frequency and wave vector x), inter-
acting with the turbulence (with x') induces density
Quctuations (with x+x') in the plasma. This is the
coupling process originating from the V (nE) term of
(3.6); one of the two coupling components of Quctua-
tions must therefore play the role of the oscillating
electric Geld which acts to joggle the other density-
fiuctuation component. The distinction between Figs.
1(a) and 1(b) stems from this consideration; the com-
ponent which enters the vertex at a corner of the
pentagon acts as the oscillating electric Geld.

Each incoming line carries its own strength corre-
sponding to the amplitude of the Quctuations: Q(x),

X-X'

FzG. 4. Second-order interaction arith turbulence.
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(X-X

tralizing action of the positive charge background. VVe

may sum those processes as in Fig. 3 to arrive at an ordi-
nary dielectric propagator in the quiescent background.

1/o&o' (x)= 1—47r&n"' (x)+$4or&n'o~ (x)jo-
= 1/L1+4na&o& (x)j.

%ithin the Grst order in the polarization processes of
Fig. 1, the only real contribution arises from Fig. 2,
because all other terms with x'&0 vanish as soon as
the statistical average is carried out. The processes of

FIG. 5. Polarization process arising from second-order
interactions with turbulence.

n(x), or n'(x). In addition, the line entering at the
corner with wave vector k is attributed a factor

ok( 4ne/ )r) characterizing its contribution as the electric
Geld Lsee Eqs. (3.9) and (3.12)j. For a vertex with an
outgoing line with x, we attach a factor (ik/noe)&n&o~(x).

Later we shall have occasion to consider another kind
of vertex (of blacked-out typ- see the lower vertices
of Fig. 7), in which case we use a factor (ok/noe)a(x)
instead. The boundary conditions for those polariza-
bilities must be determined from a physical considera-
tion, as was done in the previous section.

Let us apply the above rule to calculate the induced
fluctuations, n'(x+x'), due to Fig. 1(a). We 6nd

n'(x+ x') = —4ra &o& (x+x')C(x+x', x)
)& Pn(x')/nojQ(x) . (4.1)

(b)

X-X

X

X-X

X-X

X-X

( N

X-X-X

X-X
X-X

(o) (b) (c)

Fro. 6. Examples of third-order polarization processes. Diagram
(c) represents the contribution of the intrinsic ternary correlation
in turbulence, which is not taken into consideration in our
treatment.

Fro. 7. Calculations of EI(x), E2(x), Eg(x), and
P4(s), given by (3.34) and (3.35).

the latter type can make a contribution if we proceed to
consider a second-order process like Fig. 4. Here, the
test-charge with frequency and wave vector x, inter-
acting with a turbulent Quctuation with —x', creates a
density fluctuation with x—x'; this Quctuation then
interacts with a turbulence with x' to induce another
fiuctuation with x. If we calculate the induced density

In view of the fact that

(n(x')) =noh"o, , (4.2)

X-X

it is significant to single out from the processes of Fig. I
the contribution arising from the cases that x'=0. Ke
depict such a polarization process as in Fig. 2; its
value is

n'(x) = —4lra&'& (x)Q(x), (4 3)
p,

+
p~ +

pq
+

pq

that is, the first-order polarization process of the quies-
cent background. It is apparent that Fig. 1(b) does not
contribute to the process of Fig. 2 because of the neu- FIG. 8. De6nition of P(s).
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+ ~ ~ ~

P P P

+(P)+ + P + ~ ~ +(PI)+ + ~ '
P, P

I

/

/
/

0- ———W I

I

Q--- —WI

(a) (b)

~I

/

II

+ ~ ~ ~

Fio. 11. Examples of 6fth-order diagrams: (a) and (b) are
summed both in Fig. 9 and in the treatment based on (3.26);
(c}is summed in the former, but not in the latter; (d) is summed
in neither of them.

FrG. 9. Summation of polarization diagrams. This calculation
yields

1/4(&}= 1+1 —47I.u( (S)+P1(X)+EQ(X)j
XI.(')( )3 'C1 —~( )~ "'(~)j '.

fluctuation n'(x) through these processes and average
it with respect to the states of the turbulent plasma, we
find a nonvanishing contribution,

n'(x) = (1/no')4su"&(x) P 4~a&" (x—x')C(x, x—x')

XC(x—x', x)(in(x') i')Q(x) . (4.5)

One can, in fact, consider four kinds of such second-
order processes arising from the intercharge of Fig.
1(a) and 1(b) at each vertex. For brevity, we intro-
duce Fig. 5, where the small circle connecting the two
turbulent fluctuation lines means taking a statistical
average for their product.

If we go to the third-order processes, in addition to
diagrams like Figs. 6(a) and 6(b), one can also consider
such a process as described by Fig. 6(c); this represents
the contribution of an intrinsic ternary correlation part.

We have neglected this contribution to simplify the
treatment. In our calculation, therefore, there will be
no higher-order terms involved than Fig. 5, as far as
the statistical average of turbulent components is
concerned.

Let us now consider the processes of Fig. 7. A bold
vertical line in the intermediate state represents a true
propagator L1/e(x —x')j of density fiuctuations in the
turbulent plasma, which we shall presently investigate.
It is clear that Fig. 7 amounts to the calculations of
P&(x) P4(x) given b—y (3.34) and (3.35), if we choose
the advanced boundary conditions for the propagators
of the intermediate state, following the discussion in
the previous section. For brevity, we also introduce
Fig. 8.

The dielectric response function is by definition the
dynamic screening factor of the medium against an
externally applied electric field. The test charge is
introduced in the plasma to produce electric field dis-
turbance; for the calculation of the dielectric response
function, therefore, a first polarization process must
always be such that the test charge acts as an electric
field, that is, either Po(x) (see Fig. 2), P~(x), or P~(x)
(see Fig. 7) can enter as a first polarization diagram.
With this little precaution in mind, we now calculate
the dielectric response function by summing all those
polarization processes as depicted in Fig. 9; the result
of this calculation reproduces (3.32).

VI

/

I~
II(

~ I

/
/ -I I

)v

(o) (b) (c) (d) (a) (b) (c) {d)

Fro. 10. Examples of fourth-order diagrams: (a) and (b) are
summed both in Fig. 9 and in the treatment based on (3.26);
(c) is summed in the former, but not in the latter; (d) is summed
in neither of them.

FIG. 12. Examples of sixth-order diagrams: (a) is summed both
in Fig. 9 and in the treatment based on (3.26); (b) and (c} are
summed in the former, but not in the latter; (d) is summed in
neither of them.
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It may be instructive to examine more closely what

kind of diagrams we have actually surrimed in Fig. 9.
In the fourth order, such diagrams as Figs. 10(a),
10(b), and 10(c) are included, but not those of Fig.
10(d). In the fifth and the sixth order, we were able to
sum those diagrams like Figs. 11(a)—11(c) and Figs.
12(a)—12(c), but not those like Figs. 11(d) and 12(d).
In short, our calculation depicted in Fig. 9 sums all

those polarization processes in which no two turbulent
fluctuation lines intersect each other (when drawn on

one side only).
Finally, let us investigate what kind of difference is

involved in the summation of the polarization processes
if we are to use IC«(x) of (3.26) in (3.24) instead of
IC(x) of (3.27). It is clear that the use of E«(x) essen-
tially amounts to replacing P(x) of Fig. 8 by P&'&(x)
of Fig. 13 Pand a similar replacement for Pr(x) and
P, (x)] in the summation of Fig. 9. A close examination
then reveals that diagrams like Figs. 10(a), 10(b),
11(a), 11(b), and 12(a) are still included, but those like
Figs. 10(c), 11(c), 12(b), and 12(c) are now excluded
from the summation. The difference starts to appear
only at the fourth order in the polarization processes,
yet the modification caused by the inclusion of the dia-
grams of the latter type turns out to be so drastic that

it affects the essential nature of the analysis of a turbu-
lent plasma.

&dg ——(4mnpe'/. m~)'&',

kg ——(4am«e'/«Tp)"
(5.1)

are the plasma frequency and the Debye wave number
for each charged constituent. %'e shall assume that the
relations m «m+, («T~/m+)'&'&&(«T /m )'~' are well

satisfied for the cases of interest.
The dielectric response function «(x) is now ex-

pressed as

where
«(x) = 1+4«ra (x)+&4«ra+(x), (5.2)

V. DIELECTMC RESPONSE FUNCTION FOR A
TWO-COMPONENT TURBULENT PLASMA

It is straightforward to extend the calculations of
Sec. III to the cases of a turbulent plasma consisting
of the electrons, the singly charged ions, and the neu-
trals. The degree of complexity, however, increases
substantially. We quote only the results here, leaving
the details of the calculation to Appendix B.

In the following we use the subscripts + and —to
distinguish between the quantities associated with the
ions and the electrons. In particular,

"'(*)Ll-X+(*)XI~F.( )]+4 ""'()Ll —X+( )]Z+(*)
4s.ag(x) =

L1yF (x)][1—Z;(x)]+Z, (x)Z (*)

are the ion and electron polarizabilities of the turbulent plasma,

4sa~&'& (x) = r~&d~'/LDQ' —is&(1—i&dr~)]

(5.3)

(5 4)

are the polarizabilities of the quiescent background of the ions and the electrons, and

2' C(x—x', x)
X (x)—=—P (C(x, x—x')L4vra *(x—x')S (x')+4~a+" (x—x')S (x')]

n«««' «'(x —x')
HC(x, x')4n '(x—x')PS, (x') W4 *(x—x')S„(*')]}, (5.5a)

2s 4n.a~*(x—x')
F~(x)=—4sa~&'~ (x) P (x—x', x') fC(x, x—x')S~, (x')

n, « * «*(x—x')
~C(x,x')(I+4 *(x—x')]S„(x')}, (5.5b)

2~ 4«ra~*(x x')—
Z~(x) =——4sa~&«' (x) Q (x—x', x') f C(x, x )S~x,( —)&xC(x,x') 4sa~s(x x')S„(x—') }.

n«« ' «*(x—x')
(5.5c)

Various correlation functions S(x') are involved in the
definition of (5.5); the distinction is made by com-
binations of the subscripts +, —,and p, where p
stands for the difference between the densities of the
electrons and the ions. For example,

In the limit of high frequencies, F+(x) and Z+(x)
decrease as &d~, and X+(x) as &d '; it thus follows that
the dielectric response function (5.2) guarantees the
correct high-frequency asymptotic form

(5 7)
S +(x)=—(1/2s. )(n (x)n~( —x)),
S (x)=—(1/2s)((n (x)—n+(x)]n (—x)),

(5.6)
where

(5.8)

and the rest may be defined similarly.
The zeros of «(k,&d) determine the frequency —wave-

vector dispersion relations of the density-Buctuation



S. ICH IMARU AND T. NAKANO

X-X

Fro. 13. The diagram which
would enter in the summation of
Fig. 9 in place of E (defined by
Fig. 8), if (3.26) is to be used as
IC|x) in (3.24).

co~—ik'D, , (5.11)

below which the acoustic mode no longer represents a
zero of the dielectric response function"; in this region,
the acoustic mode turns into a diGusion mode.

(5.9)s= (EET /m+)II2.

There exists, however, a lower wave-number limit,

excitations of the system. Our entire analysis has been
based upon the hydrodynamic equations (3.1) and (3.2);
it is well known that such formulation provides a cor-
rect description of the plasma in the low-frequency and
long-wavelength region. We may then neglect the first
term, unity, in (5.2) as compared with the magnitudes
of other terms (i.e., electron and ion polarizabilities)
under these circumstances. Physically, this means that
the space-charge fluctuations are much smaller in
amplitude than the density fluctuations of the electrons
and the ions themselves in the low-frequency and long-
wavelength region; in particular, the ever-stable solu-
tions corresponding to the high-frequency plasma oscilla-
tions (or &co~) will be lost by the neglect of unity in

(5 2).
The remaining low-frequency branch of the disper-

sion relations represents the ion acoustic mode of oscilla-
tion; for a quiescent plasma with T )&T+, its prop-
agation velocity is given by

where D, is the ambipolar diGusion coefBcient for the
quiescent plasma,

D.= (uW +u~-+)I(u++u ). - (5.12)

In the following sections we shall apply a similar means
of investigation to the turbulent plasma. We thereby
calculate an eBective diffusion coeKcient and study the
nature of the ion acoustic wave by investigating the
behavior of the zeros of ~(k,ca) associated with the low-

frequency modes.

VI. AMSIPOLAR DIFFUSION COEFFICIENT
FOR A TURBULENT PLASMA

The fluctuations of internal electric fields, which act
to joggle the charged particles, can be additional
mechanisms for particle diGusion. " In this section we
investigate such an effect of turbulence upon the dif-
fusion process of the test-charge field by looking into
the behavior of the dielectric response function in the
limit of long wavelengths and low frequencies.

In the light of the discussion made in the last part
of the previous section, we first note that the dielectric
response function can be expressed as

1 m r+'E

ka— 1+
2sr+ m+r&

(5.10)
e(x) = 4Era (z)+4Ern~(z) (6.1)

IO

IO
7
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FIo. 14. Fluctuation spectrum associated with the ion acoustic
mode in a turbulent helium plasma for various values of a= (k. Vz —V,)/s in the very vicinity of the critical point, n=0.
e(k) is the energy contained in the fluctuations at the mode with
wave vector lr. ; ep is its value at V~ ——0 (eo is independent of h).
For the particular physical parameters which we have chosen for
this computation, see the text.
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Fio. 15. Variation of fluctuation amplitude as a function of n.
The case treated here is the same as Fig. 14.The dashed line repre-
sents the result based on a quiescent stationary state.

"L.$pitzer, Jr., Phys. Fluids 3, 659 (1960).
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= (2 /no') P C(*—x', *')
l C (*,*—x') (7 5)

+C(x,x')]S„(x').

In the final expression of (7.3), there is again a simplifi-
cation arising from (6.1).

We now write
(7.4)cp cp=(k)+iy(k)

and substitute it in (7.2). Assuming that lcp(k)l
)) l p(k) l, we find cp (k) from the real part of Kq. (7.2).
For T '))T+, we obtain

cp(k) = ask{1+ (k '/k') U(k, ask)
+ReLX (k, ask) —X~(k, ask)]}"', (7.5)

where s is the sound velocity defined by (5.9), and the
choice of sign in the frequency variable of X, X+, and
U should agree with that in front of (7.5).

It is clear from (7.S) that the presence of Quctuations
acts to change the propagation velocity of the acoustic
wave from its quiescent value s to

sg ——s{1+(k '/&c. ")U(k, ask)
+ReLX (k, Ask) —X+(k, Ask)]}"'. (7.6)

Although this modification certainly leads to a dif-
ferent quantitative evaluation, we do not expect that
it will result in any drastic change in the nctlre of the
phenomena involved. For this reason we shall not pay

Dividing (6.2) by 4pra "'(x)4sa+&+(x), we now find

LI—X-(x)]/4 ~"'(x)+L1—X+(x)]/4 ~"'(x)
+U(x) =0, (7.2)

where

U(x)—=LV (x)+Z (x)]/4pru "'(x)
—LF~(x)+Z+ (x)]/4pru+&P& (x)

much attention to this sort of modifications in this sec-
tion; we shall be mainly concerned with the eBects of
turbulence which act to stabilize the ion acoustic oscilla-
tions under those circumstances for which a conven-
tional linear theory predicts instability.

One of the two solutions, Kq. (7.5), represents an
ever-damped branch of the acoustic modes. As will

soon become clear from (7.10), this branch is given by
the choice of sign opposite that of k- Vg. The Quctua-
tions associated with such heavily damped oscillations
can be treated by ordinary means without considera-
tion of the eGects of turbulence; their magnitude re-
mains in the vicinity of the thermal level. We shall not
be interested in this branch in the following analysis.

With the aid of the considerations enumerated above,
we may write for the acoustic mode of our interest

~(k)=(k ~~/Ik ~sl)», (77)

where we may interpret s as a renormalized velocity of
the acoustic wave which contains e6ects of turbulence.

Given the real frequency, we can calculate the growth
rate y(k) from the imaginary part of (7.2). Within the
same order as foregoing calculations, we find

1 nc cp(k) —k
v(k) =-

2r~ 2rn+r cp(k)

X{1+ReLX (k,cp(k)) —X+(k,cp(k))]}

+xpcp(k) ImLX (k,cp(k)) —X+(k,cp(k))]. (7.8)

The curly bracket in the second term represents a cor-
rection factor on the wave-electron coupling term due
to the presence of turbulence. We shall not be concerned
with this sort of correction, for the reason given before.

By evoking (6.1) again for our hydrodynamic analy-
sis, we may calculate the last term of (7.8) with the aid
of (S.Sa) as

7r C(x—x', x)—co(k) g Im l C(x, x—x')+C(x,x')]L4&ru *(x—x')S, (x')+4su+*(x —x')S~(x')]
np' *' p*(x—x')

4pru *(x—x')
=—cp(k) P Im (x—x', x)LC(x, x—x')+C(x,x')]S„(x')

n ' *' p*(x—x')

+—cp(k) Q C(x—x') x)LC(x, x—x')+C(x,x')] ImSp+(x'), (7.9)
Co

where x now takes on values Lk,cp(k)]. We show in Appendix C that the second term of (7.9) amounts to another
turbulent correction to the first two terms of (7.8); we leave out such relatively unimportant contributions of the
turbulence. We can thus re-express (7.8) in a simplified form as

1 rn cp(k) —k. Vs 1 4cru *Lk—l, cp(k) —cp']
v(k) =- + dcp' d'f Im

2r+ 2m+r pp(k) 16''np'(4s e)' e*Lk—I, cp (k)—cp']

(k—l).k-k (k—I) k l-
XI,2 + Sg (I,cp'), (7.10)

lk —ll

where we have made use of the interchange (6.6) and the identity (6.8).
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If we consider only the vicinity of the acoustic pole, (7.7) and (7.10), we may writel

4sa *[k—1, cp(k) —cp'j
Im —sr&rcp (k—1)8[cd (k) —pp' —cp (k—1)j,

ee[k —1, cp (k)—cp'j

Sg (k,cp) S=g (k, k) f&[cp c—p(k) j,
and the amplitude function Sg (k, k) defined via (7.12) satisfies a symmetry relation,

Sg(k, k)=Sg(k, —k).

The last term of (7.10) is then explicitly calculated as

~(k) s kp

2kPS g(l, k)dl+ (k'+1')l'S g(l, k)dl
16&rnp'(4«)'

(7.11)

(7.12)

(7.13)

(7.14)

where kj and k2 are lower and upper limits of wave number between which the acoustic wave may be well deined.
It is clear that (7.14) represents a nonlinear damping of an acoustic wave, due to the presence of fluctuations of
acoustic type in the stationary state, i.e., a mode-coupling eBect.

VIII. FLUCTUATION SPECTRUM ASSOCIATED WITH THE ION ACOUSTIC MODE

According to the dielectric superposition principle, " the fluctuation spectrum for the internal electric field is
given by

Sg(k,~)= (4«/k)'[S-"'(k, ~)+S+"'(k ~) j/ I e(k,~) l'

t/'+me '
[S &" (k,cp)+S+&'& (k,cp)j— Im

&& k Ime(k, &d) e(k,cd)
(8 1)

Here S+& &(k,o&) represent the density fluctuation spectra of the ions and the electrons in a fictitious system in
which the eGects of long-range Coulomb interactions are suppressed. %ithin the hydrodynamic description, they
are given by"

k'~Tg
Sg&P& (k,cp) = Im4&rag&P& (k,o&)

kf' e (d

(8.2)

&r cps+ (ksD~ —rgcds)s

Note that the frequency variable for S &P&(k,cd) in (8.1) has been replaced by the displaced frequency p& of (7.1)
to take account of the uniform drift motion of the electrons as a whole.

The existence of a long-lived collective mode at o&~(k) gives rise to a sharp peak in the Quctuation spectrum
(8.1);1&[cp—cp (k)j arises from —Im[1/e(k, pp) j, and the strength of the peak is inversely proportional to Ime[k, o& (k)j
or —y(k).& s If we integrate (8.1) across the resonance pole (7.7) by taking account of the expressions (7.10),
(7.12), (7.14), and (8.2), we obtain the following self-consistent equation for Sg(k, k):

Sg(k, k)=2pr&&T (m /ter )(k'/k ')

Here,

V.—0 V, su kg

+ 2kPSg(l, k)dl+ (k'+l')PSg(l, k)dl
s 8&ms'(4s e)' I

(8 3)

V,=[1+(rn+r /ns r+)js (8.4)

is a renormalized critical velocity and we have assumed k. Ve) 0, knowing that the other cases can be taken care
of by the synunetry relation (7.13).

The sharp resonant line structures of Eqs. (7.11) and (7.12) are valid only in the limit of ) v(h) ~

-+ 0. Although this assumption
may certainly be incorrect for a turbulent plasma and the broadening of the resonance line due to the finiteness of &(4) should be
taken into consideration for a rigorous treatment, we also note that (7.11) and {7.12) appear in the integrand of (7.10) only. As long
as the remaining factor in the integrand is a slowly varying function of the integration variable (in fact, it is independent of au ), the
primary importance is not in the minute detail of the resonance structure, but in the total strength represented by the area under
the resonance curve. Modification of {7.11) and (7.12) to Lorentzian line shapes, for example, may be subsequently carried out with
the values of y(h) which are determined from (7.10}by 6rst assu~i~g (7.11) and {7.12).
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It is sometimes more convenient to consider the energy p(k, k) contained in the k mode of acoustic oscillation,
rather than the strength of internal 6eld fluctuations. The transition between the two may be achieved by noting
the following points: (1) The field energy density is given by E D/Spr, where D is the electric displacement vector;

(2) the dielectric shielding factor for the acoustic wave is k '/k' for k'«k P; (3) there is another contribution of
equal amount from the kinetic energy. We thus find a relation"

p(k, k) = (k '/k')S44(k, k)/44r,

and we may rewrite (8.3) in terms of p(k, k) as

(8.5)

p(k, k)=xT (m /2m+r )
-m V,—k V. sk

+
s 2np'(44re)'k ' 2kl'p(l, k)dl+ (k'+P)l'p(l, k)dl . (8.6)

1 Ie

When Ve«V„p(k, k) is so small (of the order of
xT ) that the mode-coupling term in the denominator
is indeed negligible. We find from (8.6)

s
p(k, k) =-', xT

V.—u V,
(8 7)

This is identical to what one obtains from the theory of
critical fluctuations, '2 or from a steady solution of
Pines-Schrieffer collective kinetic equations. '~ When
Ve ——0, (8.7) exhausts its equipartition contribution
p'xT in the limit of T+/T -+0; the remaining p'14T

comes from p(k, —k)"
As Ve enters the transition region k. Ve V„p(k,k)

grows substantially so that the mode coupling term
becomes significant. We have carried out a numerical
solution of (8.6) in this transition region by choosing
the following set of parameters for a helium plasma:
n0=3X10"cm ', T =100T+=6.6)&10' 'K, V,=4X10
cm/sec, s=1.2&&10' cm/sec, r = 10 " sec, and r+ ——2

&&10 ' sec (the density of the neutral atoms =2 3
X 10" cm '). The results are summarized in Figs. 14
and 15. We observe a substantial enhancement of p(k)
as compared with its equipartition value eo at Vq=0,
and an enormous piling up of Quctuations in the long-
wavelength region as soon as k Ve exceeds V,. The
cutoff at k=k& in Fig. 14 appears as a result of our
assumption that the transition between the acoustic
mode and the diGusion mode take place sharply at
k= k~. The transition is in fact rather a mild one"; we
may expect that such a gradual transition acts to round
off the peak and produce a tail of the spectrum toward
the small k region in the vicinity of k= k&.

Finally, if we pass to the region where k Ve) V„
then p(k, k) increases almost proportionally to k Ve—V„as may be determined from the denominator of
(8.6). Let us investigate the over-all structure of the
solution to (8.6) in this domain. In order to secure a

"«(k, k) in this calculation means the energy contained in the
mode Pk,co(k)j;me also note that there exists «(k, —$) from the
mode I

—1r,, —cu(h)g herbose amount is equal to «(k,k). The use of
the same notation « for both the dielectric response function and
the energy in the collective mode should not cause any confusion;
the distinction can be made easily from the arguments."D.Pines and J. R. SchrieGer, Phys. Rev. 125, 804 (1962).

systematic means to estimate the relative magnitude of
the terms involved, we feel it convenient to consider
the order of each term with respect to the plasma
parameter, g=—k '/np(«1). Since the discreteness pa-
rameters" e, m, and 1/np are all regarded to be of the
same order as g, we find that the numerator is first
order in g, while the 6rst term in its denominator re-
mains zeroth-order unless k V& takes on a value very
close to V,.

Let us now split p(k, k) into two parts:

p(k, k) = pp(k)ik)+ pg(k)k), (8.8)

where pp(k, k) represents that part of p(k, k) which is
zeroth order in g, and pq(k, k) is the remaining higher-
order part. If we susbsitute (8.8) in (8.6) and retain
only the lowest-order contributions in g, we find an
equation of the following structure:

where

F(k, k)=Ck—

A
pp(k, k) =g—&+F(k,k)

(8.9)

2kl'pp(l, k)dl+ (k'+P)14pp(l, k)dl

(8.10)

and A, 8, C are positive parameters whose magnitudes
are of the zeroth order in g. It is clear that F(k,k) is a
monotonically increasing function of k. We first observe
that limk 4,F(k,k) Bmust approach a s—mall positive
value of at least 6rst order in g in order that the right-
hand side of (8.9) can produce a zeroth-order contribu-
tion. This condition being satis6ed, we also find from
the structure of (8.10) that F(k,k) —8 can remain of
the order g only in such a close neighborhood of k& that
(k —k~)/k~ g; outside that, F(k,k) —8 goes up to
larger values so that the right-hand side of (8.9) cannot
produce values which belong to pp(k, k). All these indica-
tions suggest that pp(k, k) should exhibit a sharp peak of
singular character as g —+0, which may then be ap-
proximately expressed by the 8 function, i.e.,

(4ne)'np'm k .' k V„—V,
ep(k, k) = S(k—k,). (8.11)

m+sr& j' s
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Again we must add a quick warning that this 8-function
behavior should not be taken literally, because the
appearance of the 8 function depends critically on our
assumption of the sharp transition at k= 0&. We may,
however, well conclude from this calculation that, when

k Va) V„p (k,k) should contain a peak structure around
k= ki whose strength is proportional to k. Va —V,.

Substituting (8.8) into (8.6), where pp(k, k) is now

given by (8.11), we find the following equation for

pi(k, k):

pi(k, k)=~T (m /2m+r )
m k Va —V. k' sk——1 +

m+r s kiP 2npP(4ire)'k P

2kl'p, (l, k)dl+ (k'+P) 1'pi(lk), dl

1

(8.12)

As we see in this equation, there are no more singularities involved for pi(k, k). In the vicinity of ki, an approximate
expression for pi(k, k) is

p, (k, k) ( 4rp)' n'pe' m/~r sk Ppi(l, k)dl,

while in the vicinity of k2, we find

(8.13)

p, (k, k) aT (m /2m+r )
-m k V&—Vik ' s

I

—+
m+r s ski np'(4jre)' p

—P2
lP pi(l, k) dl

k
(8.14)

In both (8.13) and (8.14), we simplified the equations
by assuming k2'&&kp.

IX. DISCUSSION

For the theoretical study of a turbulent plasma, we
first introduced our fundamental assumption by postu-
lating a stable turbulent state for a plasma. The di-
electric response function for such a turbulent plasma
was then calculated, and with the aid of it the Quctua-
tion spectrum was determined self-consistently. As
should be clear from (7.10), (7.14), and (8.3), the re-
sults of our calculations indeed support our original
assumption; the dielectric response function remains
stable for the whole range of physical parameters.

We may thus pass rather smootMy from a stable
region to a turbulent region. In terms of the small ex-
pansion parameter g of the plasma, the energy p(k) in
the acoustic wave with wave vector k is estimated to
be of the order g (i.e., the thermal level) in the stable
region; as the plasma enters the transition region, k. Va
~V„ the order of p(k) goes up to g'~P; finally in the
turbulent region we have seen that p(k) contains a part
of the order gP. A conclusion from this observation is
that, if one considers the limit of g

—+ 0 by neglecting
the thermal Quctuations, the onset of instability, or
passage through the critical point, k Va= V„may still
be regarded as an abrupt process.

In the course of calculations, we introduced a couple
of simplifying assumptions. Let us now examine physical
implications of those assumptions.

Firstly, we have simplified the iteration procedure by
disregarding the contributions from the ternary and the
higher-order correlation parts. Ke cannot of course
justify the neglect of those higher order correlations.
Based upon our calculations, however, we may cer-

tainly note that this neglect has not led to a dangerous
or catastrophic behavior of the Quctuation spectrum,
as did the neglect of pair correlations in the vicinity of
the critical point. It was indeed in the divergent be-
havior of the Quctuation spectrum at the critical point
that we sensed a signal which pointed to the inappro-
priateness of ignoring the eGects of pair correlations in
the description of the stationary state. As long as we do
not see such a signal in the neglect of the ternary and
higher-order correlation functions, we may content our-
selves with the perspective that inclusion of such
higher-order correlations would not produce a drastic
change in the nature of the entire analysis, al.though it
might possibly result in quantitative corrections to the
final results.

Scondly, in the solution of the dispersion relation for
the acoustic mode, we have neglected the contribution
from (2irS(z)/npsj' terms in favor of that from linear
terms. It might therefore be said that by so doing we
have shifted ourselves toward the consideration of weak
turbulences. Nonetheless, we would like to emphasize
that our original approach is equally valid for both
strong and weak turbulences; the above concession
had to be made only for the sake of analytical ac-
cessibility. Furthermore, even in the weak turbulence
domain, our approach diGers in a significant way from
a perturbation-theoretic calculation starting from a
quiescent stationary state.

To see this difference, let us go back to Kq. (7.10):
Since the zeros of p" (k,pp) remain in the upper half of
the complex ~ plane, calculation of the last term always
leads to a nonlinear dumpling of the wave, as we have
seen in (7.14). On the other hand, if we were to start
from a quiescent state and carry out a perturbation
calculation with respect to the Quctuations, we would
have obtained the following equation in place of
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(7.10):
1 a)(k) —k Vg1

v(k) = ———
2 T+ 288+7 ~(k) 16+rco'(4 e)'

4&rcc &"[k—1, co(k) —c0']
ko' d'l Im

e&o)[k—1, ce(k) —ce']

(k—1) k k (k—1) k 1-
XP +

p

When the plasma is in the so-called unstable region,
e&o& (k,ce) possesses a zero in the upper-half plane; if one
picks up the contribution of this pole in the calculation
of the last term in (9.1), it will result in an ordinary
nonlinear damping term of a perturbation calculation.
If, however, we stop to think about a stable case, we

may easily find that this term now changes its sign be-
cause all the zeros are located in the lower-half plane;
this should then indicate that in the stable domain the
mode coupling term acts to push the system toward
instability. Furthermore, one cannot pass smoothly
from the stable region to the turbulent region within
this scheme because a zero of e&'&(k,ce) in (9.1) cuts the
real axis of frequency integration at the critical point.

All those unsatisfactory features have been cured in
(7.10) by the choice of a correct dielectric response
function for the turbulent plasma and appropriate
boundary conditions. We point out that our results
cannot be obtained by a straightforward extension of
perturbation calculations starting from a quiescent
state, since the turbulent dielectric response function
involves additional sum of infinite number of ploariza-
tion diagrams as we have seen in Sec. IV.

It is instructive to investigate the spectrum (8.13)
in terms of a dimensional argument of the Kolmogorov-
Obukhov type. ~' In the region where k& k~, the principal
decay mechanism is the successive energy-transfer
process toward a higher wave-number region due to
mode coupling with waves which possess relatively
small wave numbers [mainly with those contained in
eo(k,k)].Yet, the wave numbers in that region are much
smaller than k2 so that the wave energy cannot be
e6ectively dissipated into heat. We may therefore argue
that the Row rate of energy 8e&,/Bt toward large k
region should be continuous and independent of k. To
maintain a steady state, it must then be equal to the
rate of energy transferred down from the mode with
k = k&. Since its strength [see Eq. (8.11)]is significantly
large as compared with eq(k, k) and proportional to
(k Ue —V,), it may be natural to assume that the rate
of energy transfer is also proportional to (k Ve—V,);
this estimation is also supported by the fact that the
time rate of wave production by the drifting charged
particles is proportional to (k Ve—V,). Indeed, con-

~ L. D. Landau and E.M. Lifshitz, Iikcjd Mechanics {Pergamon
Press, Ltd. , London, 1959), Chap. III.

trary to the cases of isotropic turbulence in ordinary
H.uid, where the critical parameter is determined by the
dimensionless Reynolds number, the onset of an in-
stability for the acoustic plasma wave is characterized
by the critical drift velocity. For the plasma, we may
consequently regard (k Ve—V,) 'Be&/Bt= Aas—a con-
stant parameter over the wave-number range of interest.
The constant must be expressible in terms of k and &»

only; the only dimensionally correct combination is

and thus we find
A ke»,

e&,
——C/k, (9.2)

where C is a constant independent of the drift velocity.
Comparing equations (8.13) and (9.2), we see that the
result of our calculations satisfies (9.2) in the region
where k& k~.

e~~&&2' (k 2/k2) (10.1)

where the enhancement factor P varies for the helium
plasma from 460 in one case (case I) to 1010 in another
(case II). They also pointed out that the theory of
critical fluctuations' ' could explain the shape (i.e., the
k ' dependence) of (10.1) provided that (1) the state
of the plasma was strictl'y at the critical point, and that
(2) the critical wave number k, was so small that the
waves in its vicinity could not be detected by the
scattering experiment. The former requirement seems
too stringent to suppose; the latter assumption may be
deemed unphysical because in particular it requires
that the eGects of collisions be negligible. Those rather
unsatisfactory aspects were of course recognized by
Arunasalam and Brown; a theoretical explanation of
(10.1) has thus remained an open question.

Our present calculation, based upon the hydrody-
namic description, has the advantage of taking almost
full account of the eGects of collisions; it su6ers a
severe drawback of hydrodynamics in that it loses its
theoretical basis when applied to short-wavelength
phenomena. We note that the region in which the
measurement of (10.1) was actually carried out falls
rather in the short-wavelength region, 0.1k &k, so that
a hydrodynamic analysis would be of doubtful validity
in this domain. As far as the acoustic waves are con-
cerned, however, we know from a kinetic-theoretical.
analysis that oscillations of the same character can
exist down to a short-wavelength region comparable to
the electron Debye length. With the help of this con-

X. COMPARISON WITH EXPERIMENT

Let us now compare our calculation with an experi-
mental result. Arunasalam and Brown' measured the
density Quctuation spectrum in a weakly ionized turbu-
lent plasma by means of microwave scattering experi-
ments. The result of their measurement may be sum-
marized by the expression
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k Ve —V.fk ' 2m+sr
i

—+
s Ekx m np'( 4es)' p,

Ppr(t, k)dl

(10.2)

Since there are many ambiguous factors involved in the
application of this formula to the practical cases, we
had to make a number of attempts of computations to
allow for various possible choices of the parameters.
All the attempts produced values of P considerably
smaller than the experimental values. For example,
when we assume k. Ve —V,=O and kp ~pk, the com-
puted values of P are about 101 for case I and about
315 for case II; these are to be compared with the ex-
perimental values, 460 and 1010, respectively. In view
of the fact that there are many additional complications
involved, such as the external magnetic 6eld and the
scattering from a 6nlte plasma, which may all aGect
the estimation of the absolute value P, the above dis-
crepancy may not be too surprising. Ke may maintain
that there still remains some room to make further
critical analysis concerning the absolute estimation of
the enhancement factor,

cVote added in proof Recently . our attention was
called to the microwave scattering experiments carried
out by J. T. Coleman D. Appl. Phys. N, 2655 (1967)j.
The significance of his experimental 6ndings appears to
be twofold: (1) A possibility of switching on and off the

sideration, we may extend our calculation and choose
the upper limit k2 in the neighborhood of k .

We thus find that (8.14) oifers a theoretical explana-
tion of (10.1) without relaying upon such dubious
assumptions as the exact critical conditions and the
absence of collisional eGects. Indeed, the k ' dependence
of the energy spectrum in the short-wavelength region
(k~k&) is obtained in (8.14), not only at the critical
conditions, but also above them; the eSects of collisions
are of course included in (8.14).

The peak structure of (8.11) and the k ' part of
(8.13) cannot be observed by their experiment because
k& takes on a value much smaller than k . For case I, we
compute" k&~1.2 cm—' and k ~1.6)&10', while for
case II, k~ 4.0 cm ' and k ~90 cm ' in both cases,
kq/k (0.05, so that the oscillations with wave numbers
in the vicinity of kj are outside the experimental
detectability.

Finally, we note that (8.14) offers a theoretical means
to estimate P. Comparing equations (8.14) and (10.1),
%'e 6nd

turbulence by controlling the electron temperature was
demonstrated; (2) the existence of pronounced peaks in
the turbulence spectrum at k~0.02k was detected. We
remark that the present theory is consistent with those
experimental endings. The theory describes quite mani-
festly the appearance of turbulence as the plasma passes
the critical conditions; it also predicts sharp peaks at
about k = k& in the turbulence spectrum whose strengths,
given by (8.11), are conspicuously larger than those
associated with the other parts of the spectrum, as
Fig. 8 in Coleman's paper seems to demonstrate experi-
mentally. Furthermore, if we use numerical values,
np=3X10' cm P, T =5X1—0 'K, and 1/r+=7X10
sec ', which may be appropriate to characterize his
experimental conditions for a hydrogen arc discharge at
the pressure of 0.2 mm Hg [J. T. Coleman (private
communication) j, then we find k&

——0.016k; this value
is to be compared with the experimentally found loca-
tion of the peaks, k~.02k . Ke may interpret this
comparison as an indication that those peaks could be
explained by Eq. (8.11). We are grateful to Dr. V.
Arunasalam for calling our attention to Coleman's work.
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APPENDIX A: DIELECTRIC RESPONSE
FUNCTION OF A TURBULENT PLASMA

IN A MAGNETIC FIELD

For the sake of simplicity, we consider the cases of
the electron gas; the basic equations are

asap/at+V r=o, (A1)

M'/Bt= —(1/ )fF+DVrp+pppE+p(F/e) XBj, (A2)

V E= —kre(pp —ppp). (A3)

Ke Fourier expand everything in sight and eliminate
F(x) and E(x); the elimination of F(x) can be simply
done by following the procedure in the latter work of
Ref. 15. Introducing a tensor B(x) by

'1—i(or —Qr

1—ivor
B(x)=—

(1—ia)r)P+ (Qr)P

24 In a11 the computations, ore have assumed J=i in Table I of Ref. 3.

(1—ippr)'+ (Qr)'

1 $40r

(A4)
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and defining a new coupling constant C(x,x') by

C(x,x')=k B(x).k'/ik'i'
we obtain an equation

zpp /D Gpg—pp' ——+~ —lP+o&,' C(x,x) n(x)+ P C(x, x—x')n(x')n(x —x') =0.
r kr Kp

(A5)

(A6)

(A7)

On comparing (A6) with a combined result of (3.8) and (3.9), we find that all the remaining calculations of Sec.
III can be transformed into a form valid for the cases with magnetic field if we make the following replacement:

C(x,x') 1 C(x,x')/C(x, x),
4&rn~ (x) ~ 41m'tP (x) = no„C(x,x)/LDk C(x x) ip&(1——ippr)).

APPENDIX 8: CALCULATION OF r. (x) FOR A TWO-COMPONENT PLASMA

In this Appendix we outline some of the intermediate steps toward the calculation of the dielectric response
function (5.2). The fundamental equations for the Fourier components, n~'(x), of the induced density fluctua-
tions are

where

( ~ D~ 1

~

—6'——+ Ip' n~'(x)Wp&~' p'(x)+—P C(x, x x) Ln—z( x)p'(x x')+—nz'(x')p(x x')] —=0, (81)
7~ Sp

p(x)=n (x)—n~(x), p'(x)—=Q(x)+n '(x) —n '(x), (82)
and —eQ(x) is the strength of the external test charge. We carry out the statistical averaging of (81) with the aid
of the iteration and truncation procedure described in Sec. III. We find

2'
(n~(x') p'(x x')) =———C(x—x', x)

Sp

-4&r *(x—x') 41m *(x—x')S,(*)+ S„(*)(, (.))
c*(x—x') X X

2m

+—C(x—x',
Rp

2'
(n~'(x —x')p(x')) =a—C(x—x',

Rp

(83)
41m+*(x x') — 211 4sn *(x—x')

x') Sp, ( )x(n+'(x))+ C(x —x', x'—) S~,(x')(n '(x)),
p*(x—x') np e*(x—x')

41m~*�(X—X')
x) ((1+4&rn *(x—x')]S, (x') —4sn *(,-—')S, ( ')j(p'( ))

X X

p*(x—x')l1Q

With the aid of those calculations, e(x) can be obtained from (81) as

(n '(x)) (n '(*))
p(x) =1+

(p'(*)) (p'(x))

4rng*(x —x')
W~(x —x', x') (1+4&rn~*(x—x')]S„(x')(n~'(x))

np p*(x—x')
41m+*(x x')41m —*(x x')—

W—C(x—x', x') S„(x)(n~ („)).
(84)

(85)

APPENDIX C: CALCULATION OF THE SECOND TERM IN EQ. (7.9)
With the aid of the dielectric superposition principle, "one finds

S &" (x') S+&'&(x')
Imsp+(x') = —ImL4&r~(x')) +ImL41rn (x'))

X 6 X
(CI)

We have been solving the dispersion relation by retaining contributions of linear terms in 2&rs(x)/np'. In (C1), we
may therefore replace the imaginary parts of 4&rn~(x') by those of 4&rn~&P& (x'). It may then be clear that the second
term in (7.9) can be decomposed into terms which have the same structure as the first two terms of (7.8).


