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progressively inaccurate as a is raised from 0.2 to 0.8.
The net result of these calculations is that for the
charged-point and the neutral-point cases, the distri-
bution curves generated by the present theory favor
slightly stronger fields than does the theory of BM.

As in I, the method of including noncentral forces
through the mechanism of collective coordinates is
shown to be highly effective. Exactly how good this
method is, is evidenced when the second term in the
cluster expansion is calculated; here one finds that the
noncentral, two-particle correlations are included,
through the use of collective coordinates, to the approxi-
mation of the nonlinear Debye-Hiickel result. Since this

second term is only a small correction to the theory,
even in the case of high c values, such an approxiInation
must be considered highly accurate. Furthermore,
during the derivation of the general formalism, espe-
cially that part relating to the cluster expansion, the
fact that it was not necessary to explicitly mention
noncentral interactions resulted in much simplification.

iVote added im proof It h. as recently come to the
author's attention that H. Pfenning and E. TreGtz
[Z. Naturforsch. 21a, 697 (1966)j have employed a
corrected version of the BM method to generate P(e)
values for neutral point cases. Their results agree quite
well with those presented in this paper and in I.
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An accurate theory for the self-diffusion coefficient of liquid metals is developed in terms of the Uan der
Waals concept of a dense Quid. Making use of the Enskog hard-sphere formulation we obtain the following
results: 1) a relationship for the coefficient of self-diffusion which accurately gives both the magnitude and
temperature dependence over the entire liquid range at atmospheric pressure; 2) a relation between the
melting point and the coefficient of self-di8usion which is the freezing counterpart of the Lindemann law
of melting.

ECENTLY, Dymond and Alder' have demon-
strated that the Van der Waals concept of a

dense Quid yields a simple and accurate description of
the transport properties of the rare-gas fluids. The
underlying idea in this treatment is that particles move
in straight lines between core collisions. The attractive
potential energy or cohesive energy term is thought of
as a uniform negative potential2 which does not affect
the basically hard-sphere collisions. '

In liquid metals, the cohesive energy expressed in
units of the melting temperature T is an order of
magnitude larger than that of rare-gas liquids. How'ever,
pseudopotential calculations show that a pair-wise
interaction is a valid representation of the interaction
energy between electronically screened ions, and that
the attractive part of this pair-wise interaction is com-
parable to that found in rare-gas liquids. 4 Furthermore,

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

' J. H. Dymond and B. J. Alder, J. Chem. Phys. 45, 2061
(1966).

2 H. C. Longuet-Higgins and B. Widom, Mol. Phys. 8, 549
(1964).' H. L. Frisch, Science 150, 1245 (1965).

the structures of all simple liquids, metallic and non-
metallic, are approximately the same' ' when compared
at the melting temperature, using as a unit length
r =L(3/47r)Q Jl', fl being the mean atomic volume
at the melting point. This substantiates molecular
dynamics calculations' which show the insensitiveness of
the liquid structure to the details of the pair interaction.
Thus, we expect comparable (scaled) effective potentials
to be a good approximation for metals and insulators
at their melting points. As the Van der Waals concept
yields a reasonable description of the rare-gas liquids,
we shall here make use of the Van der %aals cohesive-
energy-density term as an efIective uniform negative
potential over the entire temperature range for liquid
metals at atmospheric pressure.

In applying this approach to D, the coeScient of self-
dift'usion of liquid metals, the basic approximations
we make are: the use of the Enskog derivation of D
for hard-sphere dense Quid, further corrected in accord

4 W. A. Harrison, Pseudopotentials in the Theory of Metals (W.
A. Benjamin, Inc. , New York, 1966).

'K. Furakawa, Sci. Rept. Tokoku University First Ser. 12A,
368 (1960).' A. Paskin, Advan. Phys. 16, 223 (1967).
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with molecular dynamics calculation, the hard-sphere

gas pressure is set equal to the Van der Waals cohesive-
energy-density term, which is thought of as a uniform
negative potential, and the packing fraction of all

simple liquids is 0.45 at their melting point. With
these assumptions, we obtained the following results:
1) a relationship for D for metals which accurately
gives both magnitude and temperature dependence
over the entire liquid range at atmospheric pressure,
and 2) a relation between the melting point and the
coefIicient of self-diffusion which is the freezing counter-
part of the Lindemann law of melting.

For calculating the transport coefIicients of liquid
metals, we first make use of the Enskog theory for dense
hard-spheres systems. ' In the Enskog theory, the dif-
ference between the collision rate in. high density and
low density arises mainly because the diameter of hard
spheres significantly decreases the distance that two
spheres have to travel in order to collide as systems
became denser.

We may therefore write the self-diffusion coeS.cient

where D, is the self diffusion of gas of hard spheres and
X is the Enskog high-density correction; making use of
the Enskog relation between X and the hard-sphere
pressure we obtain

D= 21
~x

(2)
M (P/pET) 1—

where l is the hard-sphere radius, M is the atomic
mass, p is the Incan atomic density, E is the Soltzmann
constant, and T is the temperature.

A hard-sphere radius at the melting point can be ob-
tained in a variety of ways. It can be related to a Len-
nard-Jones potential, ' or derived by matching an ex-
perimental liquid structure with the Percus-Yevick
hard-sphere dense-Quids approach, 7 or from the packing
fraction which has been obtained at the freezing-phase
transition by molecular dynamics calculation of hard-
sphere phase transition. '

Such a hard-sphere radius is expected to be tempera-
ture-dependent and to vary somewhat with the proper-
ties it is chosen to match. This is not surprising as the
hard-core radius is essentially some average of the re-
pulsive part of the pair interaction. For example, while
the structures of liquid sodium and liquid argon are
essentially the same at their melting point, implying
almost coincident hard-sphere radii, their structure
factor at zero wave vector" differ by a factor of 2.5,
which would imply a change in the packing fraction of
30%, which is an unreasonably large difference.

' N. %. Ashcroft and J. Lekner, Phys. Rev. 145, 83 (1966).
S. Chapman and T. G. Cowling, The Jt/Iathematical Theory of

Eon-Uniform Gases (Cambridge University Press, New York,
1939).' B.J. Alder and T. Wainwright, J.Chem. Phys. 31, 659 (1959);
33, 1439 (1969), Nuovo Cimento Suppl. 9, 133 (1952).

"The structure factor at zero wave vector a{0) is equal to
ETXpXCz, where Cz is the isothermal compressibility.

Tmrx I. Comparison of the calculated and experimental self-
diffusion coeftjLcient of simple liquid at the melting point.
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We here assume that all simple liquids, metallic and
nonmetallic, at their melting point show the same pack-
ing fraction, or that the ratio l/r is a constant, specific-
ally g(T ) =P/r '=0.45, which has been shown to fit
the diffraction data of a number of different liquid
metals by the hard-sphere Percus and Yevick (P.Y.)
liquid model. '

The main contribution to the temperature depend-
ence of the Enskog correction X is contained in the
pressure-dependent term in (2). The hard-sphere equa-
tion of state can be obtained in several ways: Dymond
and Alder use experimental rare-gas data, from which
they derive the hard-core size; or one can follow the
approach outlined by Guggenheim" which directly
relates hard sphere pressure to a Van der Waals at-
tractive term. The basic idea is that at atmosphereic
pressure the hard-sphere repulsive pressure has to be
balanced almost completely by an attractive Van der
Waals term ap//ICT where a is the usual Van der Waals
constant.

We obtain ap/KT by using the P.Y. hard-sphere
equation of state, "namely

ap i+g+
ET (1—g)'

(3)

0.77 ~E
D= r

2 3f
(5)

E(10T~/Tp-) —1j
"E. A. Guggenheim, A pplication of Statistical Mechanics

{Clarendon Press, Oxford, England, 1966).
~ H. Reiss, H. L. Frisch, and Y. L. Lebowitz, J. Chem. Phys.

31, 369 (1959); and J. K. Percus, in Classical Theory of Iileids,
edited by H. L. Frisch and J. L. Lebowitz (W. A. Benjamin, Inc.,
New York, 1965).

recalling that all parameters must be related at the
melting point where q =0.45, we obtain

ap /KT =10.
From this argument we arrive at the following form for
the Enskog self-diffusion coefficient:
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FIG. f. Comparison of the temperature dependence of D for
~ In, o Sn, and 0 Hg with theory. The full curve is the hard-
sphere calculation and the dashed curve is the phenomenological
"activated" form D~ (T/T )'/~e~~ /T. It may be noticed that
this last form is also approximated by a linear temperature
dependence.

By molecular dynamics calculations of hard spheres, '
Alder and Wainwright" have found that at high density
there is a 30'%%uo correction to the Enskog formula. For
temperatures in the liquid-metal range, the back-
scattering correction has been approximated by 0.73
(q /il)'", i4 and the complete hard-sphere dense-fluids
formula becomes

~z
D= 0.28r

M E(10TM/TP )—1j
(6)

In this formula, while g„is set equal to 0.45, g(T) has
been derived at each T by the use of the relation (3)
when the constant a is given by (4).

We first demonstrate the validity of (6) by comparing
the calculated and observed self-diffusion constants at
the melting point, Table I. The agreement between the
calculated and observed values for self-diffusion is
striking, especially when one considers that the experi-
mental error is generally of the order of 10%.

The temperature dependence of formula (6) is also
in good agreement with experiment as shown in Fig. 1.
It is worth noticing that the hard-sphere liquid-diBusion

"B.J. Alder and T. Wainwright, in The Mazy Body Problem,
edited by J. K. Percus (Interscience Publishers, Inc. , New York,
1963).

"We have used the comparison of the diffusion coef5cient ob-
tained by the Enskog relation and hard-sphere molecular dynamic
calculations to estimate the correction to the Knskog formula-
tion. While the correction of about 30% seems reasonable d'or
packing fractions corresponding to the melting point, the Alder-
Wainwright calculations quoted do not seem accurate enough to
give the packing fraction at which the correction goes to unity.
We have taken the correction to be about J5% in the high-
temperature region near the boiling points.

process is not an activated one, a point emphasized
earlier by Dymond and Alder.

However, the experimental temperature dependence
of D for liquid metal is also well 6tted by a temperature-
dependent coeflicient of the form (T/T )'"e ' ~fr

The temperature dependence of this form and of that
of Eq. (6) are compared in Fig. 1.

Having found the good agreement for D, the coef-
ficient of self-diGusion at the melting point, it is ap-
parent that we have arrived at a relationship which
relates the melting point with the self-diffusion, namely,

T„=CMD '/r ', (7)

where C is a dimensional constant equal to 334K. '

(deg/erg). At flrst glance, this relationship might be
interpreted as the liquid-state counterpart of the
Lindemann formula which relates the melting point to
the Debye temperature. It is amusing to recall that
Lindemann originally arrived at his relationship by
hard-sphere arguments, ""namely, a substance will
melt when the shortest distance between the centers of
vibrating atoms equals the hard-sphere diameter.

In this note, we have emphasized the coeflicient of
self-diffusion relationship. Ashcroft and Langreth have
recently demonstrated that the structure of alloys is also
well approximated by hard-sphere arguments. " The
transport properties may similarly be treated in terms
of hard-sphere arguments and should complement
the hard-sphere radii used to 6t the structural data. The
agreement between experiment and theory for the
coeScient of self-diffusion suggests that the hard-
sphere dense-gas approach should also be a good
description for other mass-transport properties such as
viscosity, and it also suggests the extension from pure
metals to alloys.

Note added im manuscript. In approximating the back-
scattering correction as 0.73 (q„/q)'", we made use of
the earlier work of Alder and Wainwright. "Since sub-
mitting this manuscript, Alder and Wainwright have
calculated these corrections in more detail LPrivate
communication and Phys. Rev. Letters 18, 988 (1967)].
Using their more recent work, a better back-scattering
approximation is 0.73 (g„/g). This would increase our
theoretical temperature dependence by 15% at the
highest temperature and bring the calculations into
closer over-all agreement with the Sn and In data.
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