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I,ow-frequency component electric microfield distributions in a plasma are calculated at both a neutral
and a charged point. Et is shown that this calculation allows for the inclusion of all correlations to a high
degree of accuracy. The theory is compared with the Holtsmark and Baranger-Mozer theories. A detailed
analysis of all approximations is included, together with a Monte Carlo study. Numerical results are shown
both graphically and in tabulated form.

I. INTRODUCTION

HIS is the second paper dealing with the problem
of electric-microfield distributions in plasmas.

The first, hereafter referred to as I, dealt with high-
frequency component plasmas, where the plasma was
assumed to consist of lV charged particles moving in a
uniform neutralizing background. ' These E particles
interacted with each other through a Coulomb potential.

The problem of the low-frequency component is the
subject of this paper. Here the plasma is represented as
a collection of E singly charged shielded ions which
interact with each other through an eBective potential.
The effective potential includes the e&ect of the ion-
electron interactions. This model of a plasma has been,
and is currently, used when dealing with the efI'ects of
ions on radiating atoms and/or ions immersed in a
plasma. '' The X perturbing ions in the plasma are
assumed to interact with each other through a shielded
Coulomb or Debye-Hiickel potential. The plasma is
considered to be in thermal equilibrium and macro-
scopically neutral.

When treating the problem of the electric-field dis-
tribution at a charged particle, an additional (5'+1)th
particle, conveniently placed at the origin of the refer-
ence frame, must be included. As in I, the problem of the
electric-microfield distribution at a neutral point is just
a special case of the charged-point development.

Section II of this paper outlines the development of
the formalism. The numerical results and analysis, in-
cluding a comparison with the BM theory, 4 are dis-
cussed in Sec. III. Final conclusions are presented in
the fourth and final section.

II. FORMALISM

The equations presented in this section originate from
the formalism developed in I. Again, the problem is the
calculation of the electric-microfield distribution func-
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poration, New York, N. Y. and the National Aeronautics and
Space Administration.' C. F. Hooper, Jr., Phys. Rev. 149, 77 (1966).

~ H. R. Griem, M. Baranger, A. C. Kolb, and G. Oertel, Phys.
Rev. 125, 177 (1962).

s E. W. Smith and C. F. Hooper, Jr., Phys. Rev. 157, 126 (1967).' B. Mozer and M. Baranger, Phys. Rev. 118, 626 (1960); re-
ferred to as BM.

tion P(e), which is found from an evaluation of the
equation

P(e)=2m. 'e T(l) sin(el)ldl,

where T(l) is given by

( er,.
T(t)=Z ' . exp~ PV—+i g, l.

E. rl-'

where

X 1+—e"~~" im, dr;, (2)j
N

V= Q —e '~'",
0-i(j p"

and X is the Debye length

X = (k T/41rme')'~'.

Now express the total potential V in the form

(4)

where
V= Vo+p;u, o,

e'
e
—arip/)t

s0

~i0
(6)

T(f) = [To(&)/To(p) j
Xe p(P, (~'/j t)[k, (&)

—k;(P)j} (&)

Again as in I, the factor To(l)/To(0) has the form

[To(i)/To(P) j=& " '
(8)

where p is given by the expression

p = [a/4 (u' —2)'j[n'+ 2 (1 2v2)n'+3—a'
+8 (W2 1)a' 6at+—4(2 —v2)], (9—)

n is an arbitrary positive constant.
With these basic definitions we can follow the pro-

cedure in I [Eqs. (12) to (24)j to arrive at the following
expression for T(l):
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and where

L= te—e, a= rs//—X, eo=e/r—t&', (10)

8 2

F(x) =— [e sar —(t2' —1)e ~as]
3x -cl 2-

I,=nfkt(l) —k1(0)], (12)

rp is the much discussed ion-sphere radius which is
defined by the relation

4g+rp'n= 2.

Next, we consider the factors resulting from the terms
in the series exponent. For j=1, we ftnd, using Eqs. (28)
and (29) of I, that

2

G(x) = (&22—2)-' —f (t22 —1)e- "*—e- .*]
X'

6
+—f+2(n —1)e Rar. Qe aae]

g2

e(r) — fe
—aar. e

—&2ae)

3x G 2

-sin[LG(x)] —2

[LG(x)]
q(x) =

n' —2 2
VRGE g ex%.l

Q 2 X

where

-sin [Lq(x)]—3 dXXe'& ) (13)
[Lq(x)7

x=—r/r ,t&

(12e
—aaa ~e—&2ar)

X

Following Eqs. (31) to (33) in I, we find for the second
term in the series exponent (j= 2) the expression

I2(l) =-'222[k2(l) —k2(0)]

=+2 (—1)"+'3(2k+1)a2f )

f )= e""&Is+1&2(a'x2)(e e""j2[LG(x2)]—jtf (Lq(x2)])x2"'

e""Et+1&2(a'xt)(e eutej2[LG(x1)] —j2[Lq(xt)]) x12&2dxt dx2

822 e"—»Iti2(a'x2) fe—e"te—1]x22&2 e*'"'Et/2(a'xt) fe e"" 1]x12"dxt dx2—

Four of the functions appearing in the above equation, G(x), 22&tt&, q(x), and s(x), have already been defined. It
remains to note that the j2(—) represents a spherical Bessel function of order k, while I and E refer to modified
Bessel functions of the first and third kind, respectively. Another feature of this last equation which should be
noted is that the argument of the modified Bessel function involves an a' which is defined by the relation a = cV2.
Thus we finally arrive at the result

T(l) =exp[ —yL2+I1(l)+I2(l)].

This expression is used in Eq. (1) to calculate P(2) at a charged particle.
To determine P(e) at a neutral point, the above equations are easily altered to an appropriate form. Modifi-

cations are necessary since we no longer need to include any central interactions in the potential energy of the
system. When this change is introduced into the equations, it is found that Tt&(l)/Tt&(0) is not altered, but that
It(t) and I2(t) are. For I1(t) we find

Il(f)neutral rtkl(f)neutrs&=3
-sinfLG(x)] sin[Le(x)]-

dÃ X
— [LG(x)] [Lq(x)]—

Thus, as in I, the result of eliminating the central interactions is to set F(x) and k1(0) equal to zero in the charged-

The Bateman Manuscript Project, High+ Trawscendental IiNecfioes (California Institute of Technology, Pasadena, California,
1953), Vol. II, Chap. VII.
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point equations. Similarly, for Iz(l) we find that

h(&).«~»i=xs~'ks(I). «i»i=Xi (—1)~'3(2&+1)a'{ ),

I.+ii.(a'»)(j.[LG(»)]—j~[Lq(»)])xi"'

It,+„,(a'xi)( ji [LG(xi)]—ji [Lq(xi)])xi"'dxi d»

It may also be shown that Eq. (16) goes to the Holtsmark limit as T ~ ~.
Two approximations have been made thus far. First, we have terminated the series appearing in the exponential,

with the second term. This may be justified, as in I, by the consideration of the analytic form of the terms appearing
in the series, and by direct numerical calculations. The results of such calculations will be presented in Sec. III.
The second approximation concerns the use of collective coordinates in the evaluation of the many-dimensional
integrals occurring in this theory.

It is shown in Appendix A of I that the evaluation of the many-dimensional integrals involved in the calculation
of T(l) may be transformed into integrals over collective coordinates which have a form that is easily evaluated.
For convenience, the form of these collective-coordinate integrals, along with solutions, is stated below:

I= exp{—-'P [A XI,'+2b X ]IJg dX

=const)(exp{ x~ Qi b '/i(1+A&)) X [1—ai+a4. .],

where AI, and bk are specific functions of k, the XA, 's

represent collective coordinates, and J is the Jacobian
of the r —+X transformation. The series of terms in
brackets represents the possible higher order corrections
to the 6rst Jacobian approximation. In the calculations
made thus far, cs, u4, etc. have been neglected. Ke
assume, of course, that these correction terms are neg-
ligible. However, this assertion must be verified.

The first step in using, and in evaluating, the present
theory is to determine the adjustable parameter 0..
Perhaps the best choice of o. is the one which results in

a minimum error due to the combined eBect of the
cluster-expansion termination error and the Jacobian
error. An even better choice of af would be one which
resulted in the error due to each of the two major sources
being negligible, if this is possible. A clear indication
that such a circumstance had occurred would be the
existence of a distinct and extended range of o values
over which the T(l) curve, and hence the P(a) curve,
would remain stationary. ; the requirement of such a
range would virtually rule out any possibility that the
two errors had merely cancelled one another. The latter

FIG. 1.A comparison of two T(l)
approximations as applied to the
present theory of the electric
microfield distribution function
P(~) (charged-point case). e is in
units of eo.
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Fro. 2. An estimate of the importance of the Jacobian correc-
tion term, a3. E(~) curves calculated for any of thea values lying
in the heavy section of a given line will agree to within several per-
cent (at worst) over the entire range of e values considered in this
paper. For further explanation, see Sec. III of the text.

choice was shown to be possible, and was the one chosen
to determine the best value of o. , specifically, an n value
lying at the approximate center of the stationary range
was the one chosen.

Rather than rely solely on the above argument, this
criterion was subjected to several tests. First, the second
term in the cluster expansion was calculated, and is

shown in Fig. I to contribute less than 2% to any point
on the P(e) curve in a "worst case" situation. Similarly,
the a~ term in the Jacobian correction series was evalu-

ated. It is shown in Fig. 2 that, in the o, region chosen
for the calculation, this term, which indicates skewness
of the collective coordinate distribution, is negligible.
From the related structure of u4 it may be deduced that
the same choice of o. will also make a4 negligible. In an
eBort to also rule out the possibility that although a3
and a4 are small, the entire series is appreciable, a
special case is considered.

Since the theory of BM should indeed be valid for
dilute systems at sufficiently high temperature, P(e)
curves predicted by' both theories at a=0.2 should
agree quite well (a=0.0 corresponds to the Holtsmark
case). It is shown graphically in the next section that,
in this instance, the present theory without Jacobian
corrections yields a P(e) curve almost identical to that
predicted from the BM theory. The assertion is that in
this case, a3, a4, and the entire Jacobian correction series
are really negligible. Figure 2 indicates that freedom to
choose the correct e value corresponding to a given u
results in a3 having at least the same order of magnitude
for a& 0.2 as it did when a =0.2. If the o. variation affects
a3 and a4 in this manner, it is plausible to expect the
entire series to be similarly affected. Thus, by this
argument too, we expect the present theory without
Jacobian correction to be valid for rather high-density,
low-temperature regions (e.g. , a= 0.8).

A final attempt at verifying the procedure is shown in
Fig. 3. Here we see a comparison of a Monte Carlo cal-
culation of P(e) for a=0.8 (the largest deviation from
the Holtsmark distribution considered in this paper)
and the corresponding curve for this theory. It is seen
that although there are still some Auctuations in the
Monte Carlo curve, it agrees quite well with the result
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FIG. 3. A comparison of the elec-
tric microfield distribution I' (e)
calculated by the present theory,
with that predicted by a Monte
Carlo calculation (40 000 particle
configurations).
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FIG. 4. The electric microfield
distribution function P(e), at a
charged point, for several values
of a; «is in units of e0.
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predicted by the present theory and would seem to
further substantiate the present result.

Actual numerical results are discussed in detail in the
next section.

III. NUMERICAL RESULTS AND ANALYSIS

It should again be emphasized that all studies of the
o. flatness region indicate that in this range the dis-
regarded corrections due to both major sources of error
are indeed negligible. Figures 1 and 2 show these results.
While Fig. 1 is self-explanatory, Fig. 2 may be under-
stood as follows: Ke may write'

Since a3 is not a function of / and since, in addition, it
is very small compared to unity (~10 ') for all cases

considered, it is set equal to zero in all further discus-
sions. In order to gain some impression of the impor-
tance of the a3 correction, we consider its influence on
the calculated values of Tp(l)/T (0p). In view of the
fact that p' is quite small, it is permissible to write

T (l)/T (0) exp( &L')[1+&—'L j
exp( —(y —y') L') . (21)

A measure of the importance of the correction due to a3
in this instance may be given by plotting the ratio of
y'/y versus n for a values of interest. It is clearly seen
from Fig. 2 that in the regions of flatness, u3 amounts to
an insignificant correction.

Figures 4 and 5 show graphs of P(p) versus p for
several values of n, while Figs. 6 and 7 indicate the
differences occurring between the BM theory and the

0.5

0.4

FB, 5. The electric microfield
distribution function P(~), at a
neutral point, for several values
of a; e is in units of e0.
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' A. A. Broyles, Z. Physik 151, 187 (1958).
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0.4 FIG. 6. A comparison of the elec-
tric microfield distribution func-
tion (at a charged point) deter-
mined by BM, with that predicted
by the present theory; e is in units
of ep.
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present theory for cases characterized by u=0.2 and
u= 0.8. It will be noticed that the difference between the
two theories increases as the magnitude of u increases,
and that the BM theory favors weaker 6elds than does
the proposed theory. One possible explanation for the
direction of the difference between the two may lie in
the fact that in Baranger's second correction term to
T(l), exp'"%'(aL") j, the linearized pair-correlation
function is used instead of the nonlinearized form. It
has been argued by BM that the difference between the
two functional forms should not really matter since the
procedure was "also in the spirit of the Debye-Huckel
theory. '"However, Fig. 8 illustrates that the e6ect of a
reduction in 4'2(aL'I') on the final P(e) curve may be

very large. A similar reduction in the second correction
term in the present theory leads to only a slight change
in the P(e) curve under identical conditions; this may
be deduced from Fig. 1. A reduction in the magnitude
of 0'~ is what one would expect if the nonlinearized
Debye-Huckel function were used instead of the linear-
ized version: This is because the linearized form under-
estimates the contribution to the pair-correlation func-
tion from strong 6elds and hence overemphasizes the
0'2 term. It would be necessary to carry out a calcu-
lation of 4'2 using the nonlinearized function before the
final magnitude of the reduction could be ascertained.

Tables I and II list some tabulated values of P(~) for
reference.

4 O
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FIG. 7. A comparison of the elec-
tric microfield distribution func-
tion (at a neutral point) deter-
mined by BM, with that predicted
by the present theory; e is in units
of ag.
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' 8, Mozer, dissertation, Department of Physics, Carnegie Institute of Technology, 1960 (unpublished).
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0.7

Fro. 8. A comparison of two T(l)
approximations as applied to the
BM theory of the electric micro-
field distribution function P(e)
(charged-point case). ~ is in units
of ep.
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IV. CONCLUSION

This paper discusses the calculation of electric micro-
fields in low-frequency component plasmas. It depends
largely on I for the development of the necessary for-
malism. For the plasma under consideration, this
method of calculating electric microhelds in plasma has

been shown to be effective over a wide temperature-
density range; it goes to the Holtsmark limit as T —+ ~,
and at @=0.8 it has been shown to predict a reliable
result. A comparison of this method with that of BM
cl.early indicates that while the latter is good at high
temperatures and low densities (a=0.2) it becomes

TABr.z I. Probability distributions P(e) at a charged point for
several values of a. The electric-field strength e is in units of ep.

TABLE II. Probability distributions P(~) at a neutral point for
several values of a. The electric field strength e is in units of ep.

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
7.0
8.0
9.0

10.0

a =0.2
0.00710
0.02779
0.06028
0.10187
0.14926
0.19894
0.24755
0.29220
0.33065
0.36144
0.38385
0.39782
0.40385
0.40279
0.39573
0.38385
0.36832
0.35022
0.33049
0.30994
0.21235
0.14096
0.09496
0.06601
0.04749
0.03528
0.02112
0.01375
0.00949
0.00688
0.00518

a =0.4
0.01244
0.04801
0.10180
0.16687
0.23557
0.30091
0.35745
0.40179
0.43248
0.44972
0.45484
0.44982
0.43690
0.42822
0.39572
0.37102
0.34537
0.32974
0.29480
0.27100
0.17489
0.11423
0.07722
0.05423
0.03945
0.02960
0.01798
0.01182
0.00828
0.00595
0.00448

0.02229
0.08397
0.17146
0.26777
0.35752
0.43017
0.48081
0.50909
0.51766
0.51053
0.49199
0.46591
0.43546
0.40305
0.37041
0.33870
0.30864
0.28065
0.25489
0.23140
0.14420
0.09330
0.06320
0 OAAA7

0.03247
0.02443
0.01489
0.009/8
0.00676
0.00489
0.00367

a =0.8
0.04114
0.14866
0.28527
0.41354
0.51032
0.56853
0.59163
0.58755
0.56481
0.53069
0.49072
0.44876
0.40731
0.36786
0.33125
0.29782
0.26763
0.24057
0.21644
0.19498
0.11889
0.07636
0.05152
0127
0.02645
0.01988
0.01205
0.00788
0.00540
0.00388
0.002SS

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
2.2
1.3
1.4
1.5
1.6
1.7
1.8
2.9
2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
7.0
8.0
9.0

10.0

a =0.2
0.00696
0.02723
0.05908
0.09989
0.14643
0.19529
0.24319
0.28729
0.32539
0.35604
0.37851
0.39273
0.39914
0.39857
0.39206
0.38077
0.36582
0.34828
0.32908
0.30900
0.21296
0.14208
0.09611
0.06704
0.04838
0.03603
0.02166
0.01415
0.00977
0.00/20
0.00537

a =0.4
0.01159
0.04475
0.09505
0.25612
0.22098
0.28313
0.33751
0.38083
0.42160
0.42985
0.43668
0.43384
0.42331
0.40709
0.38697
0.36447
0.34080
0.31689
0.29342
0.27085
0.17812
0.11818
0.08095
0.05749
0.04224
0.03197
0.01971
0.01312
0.00919
0.00674
0.00513

a=0.6
0.01938
0.07321
0.15020
0.23601
0.31745
0.38516
0.43440
0.46434
0.47677
0.47487
0.46225
0.44193
0.41706
0.38960
0.36232
0.33331
0.30633
0.28085
0.25710
0.23520
0.15167
0.10098
0.06999
0.05038
0.03749
0.02870
0.01804
0.01217
0.00862
0.00637
0.00488

a =0.8
0.03341
0.12143
0.23520
0.34511
0.43193
0.48866
0.51674
0.52160
0.50962
0.48656
0.45700
0.42432
0.39083
0.35803
0.32684
0.29/75
0.27098
0.24658
0.22446
0.20451
0.13120
0.08797
0.06162
0.04484
0.03371
0.02603
0.01659
0.01135
0.00808
0.00601
0.00463
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progressively inaccurate as a is raised from 0.2 to 0.8.
The net result of these calculations is that for the
charged-point and the neutral-point cases, the distri-
bution curves generated by the present theory favor
slightly stronger fields than does the theory of BM.

As in I, the method of including noncentral forces
through the mechanism of collective coordinates is
shown to be highly effective. Exactly how good this
method is, is evidenced when the second term in the
cluster expansion is calculated; here one finds that the
noncentral, two-particle correlations are included,
through the use of collective coordinates, to the approxi-
mation of the nonlinear Debye-Hiickel result. Since this

second term is only a small correction to the theory,
even in the case of high c values, such an approxiInation
must be considered highly accurate. Furthermore,
during the derivation of the general formalism, espe-
cially that part relating to the cluster expansion, the
fact that it was not necessary to explicitly mention
noncentral interactions resulted in much simplification.

iVote added im proof It h. as recently come to the
author's attention that H. Pfenning and E. TreGtz
[Z. Naturforsch. 21a, 697 (1966)j have employed a
corrected version of the BM method to generate P(e)
values for neutral point cases. Their results agree quite
well with those presented in this paper and in I.
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Dense-Gas Formulation of Self-Di8usion of Liquid Metals
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An accurate theory for the self-diffusion coefficient of liquid metals is developed in terms of the Uan der
Waals concept of a dense Quid. Making use of the Enskog hard-sphere formulation we obtain the following
results: 1) a relationship for the coefficient of self-diffusion which accurately gives both the magnitude and
temperature dependence over the entire liquid range at atmospheric pressure; 2) a relation between the
melting point and the coefficient of self-di8usion which is the freezing counterpart of the Lindemann law
of melting.

ECENTLY, Dymond and Alder' have demon-
strated that the Van der Waals concept of a

dense Quid yields a simple and accurate description of
the transport properties of the rare-gas fluids. The
underlying idea in this treatment is that particles move
in straight lines between core collisions. The attractive
potential energy or cohesive energy term is thought of
as a uniform negative potential2 which does not affect
the basically hard-sphere collisions. '

In liquid metals, the cohesive energy expressed in
units of the melting temperature T is an order of
magnitude larger than that of rare-gas liquids. How'ever,
pseudopotential calculations show that a pair-wise
interaction is a valid representation of the interaction
energy between electronically screened ions, and that
the attractive part of this pair-wise interaction is com-
parable to that found in rare-gas liquids. 4 Furthermore,

*This work was performed under the auspices of the U. S.
Atomic Energy Commission.

' J. H. Dymond and B. J. Alder, J. Chem. Phys. 45, 2061
(1966).

2 H. C. Longuet-Higgins and B. Widom, Mol. Phys. 8, 549
(1964).' H. L. Frisch, Science 150, 1245 (1965).

the structures of all simple liquids, metallic and non-
metallic, are approximately the same' ' when compared
at the melting temperature, using as a unit length
r =L(3/47r)Q Jl', fl being the mean atomic volume
at the melting point. This substantiates molecular
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