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Eq. (A8) can be written as

2 n

I= — dv vs dv'v"L5 exp( —av —a'v")
1lVe Vs 0 0

+5' exp( —a'v' —av")j (A11)

where a= 1/(2v 2), a'=1/(2vs), and 5'(vv')=5(v', v).
The result of simplifying 5 and 5' is to take Eq. (A11) to

I= —(8/3v v, 'v,s) (1—1/T)La(1,4)+P(4,1)], (A12)

where

a(m, n) = dv dv'v"'v'" exp( —av' —a'v") (A13)
0 0

and P(ns, n) is obtained from a(tn, n) by simply inter-
changing a and a'. Finally on using the relation

00 (an)'"
dy ye

'&' erf(a'~'y) =
4s(a+s)'"

we obtain

(1—1/T) 1 1

2v'"v 'v' aa" (a+a')'" u"(a+u')'"

(A14)

which in terms of the electron collision frequency v,
can be rewritten as

1 dP 2'" / v, ) ns)——= „,I —I
—i(1-T)

covj dt 3v' E(dv,) )
In case of weak collisions, (v,/cov;)«1, so (~/dt) is
negligible and thus Eq. (1) holds good to a very good
approximation.

+
a'(a+a')'" aa"" a(a+a')'"

As done in the text, if we neglect terms of the order
(v;2/v, s), then Eq. (A6) with the help of Eq. (A14) gives

d@ 2'"Vt'.v;2( 1
(AIS)

dt 3vgv'" k T
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Equilibrium correlation functions for a dense classical fluid are obtained by integrating the equation of
motion of a system of 864 particles interacting through a Lennard-Jones potential. The behavior of the
correlation function at large distance, and that of its Fourier transform at large wave number, are discussed
in detail and shown to be related to the existence of a strong repulsion in the potential. A simple bard-sphere
model is shown to reproduce very well the Fourier transform of those correlation functions at high density,
the only parameter of the model being the diameter a of the hard spheres.

I. INTRODUCTION

[SING a technique directly inspired by the beauti-
ful work of Rahman, ' we have performed some

experiments on a classical Quid composed of 864 mole-
cules interacting through a Lennard-Jones potential
V(r)=4ana/r)" (a/r)'j cut at r,—=2.5a or r, =3.3a
The details of these computations and a discussion of
the thermodynamical results have been given else-
where. ' Here we give a discussion of the pair function
g(r) and of the various quantities which can be derived

* Supported by the U. S. Air Force 0%ce of Scienti6c Research,
Grant No. 5Q8-66.

t Permanent address: Laboratoire de Physique Th&rique et
Hautes Energies, Sh,timent 211, Faculty des Sciences, 91-0rsay,
France.' A. Rahman, Phys. Rev. 136, A405 (1964).' L. Verlet, Phys. Rev. 159, 98 (1967).

from it, namely its Fourier transform and the direct
correlation function.

We discuss in Sec. II the pair function as given by
the machine computation. Some comparisons are made
with the results of the integral equations. The maximum
of g(r) is seen to be a compromise between the tendency
of the particles to cluster around the core of the po-
tential at high density and the attraction due to the
bowl of the potential, which plays an essential role at
low temperature. These results would be meager if it
were not possible to extend them (Sec. III). Firstly, it
is shown that the eGect of the tail of the potential, for
r) r„which has been neglected in the molecular-
dynamics calculation, would not have changed g(r)
appreciably for r&r, if it had been included. The
results can thus be extended to an uncut potential.
Secondly, a procedure is constructed to extrapolate g(r)
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to any r, and its practical validity is proven. Let us

define, as usual, the direct correlation c(r) through the
Ornstein-Zernicke relation:

h(r) =c(r)+p h(r')c(~ r—r'~ )dr',

where h(r) =g(r) —1 is the correlation function and p is
the particle density. In all our "experiments" we can
find some r, &~ r„such that, for r) r„h(r) is small. Then,
presumably, a functional expansion' in h(r) is reasona-
ble and one can write, for r)r„ the Percus-Yevick
(PY) equation'

c(r) =g(r) (e"'"'—1) . (2)

For r&r„g(r) is known from molecular dynamics, and
the Ornstein-Zernicke relation (1) enables us to con-

tinue g(r) outwards and c(r) inwards. The validity of
this procedure, which is the one we have used in general,
is demonstrated by showing the insensitivity of the
results to the chosen value of r..

More simply, when r, is large enough, c(r) may be
simply replaced by

f(r) = expL —P V(r)]—1. (3)

The direct correlation function which is thus found
behaves as expected (Sec. IV). For r ~& &r it resembles the
function for the hard-sphere gas in the PY approxima-
tion. ' It rises steeply around r=o, and from then on
looks very much like f(r), although it is somewhat
smaller, the more so if the density is high and the tem-
perature small.

The use of the PY equation to get the potential once

g(r) and c(r) are known can be put to a direct test. The
Lennard-Jones potential would be recovered if the PY
equation were exact. The results obtained show that
at densities around. that of the critical point' (p&0.5)
the Lennard-Jones potential is recovered within a few

percent. The results derived from the x-ray diBraction
experiment at that density cannot be explained by a
failure of that equation. ' On the other hand, the error
entailed by its use rises very rapidly. Its application in
the very dense states such as those encountered in

liquid metals is certainly not advisable.
In the next section (IV), we examine the position of

the first peak ko of the Fourier transform of the corre-
lation functions

/q(k) =p e '"'h(r)dr.

This is also the first peak of the Fourier transform c(k)
of the direct correlation function. It is shown qualita-

3 J. K. Percus, Phys. Rev. Letters 8, 462 (1962).
4 J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).
' M. S. Wertheim, Phys. Rev. Letters 10, 321 (1963); E. J.

Thiele, J. Chem. Phys. 38, 1959 (1963).' We use the usual reduced units: 0 = ~/k =1.
' P. G. Mikolaj and C. J. Pings, Phys. Rev. Letters 15, 849

(1965);J. Chem. Phys. 46, 1401 (1967); ibid. 46, 1412 (1967).

tively why we expect ko to be of the order of 2~/e, ir-
respective of the state. The slight dependence on the
state, mainly on the density, is exhibited, and a com-
parison is made with the case of the hard-sphere gas
and with experiment. These considerations make it
likely that the location of the first peak is essentially a
geometrical, excluded-volume effect.

This produces what is usually described by the con-
cept of "short-range order". It is shown in Sec. UI that
at high density h(r) behaves effectively as a damped
sine wave of period ro 2z——./ko. More generally the re-
lation between the behavior of h(r) at large r and the
dominant poles of h(k) and c(k) is analyzed in that
section. '

The behavior of h(k) for large k is then considered
(Sec. VII). It is shown that this behavior is related to
the first peak of g(r), and that the oscillations of h(k)
are determined by the repulsive part of the potential.
h (k) behaves to a good approximation as C coskr e ~"/k,
where r„ is of the order of 0. The parameters C, r„, and
0, are studied in more detail: The rules deduced from the
molecular-dynamics experiment, although purely de-
scriptive in nature, may be of use in dealing with x-ray
or neutron scattering experiments.

Lastly (Sec. VIII) a hard-sphere model of dense
fluids is introduced as an illustration of some of the con-
siderations underlying this article. This model, based
on the Wertheim-Thiele solution' of the hard-sphere
problem, is a generalization of the model which has been
introduced by Ashcroft and Lekner, 9 to describe, in a
quite satisfactory manner, the structure factor of liquid
metals.

II. CORRELATION FUNCTION OBTAINED
FROM MOLECULAR DYNAMICS

At each of the 1200 steps of the time integration of
the equation of motion, all the distances which are
smaller than r, are recorded in special counters. The
step in r used to calculate g(r) is 0.04. The error on g (r)
may be estimated by comparing two independent runs
made at the same values of the temperature and den-
sity: it is of the order of 1% at most. The values of the
pressure and of the internal energy calculated from
those correlation functions are in good agreement with
those yielded by direct averages of the virial and of the
potential energy, ' although it should be realized that
the step size in r for g(r) is rather large: As the pressure
depends sensitively on g(r), some discrepancies arise;
the error on Pp/p when calculated from g(r) may reach
0.2 at the highest density considered. It is much smaller
at lower density. Some examples are given in Table I.

'The analysis of g(r) for large r's in terms of poles of h(k) is
obviously not new. See e.g. J. G. Kirkwood and E. Monroe Boggs,J. Chem. Phys. 10, 394 (1942); and, for a recent and rigorous
analysis in the case of a repulsive interaction: J. Groenwoeld,
paper given at the Copenhagen Conference on Statistical Me-
chanics, 1966 (unpublished).' N. W. Ashcroft and J. Lekner, Phys. Rev. 145, 83 (1966).
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Tmzx I. Test of the procedure used to extrapolate g(r) beyond the cutoff distance r, . In the first column is given the formula (see
Sec. I) used to express c(r) for r&r, . The cutoff is made at the ith zero of h(r); i is given in the second column. For the state (1),
T= 1.07, p=0.75. For the state (2), T =0.88, p=0.85. For the state (3},T=2.202, p=0.85. For those three states, Pp/p computed directly
in the molecular dynamics is equal respectively to 0.90, 1.64, 4.20. The last line gives the results obtained using the PY Eq. (2} for all
values of r.

c(r)
for r&r,

(2)
(2)
(2)
(3) .PY equation

state (1)
e/p ~»/~p h(~.)

0.94 11.1 1.08
0.93 11.1 1.09
0.93 12.1 1.08
0.92 5.0 1.09
1.69 5.6 1.04

state (2)
PP/p PaP/ap

1.80 26.9 1.65
1.81 25.1 1.66
1.81 26.9 1.64
1.80 14.6 1.65
3.18 10.5

state (3)
PP/p P»/8p h(&0}

4.28 19.5 1.06
4.29 20.0 1.06
4.29 22.5 1.06
4.28 17.9 1,06
4.23 15.3 1.07

In Fig. 1, we give a first example of such a calculation,
as well as a comparison with the results obtained using
the PY II equation, " relative to the state T=1.46,
p=0.4. It is seen that at that density, slightly above
critical, the PY II equation still works quite well. This
is evident both from the direct comparison of the corre-
lation functions and, which is more enlightening, from
the comparison of the thermodynamical data. ' The
PY II equation yields 0.40 for lip/p, when the "exact"
result is 0.41&0.01. For the state described here, the
PY equation, as is well known, is no longer very good.
This failure, not very apparent on g(r), shows up very
clearly in the thermodynamics. The value 0.51 is ob-
tained for Pp/p.

This defect is emphasized in Fig. 2, where the corre-
lation function for p=0.85, T=0.88 is calculated both
from molecular dynamics and PY equation. The exact
result for Pp/p is 1.64. The PY compressibility factor is
3.18. The breakdown of the PY equation is obvious. As
is well known, this equation gives a peak of g(r) which
is too high and too much to the left. This leads to an
overestimation of the pressure as calculated from the
virial theorem.

A table containing some of the values of the pair
function obtained from the molecular dynamics com-
putations is given in the Appendix.

2

l(k) =p e'"'l(r)dr (6)

h(r)

2
4~ ~

III. EXTENSION OF THE MOLECULAR-
DYNAMICS RESULTS

The pair function g(r) has been obtained for r(r„,
using in the molecular-dynamics computation a
Lennard-Jones potential cut at r=r„Let us .label by
MD the quantities directly obtained from the molecu-
lar-dynamics computation. We want to extend those
results in two directions. Firstly, we want to take into
account the tail of the potential: We shall show that
the addition of this tail does not modify appreciably
the short-range part of g(r) (for r(r„). We may antici-
pate that this is so in view of the fact that the thermo-
dynamic results obtained with r„=3.3o. are consistent
with those with r, =2.5o.. Following a suggestion of
Lebowitz, we can show it directly by considering the
tail of the potential as a long-range perturbation and
using the recently developed formalism" adapted to
that problem. Let us define the long-range function

l(r)= —l)V(r) for r)r,
and its Fourier transform

0 ~

04
r

1.5
1.5 2

FIG. 1. The pair distribution function g(r) as a function of r for
T=1.46 and p=0.4. Solid line: results obtained both from mo-
lecular dynamics and from the PY II equation. Dashed line: PY
equation.

"I.. Verlet and D. Levesque, Physica (to be published).

FIG. 2. Correlation function h(r) =g(r) —1 as a function of r for
T=0.88 and p=0.85. : molecular dynamics. ~:PY equa-
tion ———:hI(r) as given by Eq. (31).

"M. Coppersmith and R. Brout, J. Chem. Phys. 130, 2539
(1963};P. C. Hemmer, J. Math. Phys, 5, 75 (1964); J. L. Lebo-
witz, G. Stell, and S. Baer, ibQ. 6, 1282 (1965).
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Then, we shall sum the mixed ring composed of l bonds
of SMo(k) bonds, where

S (k) = &IE e'" "I')/X

=h(k)+1, for k&0. (7)

SMo(k) is the structure factor for the problem with no
long-range perturbation. It is easily seen that the varia-
tion bg(r) of gMn(r) due the long-range tail is given by:

with
~g(r) =gMo(r)L (&) (8)

L(r) =
(2~)'p

fPik r
f(k)dk

1—S~n (k)l(k)

The calculation was performed in the case T=1.05,
p=0.75. For r&r, =2.50, we take c(r)=0, which is
certainly, in the absence of a potential, an excellent ap-
proximation (the direction correlation for r(r, is
already very weak). The Ornstein-Zernicke relation (1)
and the definitions (8) and (9) are used in order to get
SMo(k). The quantity bg(r) is found to be everywhere
smaller than 0.002. The inclusion of the static eGect of
the tail changes the thermodynamic functions by a
negligible amount, as may be seen from Eqs. (10) and

(11),which give respectively the change gp in the pres-
sure and the change bU in the internal energy for the
example we are considering.

—2~p " BV(r)
pbp/p= r' bg(r)dr

for various values of the cuto8. It is seen that, when the
PY equation is used for the continuation, it is only
necessary, even at high density and low temperature,
to include the first peak of the "exact" g(r). We also try
replacing c(r) by f(r) immediately after the first peak
of g(r). The results are not excellent, but clearly much
better than those obtained when the PY equation is
used for all values of r.

Also, we can compare, when r, &r„ the extrapolated
g(r) with the exact one: The differences are small. They
are smaller than the statistical errors in g(r). We see
again that there is no reason to prefer the molecular-
dynamics results to the extrapolated ones for the cor-
relation function after its first peak.

The determination of the inverse compressibility is
made through

pap/ap= I/I I+h(0)). (12)

Although the results thus obtained are compatible
with the equation of state, they are not precise enough
to be useful: The uncertainty on the inverse compres-
sibility is of the order of 10%%uo.

IV. DIRECT CORRELATION FUNCTION
AND THE POTENTIAL-INVERSION

PROBLEM

Examples of the direct correlation function calculated
as said in the last section are shown in Figs. 3 and 4. It
is seen that c(r) behaves very much as an intuitive

t-c r

= —0.006 (10)
~ ee ~ ~I ~ ~ ~

hU=2sp r V(r)bg(r)dr

=0.005.

In our computations, the statistical error in Pp/p and
in the internal energy is of the order of 0.01. We thus
see that within the claimed accuracy we can neglect the
inQuence of the tail of the potential on the computed
correlation function.

The second and more tricky point has to do with the
extension of our results to all values of r. This is neces-
sary inasmuch as we want to reach h(k), and it is un-
advisable to Fourier-transform a truncated h(r).

Our extrapolation technique has been explained in the
Introduction: We choose for c(r), r&r„ the expression
given by the PY Eq. (2). We make the cutoff at one of
the zeros of h(r) so as to ensure the continuity of the
direct correlation function, as may be seen from the
Ornstein-Zernicke relation (1). The fitness of our ex-
trapolation can be appreciated from Table I, where in
the high-density cases one compares Pp/p, the inverse
compressibility, and the height of the first peak of h(k)

!0 „
Q5

FxG. 4. Two examples of direct
correlation functions I Eqs. (1)
and (2) were used, with r, =2.32j.
(1) T=0.827, p=0.75. Curve (1):
f(r). Curve (1'): c (r). (2)
T=2.845, p =0.75. Curve (2):
f(r). Curve (2'): c(r).

FIG. 3. Direct correlation function c(r) multiplied by r as a
function of the distance for T=1.05 and p=0.75. : c(r) ob-
tained from molecular dynamics through the extension procedure
described by Eqs. (1) and (2) with r, =2.32. ~ ~ - -: c(r) =f(r),
when r&1. ———:c(r) =gMD(r)/(ef' &") —1), where gMD(r) is the
pair distribution function obtained from molecular dynamics.
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guess would indicate. For r&n, a large dip in rc(r)
represents the exclusion due to the hard core, as in the
Kertheim-Thiele hard-sphere gas. %hen r approaches 0.

there is a sharp rise, and c(r) vanishes, within 2 or 3%,
at the same point as the potential. For large r, c(r) has
the same aspect as f(r). It is somewhat smaller, and
more so at lower temperature. In Fig. 3, we have also
plotted the direct correlation function obtained from
the PY relation (2). We see that it is peaked too far to
the left.

The situation would be worsened if the PY equation
were really solved, because that equation leads to a pair
function which has a peak too high and too far to the
left [see Fig. (2)].

Once c(r) and g(r) are known, the validity of the PY
Eq. (2) can be tested by using it to calculate a potential
which should be strictly equal to the initial I ennard-
Jones potential if that equation were exact. Thus one
can know when the PY equation can be used to obtain
the potential using experimental data.

For densities around critical, the PY equation may
be safely used to get the potential back from the com-
puted correlation function: For instance, at the density
p=0.4, and for T=1.33, the calculated potential is less
deep than the Lennard-Jones potential by 1% in the
region of the bowl of the potential. It is deeper, on the
other hand, for larger values of r (1.2&r(1.60), but
the error is never larger than 4%.The error rises rapidly
with the density, as can be seen in Fig. 5: The PY
equation for dense liquids cannot lead to a quantita-
tively reliable determination of the effective two-body
interaction. Attempts were made by Mikolaj and
Pings to obtain the efI'ective two-body interaction
between argon atoms from the x-ray scattering inten-
sity measured in the vicinity of the critical point: For
p=0.165 these authors obtain a potential which re-
sembles the Lennard-Jones one. The potential obtained

10 15 20

FIG. 6. h(k) as a function of k. Dots: Results from molecular
dynamics for T= 1.326, p =0.5426. Solid line: hard-sphere model,
mith the hard-sphere diameter a=1.0 and the hard-sphere den-
sity P =0.57. Crosses: x-ray experiment (Ref. 7) at the same den-
sity and T=1.28.

rises as a whole by 15% when the density increases to
0.316, and again by 15% when the density 0.46 is
reached. One could try to explain these results by pos-
tulating an effective interaction between the argon
atoms that depends strongly on the density. The equa-
tion of state obtained from the Lennard-Jones potential
is so good' that such a strong state dependence may
seem unlikely. For reasons that will become apparent
in Sec. VIII, we believe that it is very important that
the experiments reproduce carefully the oscillations of
h(k) for large values of k. Any error in the oscillation
period will always lead to an underestimation of the
maximum of g(r), and thus, of the derived interaction.
Typical experimental data' are compared with the
results of molecular dynamics on Fig. 6: They do not
agree very well.

V. ON THE MAIN PEAK OF h(k)

Once c(r) is known, k(k) can be calculated from c(k)
and the Ornstein-Zernicke relation (1), Fourier-
transformed as

k(k) =c(k)/L1 —P(k)]. (13)

Figures 6-8 show examples of the results so obtained,
together with a comparison with experiment. Fqua-
tion (13) tells us that the irst maximum of h(k) located

h(k)

0.6,

Q.O

l

10
I

15 20
FrG. 5. Potential obtained from the correlation function, using

the PY Eq. (2): Curve (1): T=1.328, p=0.5426. Curve (2}:
T=1.05, p=0.75. Curve (3}:T=1.127 p=0.85. The Lennard-
Jones potential, which should be obtained if the PY equation mere
exact, is represented by the dashed curve.

FzG. 7. h{k) as a function of k. Dots: results from molecular
dynamics for T=0.827, p=0.75. Solid line: hard-sphere model,
with a=1.03, p=-0.817. Crosses: neutron experiment (Ref. 14)
on krypton. p=0.77, T =0.77.
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l

10 f5

FIG. 8. h(k) as a function of k. Dots: Results from molecular
dynamics for T=0.723, p=0.844. Solid line: hard-sphere model
with a=1.026, p=0.91. +: neutron experiment on argon at
the same density and T=0.7 (Ref. c of Fig. )0). )(: x-ray
experiment on argon at the same density and T=0.70 (Ref. b of
Fig. 10)~

at k=ko is also a maximum of c(k). How is such a
maximum produced' To see this qualitatively, let us
consider Fig. 3, which shows a typical direct correlation
function Lrc(r), to be precise], for T= 1.05, p=0.75. We
remark that c(r) changes its sign in the neighborhood
of r = o- and is varying very rapidly in that region. If the
PY Eq. (2) were valid, c(r) would vanish strictly at
r =0., and the steepness of its variation would be simply
related to that of the potential. Generally, we can write"

where C (r) is the correction, which is given, in first ap-
proximation, by the PY II equation. The terms com-
posing 4 (r) are expected to vary rather smoothly with
r. Whenever that correction term is not very large, we
expect c(r) to retain the characteristics yielded by the
PY equation. Figures (3) and (4) show that this is indeed
the case. We might add that, if nonadditive parts of
the many-body forces are present, they should produce
an effective additional two-body interaction relatively
smooth at r=a, and the zero of c(r) should not be
changed. The sharpness of c(r) around the zero of the
potential has the following consequence: c(k) will be
obtained by multiplying rc(r) by 4m p(sinkr)/k and inte-
grating over r. Let us consider a value of k such that
there are approximately two arches of the sine for r(o.
The first arch, combined with rc(r), will bring a nega-
tive contribution. The next arch gives a positive con-
tribution. If the third arch starts a little before v=0, it
gives first a negative contribution and then, as a result
of the positive part of c(r), a po'sitive one. As a whole,
a compromise is reached, so that the second arch gives
the maximum possible contribution, with due attention
to the fact that too much should not be lost at the be-
ginning of the third arch. Clearly, this is realized for
ko ——2~/ro, where ro is presumably a little less than 0,

~ G. Stell, in The EycHibrium Theory of Classical Fluids, edited
by H. L. Frisch and J. L. Lebowitz {%.A. Benjamin, Inc. , New
York) 1964).

and should depend very little on the state. The results,
of little interest, for p(0.2 have been obtained through
the PY equation. As expected, ro is of the order of 0..
The qualitative explanation of the temperature varia-
tion for a given density goes as follows: When the tem-
perature is low, the positive part of c(r), which behaves
very much like f(r), is large. Then the third arch of the
sine tries to use this chance as much as possible: ro is
equal to 0. or a little more. If the temperature is large,
on the other hand, the negative part of c(r), similar to
that of a hard core, is the most important factor and ro
decreases so as to maximize the second arch. As a whole
the effect of the temperature is very small, as may be
seen from Fig. 9, where ro has been plotted for several
high-density isochores. The variation of ro with the
density is more important. It resembles that of a hard-
core gas, as may be seen from Fig. 10. There, one com-
pares ro as a function of the density in the case of the
Lennard-Jones potential for the temperature T=1.35
with the same quantity for a hard-sphere gas of diame-
ter 0. The hard-sphere-gas curve is drawn using the
Thiele-Wertheim solution. ' The "exact" results ob-
tained from a Monte-Carlo computation appear to
differ very little. " On the same plot are shown the
results of x-ray and neutron scattering experiments on
argon and krypton. The agreement between calculation
and experiment (and between the experiments) is much
better at high than at low density. It is to be noted, how-
ever, that the results from the neutron experiment of
Clayton and Heaton" agree very well with the predicted
curve for ro.

0.98 ~

0.94 ~

0.90 ~ 8
M

FIG. 9. r0=2x/k0, where k0 is the location of the first peak of
h(k} as a function of P= 1/kT for the isochores p=0.88, p=0.85,
p=0.75, 0=0.65.

"D. SchiG and L. Verlet, Phys. Rev. 160, 208 (1967).
'4 G. T. Clayton and L. Heaton, Phys. Rev. 121, 649 (1961).

VI. ON THE ASYMPTOTIC FORM OF h(r)

In this section we shall try to understand, on physical
grounds, the behavior of k(r) for large values of r. For
high values of the density, the oscillations of the cor-
relation function constitute its most striking feature,
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lo

O.f 0.&
p

0.9

Fxo. 10. r0 as a function of p for the Lennard-Jones potential at
the temperature T=1.35 (solid line), and for the hard-sphere gas
of diameter 1 (dotted line). Experimental data: o: neutrons on
krypton (Ref. 14). Q: x rays on argon (Ref. 7). +: x rays on
argon I A. Eisenstein and N. S. Gingrich, Phys. Rev. 62, 261
(1942)j. (ellipse): x rays on argon t N. S. Gingrich and C. W.
Thomas)son, J. Chem. Phys. 36, 2398 (1962)j. g: neutrons on
argon LD. G. Henshaw, Phys. Rev. 105, 976 (1956)j. X:neutrons
on argon [B.A. DasannachaIya and K. R. Rao, Phys. Rev. 137,
A417 (1965)].The reduction parameters are, for krypton: I J. A.
Beattie, R. J. Barriault, ancl J. S. Brierly, J. Chem. Phys. 19, 1222
(1951)j. 0.=4.064 A, ~/k=224. 5' and, for argon: tA. Michels,
H. 9'ijker, and H. K. Wijker, Physica 15, 627 (1949)j.o =3.405 A,
ejk = 119.8'.

2' p r+8

h(r) = c(s)sds h(t)htt.
r—8l

(16)

Then it is readily seen that (15) is compatible with the
Ornstein-Zernicke relation if the Fourier transforms of
the direct correlation function obey the conditions:

c(kp+ip) =1

c(iP.) =1.
(17)

(18)

Let us introduce the Yvon generalized response
function'6

hpp/ PbUp 1+h(k) = 1/—L1—c(——k)j, (19)

where UI, is the k Fourier component of an external po-
tential U(r). The conditions (17) and (18) are satisfied

' D. Levesque, Physica 32, 1985 (1966)."J.Yvon, Nuovo Cimento Suppl. 9, 144 (1958).

and we shall attempt to characterize them as due to a
hard-core eRect.

It will help us, we believe, to understand the case of
the Lennard-Jones potential if we examine first two
simpler and less realistic examples.

(1) Let us suppose, first, that c(r) is of short range a
and that the inverse compressibility is not very large.
An illustrative example of that kind of situation is pre-
sented by the solution of the PY equa, tion for the hard-
sphere+square-well potential. "Let us assume that for
large values of r

h(r)=Ai(e i'/r)+A„(e ""/r) sinkpr. (15)

We shall insert this form in the Ornstein-Zernicke rela-
tion (1), which reads, when r is outside the range of the
direct correlation function:

if there are poles in (19) for the complex wave numbers

ko+~@ and iP . In particular a particle placed at the
origin provokes in the medium the response described

by (15).
Let us remark that c(0)= 1 would mean that there is

a real pole at the origin and that 1/r is the asymptotic
solution. We know that when the inverse compres-
sibility is zero the singularity is no longer a pole and
that c(r) does not stav short-ranged. c(kp)=1 would
indicate the possibility of sustaining an undamped
sinusoidal solution. Such a solution does exist in the PY
approximation for the lattice gas with repulsive inter-
action, but it can be shown that this solution does not
represent a, physical state of the system. '7 The condition
(19) can be expressed as

sinh (lis)
47rp c(s)s'ds — —= 1; (20)

expanding in powers of X, the Ornstein-Zernicke relation
is recovered:

X'=6 1—p crdr p r'crdr.

In many cases (20) or (21) are not very useful, as
thev enhance the tail of c(r), which may be an incon-
venience in those cases where c(r) is not strictly short-
ranged. In the same way, we can write (17) as two
coupled equations giving p and ko.

If around k =0, we can write:

h(k) 4sAip/(k'+li') (22)

that is, if the pole k = ili clearly dominates, then c(k) is
also of the Lorentz form:

c(k) =4irAgp/(k'+li'+4pAi). (23)

27/2 happ,

h(k)
kpL(k —k,)'+p'j

(24)

and (17) is satisfied. kp corresponds to the maximum of
c(k) and p can be determined through half-width
arguments.

If the density is not too high, the situation still cor-
responds qualitatively to the above description. If we
choose, for instance, a density not far from critical, say
p= 0.3, T= j..3, then the description by the PY equation
is still fairly good: the correlation function is shown in
Fig. 11, and behaves qualitatively as described by (15).
The main maxiinum kp of c(k) is at kp ——6.1. The oscil-
lating part has the same periodicity as sinkor. If we try
to fit P and p, directly, we see that the predictions of ex-

"B.Jancovici, Physica 31, 1017 (1965).

The condition c(iX)=1 is automatically satisfied, and
X can be fixed by calculating the half-width of h(k).

En the same way, if the pole k =ko+ip clearly
dominates,
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ponential damping are not very well verified: roughly,
we obtain X=0.7, p=i.3. Using the half-width of the
peaks of h(k) around k=p and k=ko, we find X=0.5,
p, =0.7: it is normal that there should be more damping
than indicated by a forced single-pole description. Evi-
dently, (15) would be better if we went closer to the
transition line (the pole k=iX would become more
dominant), especially if we increased the density
simultaneously.

(2) Let us take now an example where, again, c(v) is
of range a, but where now Bp/Bp is large. We would like
to express that condition by writing for 4 0,

c(k) = —4mBp/(k'+ v') . (25)

This leads to a term e ""/v in c(r). The function c(r)
stays essentially short-ranged, however, if v))1/a.

On the other hand, we suppose that h(r) has still an
asymptotic behavior of the dampled oscillating form

ho(r) =A„(e v"/r) sinkor. (26)

It is not difficult to see that for large v, Eqs. (25) and
(26) are compatible with the Ornstein-Zernicke relation
if both (17) and the condition

h(iv) = —1 (27)
are satisfied.

Referring again to the Yvon response function (19),
the first condition expresses the fact that the medium
responds to a perturbation of wave number ko, the con-
dition (27), on the other hand, describes the stability
of the medium against long-wavelength perturbations.

Ke use again as an example the PY equation, this
time for hard spheres' at high density: q= vrp/6=0. 35.
Around k=p, c(k) is entirely dominated by the nearby
pole at k=0. The eGect of the pole at k=ko is clearly
negligible. Fitting c(k) with Eq. (25), we find
4n.Bp=115, v=2.75.

Then, we can say that around k =he, h(k) is given by

h(k) = krBp 2s yA~ — 1--+ (28)k'+ v'+4irBp k, (k—k,)'+p'

Using the values of 8 and v just determined, we can

5

FIG. 11. Correlation function h(r) for the hard-sphere+square-
well model obtained from the PY equation, for T=1.3, p=0.3.
{This corresponds to a low inverse compressibility). h(r) oscillates
around the dashed curve, as shown by Eq. (15).

Tmm II. Values of rp, =2R;/(1+i) where R; is the position of
the ith zero of h (r) (columns 3 to 7). In column 8 is given r 0 =2x/Ap
where kp is the location of the main peak of h(k). The inverse com-
pressibility is given in column 9.

p ~ r03 rp4 rps r06

0.85 2.205 0.915 0.905 0.915 0.915
0.75 0.827 0.95 0.945 0.95 0.95
0.65 0.90 0.965 0.955 0.965 0.97
0.45 1.522 0.99 1.04 0.995 1.03

r07 rP POP/BP

0.915 0.912 20
0.955 0.951 13
0.97 0.963 3
0.99 0.99 1.2

"J.E. Enderby, T. Gaskell and N. H. March, Proc. Phys. Soc.
85' 217 {1965).

extract from h(k) the part due to the pole at the origin.
We thus get A„——2.5, p=1.15. The direct fit of h(r) by
(26) leads to A„=2.6+0.25, ii= 1.16+0.03; the domi-
nant pole representation for the asymptotic part of h (r)
is thus seen to be excellent.

(3) The case of the Lennard-Jones potential. The
striking fact is that, here again, h(v) behaves as sinkov

at high density, where he=2'/ro is the position of the
first peak of h(k) as discussed before. It is therefore
clear that the oscillations of h(r) are a consequence of
the sharp repulsion of the potential. The accuracy with
which this sine rule holds is illustrated by the first three
lines of Table II. These give, for three high-density
cases, the values of re obtained from h(k) and the values
ro; obtained by fitting the successive zeros of h(r) with
sin(27rr/ro;) starting from the third zero, that is, ex-
cluding such zeroes as belong to the first peak of the
correlation function. The fourth line shows that the
oscillations do not have the same regularity when Bp/Bp
is small. Ke cannot go further and apply the analysis
given in the preceding example to the case of the
Lennard- Jones potential, because c(r) is no longer
strictly short-ranged. Actually the asymptotic form
(26) is not valid in the present case; the decay of h(r)
is only very poorly approximated by that formula, with
p roughly of the order of 0. The following point should
be stressed: at low density h(r) behaves as f(r) On the.
other hand, we have at high density oscillations of the
damped sine type. To obtain such a result one needs a
strong screening of the potential. In order to understand
how such a screening operates, we remember that the
correlation function, according to (19), is to be seen as
the response of the medium to a test particle at the
origin. The tail of the potential can be considered as a
long-wavelength perturbation. At higher density Bp/B p
is large, and this corresponds to a high stability of the
medium against those perturbations: The potential is
very effectively screened out. When Bp/Bp is small, on
the other hand, the decay of the correlation is compli-
cated; it results from the combination of the little-
screened long-range part of the potential and the many-
body eGects described in the preceding section: the
oscillations can no longer be described by a sine, as may
be seen from the last line of Table II. The analysis made
by Enderby, Gaskell, and March" makes the above con-
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Taazx III. Values of r; such that k;r;= (1+i)x, where k; is the
position of the ith zero of h(k). The 6rst line corresponds to x-ray
experiments» and should be compared with the second line
{molecular dynamics). Similarly the neutron datab of line 3 are to
be compared with the molecular-dynamics results of line 4.

0.14 ~

f3 f4 f3 &8

x-ray» 1.28 0.5426 1.11 0.94 1.10 1.05 0.985 0.955
MD 1.326 0.5426 1.10 1.10 1.09 1.08 1.07 1.06
neutron 0.77 0.77 1.13 1 ~ 12 1.10 1.10 1.10 1.07
MD 0.827 0.75 1.13 1.13 1.11 1.10 1.09 1.08

0.10 ~

a Reference 7."Reference 14.

siderations more quantitative: In a diagrammatic ex-
pansion, it is easily seen" that c(r) contains, in addition
to f(r), an infinity of diagrams with no articulation
points. Given that f(r) behaves for large r as
—4'(o/r)', each of those terms goes to zero faster than
1/r' If th.e same can be said of the sum of all those
terms, the asymptotic behavior of c(r) is known. Simple
considerations on the Fourier transforms lead, with the
help of the Ornstein-Zernicice formula (1), to the con-
clusion that for large values of r, the function k(r) be-
haves as:

"(") f(")/(P~ P/~ p) (29)

Thus, at high density, where the inverse compres-
sibility is large, the tail of the potential is almost sup-
pressed, and may be seen only at very large distances,
where the many-body sects have died out. Theo-
retically, the asymptotic form, for very large r, is
probably given by (29). Practically the many-body
effects dominate the observable range, and k(r) is of the
form y(r) sinkor, where p(r) is some damping function
that we have not been able to write down explicitly.

VII. ASYMPTOTIC BEHAVIOR OF Alki

Ke shall try, analogously to what has been done for
the large-r behavior of k(r), to relate the asymptotic

0.05
0.$

I'IG. 13. a of formula (30) as a function of P for the isochores
p=0.88, p=0.85, p=0.75, p=0.65, and p=0.45.

form of h(k) to the first peak of g(r). The important
components in the Fourier transform of the correlation
function will correspond to the location r of its maxi-
mum and to the steeply varying portion in the neigh-
borhood of r 0."To illustrate that point, we show in
Table III for two cases the values r; of r such that

k;r, = (1+i)s,
where k; is the position of the ith zero of h(k). We see
that the first r; considered is equal to r and that the
successive zeros lead to lower values of r;, as the rising
part of g(r) is explored in the Fourier transform. In
Table III, we compare the values of r; of one of Pings's
experiments' (T= 1.28, p=0.5426) with the result of a
molecular-dynamics computation (T= 1.326, p =0.5426).
We do the same for one of Clayton and Heaton's" ex-
periments (T=0.77, p=0.77) and compare it with our
nearest "experiments" (T=0.827, p=0.75). We im-
mediately see the striking contrast between the regu-
larity of the neutron data and the more erratic character
of the x-ray data. The complete comparison of h(k) in
both cases is shown in Figs. 6 and 7.

More precisely, we find that our results for k(k) can
be fitted for large k values by the form

1.02 ~

k, (k) =C coskr exp( —ak)/k (30)

r„and o, are represented as functions of P for several
isochores in Figs. 12 and 13 respectively. It has been

FIG. 14. C of formula (30) as a
function of p.

0
04' 06 08

FIG. 12. r of formula (30) as a function of p for the isochores
p=0.88, p=0.85, p=0.75, and p=0.65. "R.Kaplow and S. L. Strong (private communication).
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found sufFicient with those values of r„and n to take C
as depending only on p (Fig. 14). The exponential decay
in (30) is quite well verified. The oscillations in h(k) are
reproduced by (30) to a fair degree of accuracy: The
error in the positions for the first five zeros of h(k)
after those belonging to the 6rst peak is less than 0.1 in

reduced units. A slightly better 6t would be obtained

by introducing a phase shift in (30). Let us now repre-
sent h(r) in the neighborhood of its first peak by

c— r+r '

When r ' and C' are equal to r„and C respectively, (31)
is precisely the Fourier transform of (30). It turns out
that they are not exactly equal, but very nearly so. r„'
is smaller than r„roughly by 0.005, and C' is equal to
C within 10% in general. Although such an excellent
agreement is probably coincidental in part, it indicates
the close connection between the oscillations of h(k)
and the peak of h(r). The approximate representation
hi(r) of the correlation function given by (31) is shown
on Fig. 2 in one of the high-density cases (p=0.85,
T=0.88). h(r) vanishes approximately for

r~r '+a'/2r '

where the second term is very small; above this value
h(r) rises linearly and then bends over to reach a maxi-
mum at r ~r„'+n. Lastly, it is easy to see that the
following relation holds between the maximum of the
correlation function given by (31) and the slope of its
rising part:

h, (r )/r 'dhi(r)/drj, „~a/2r

This relation holds also, to a good approximation, for
the exact correlation functions, as may be seen from the
data presented in the Appendix.

VIII. HARD-SPHERE MODEL FOR THE
LENNARD-JONES POTENTIAL

In the preceding sections, we have emphasized the
importance of the repulsive part of the potential and
the likeness of its effects to those of an infinitely hard
core. Before proceeding further we shall briefly sum-
marize the conclusions which have been reached in the
preceding sections. We have seen in Sec. IV that the
direct correlation function for the Lennard-Jones po-
tential presents near the origin a large negative arch
characteristic of the repulsive region of the potential,
and a steeply rising part in the region where the poten-
tial varies rapidly around zero. This behavior very
much resembles that of a rigid-sphere gas. The shape of
the direct correlation function inside the repulsive
region of the potential fixes almost completely the posi-

h(k. )

2

0.5 1.5 I

FIG. 15. Height of the 6rst peak of h(k) as a function o& the in-
verse temperature p for several isochores. The dots indicate the
height of the first peak of the hard-sphere model of diameter 0 at
the same density

tion of the main peak of h(k) at a value which at high

density is practically the same as that for a hard-sphere

sas of the same density and of diameter 0.. This peak of
h(k) is responsible for the oscillations of h(r) for large
values of r, and the position ko of the peak determines
the period ro ——2s/ko of these oscillations. Lastly, we

have seen in Sec. VIII that the oscjllations of h(k) for
large values of k are closely related to the steeply rising

part of the correlation function, which is due to the
rapid change of the potential in the region r 0-. More
precisely, h(k) oscillates as coskr, where r„ is practi-
cally equal to the value of r at the first zero of the cor-
relation function h(r)

Given those remarks, it is very tempting to generalize
the hard-sphere model used by Ashcroft and Leknere in
their study of the correlation functions of liquid metals:
we shall try to fit h(k) for the Lennard-Jones potential
with that corresponding to a hard-sphere gas. The
density of the equivalent hard-sphere gas will be chosen
in such a way that the heights of the 6rst peaks of the
two structure factors coincide. The height h(ko) is
shown on Fig. 15 in the case of the Lennard-Jones Quid

for several values of the density p as a function of the
inverse temperature P. On those isochores is shown also
the value of h(ko) obtained from the Wertheim-Thiele
solution corresponding to a hard-sphere gas of diameter
0 and of density p= p. If we follow Ashcroft and Lekner
and take the diameter of the equivalent hard-sphere gas
equal to 0, and if we fit its density P by requiring the co-
incidence of the heights of the first peaks of h(k), we
obtain for each isochore of the Lennard-Jones potential
a curve giving p as a function of P, as shown on Fig. 16.
The diameter of the hard sphere will not be taken equal
to r, but to a slightly diBerent value c, chosen in such
a way that the zeros of h(k) away from the main peak
coincide with those of the model h(k). Remembering
that the asymptotic form of the Wertheim-Thiele solu-
tion of the hard-sphere problem behaves as (cosh@)/k',
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we would be tempted, in view of (30), to take a equal to
r„.That asymptotic form, however, is reached only for
very large values of k. We thus prefer to fit a directly
in such a way that the first zeroes after the main peak
of both h(k)'s coincide. The values of a resulting from
such a fit are shown for several isochores, as a function
of the temperature, on Fig. 17. It is seen that, as was
the case for r„, a decreases when the temperature in-

creases, as expected intuitively. We see from Figs. 6-8
that such a model, which is only fair at the lowest

density considered (Fig. 6), becomes excellent for very
high values of the density. It should be said, however,
that the decay at very large k is not at all the same for
the two cases: This is not apparent on the figures, but
may be seen from the data, and is a refiection of the
fact that the peaks of g(r) are very different for hard
spheres and Lennard-Jones molecules.

0,7-

7.00

0.98

0.96

0.5 1.0
/3

1.5

Jones fluid are very incompressible, and the structure
factor scoincide fairly well for low values of k (Figs. 7
and 8). If, on the other hand, the density is relatively
low and the temperature around critical, the hard-
sphere gas is much more incompressible than the
Lennard-Jones fluid, and the structure factor yielded
by the model differs radically from the exact one
(Fig. 6). We realize again that, because of the high in-
verse compressibility, this model is more appropriate at
high density, where the potential effects are screened
out.

Fn. 17. Diameter u of the model hard-sphere gas as a function
of the inverse temperature P of the Lennard-Jones Quid, for
several isochores.

0.5 ' $.0

Fro. 16. Density p of the hard-sphere model of diameter 0. fitting
the height of the first peak of h(k) to that of a Lennard-Jones Quid
as a function of the inverse temperature P for several values of the
density.

If the model were really consistent, the actual density
p' of the hard-sphere gas of diameter a, i.e. P/a', would
be equal to p. This is indeed so at high density. For in-
stance, for the twelve temperatures considered on the
isochore p=0.85, all values of p' obtained are situated
between 0.84 and 0.85. Therefore, if we write a= (p/p)'",
the error is very small. At lower density this approxima-
tion is not so good. For instance, for p=0.5426,
T=1.328, one gets p=0.572 and p'=0.56: The error in
a reaches I%%uo.

It is easily seen, using Figs. 9, 10, 16, and 17, that at
high density, the position of the first peak of the molecu-
lar-dynamics h(k)'s and that yielded by the hard-
sphere model coincide, to a good accuracy. From this,
it results (see Sec. VI) that the oscillations of h(r) will
be correctly reproduced by the model.

A last remark concerns the low-k behavior. For high
densities, both the hard-sphere gas and the I.ennard-

IX. CONCLUSION

In this paper, we have presented an analysis of the
correlation functions obtained from molecular dynamics
in the case of the Lennard-Jones potential. It has been
made clear that most of the structure of the correlation
functions at high density is due to the geometrical
efI'ects produced by the existence of a strong repulsion
in the potential. It has been shown that these effects can
be displayed by the Wertheim-Thiele approximate solu-
tion of the hard-sphere problem, and that the diameter
a of the hard spheres is the only parameter of the theory.
In a forthcoming paper" we shall show that these
results are not spoiled if the exact (numerical) solution
of the hard-sphere problem is used, and how the
Kirkwood-Alder transition of the model hard-sphere
gas is related to the actual liquid-solid transition.

In this Appendix we give a table of the values of some
of the pair functions g(r) which have been computed and
used in the present study (Table IV). For r(2.4, the
results are obtained directly through the molecular-
dynamics computation. The results for larger values of
the distance are obtained with the help of the extrapola-
tion procedure described in the Introduction. It may be
recalled that, for high densities, g(r) is equal to unity
when sin(2vrr/ro) vanishes. ro is given in Figs. 9 and 10.
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TAsLE IV. The pair function g(r) for several values of the density p and the temperature T.
The units are the usual reduced units with o =e/k=1.

P

rQ

0.84
0.88
0.92
0.96
1.00
1.04
1.08
1.12
1.16
1.20
1.24
1.28
1.32
1.36
1.40
1.44
1.48
1.52
1.56
1.60
1.64
1.68
1.72
1.76
1.80
1.84
1.88
1.92
1.96
2.00
2.04
2.08
2.12
2.16
2.20
2.24
2.28
2.32
2.36
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80
4.00
4.20
4.40
4.60
4.80
5.00

0.880
1.095

0.000
0.001
0.086
0.688
1.871
2.701
2.785
2.453
2.003
1.596
1.286
1.058
0.891
0.781
0.699
0.650
0.616
0.606
0.612
0.631
0.663
0.720
0.790
0.873
0.960
1.040
1.113
1.180
1.221
1.2SO

1.268
1.2S7
1.223
1.168
1 ~ 103
1.044
0.981
0.936
0.896
0.869
Q.894
1.044
1.088
1.002
0.941
0.978
f.p32
1.026
0.988
0.978
1.000
1.016
2.005

0.880
0.936

0.000
0.000
0.048
0.520
1.691
2.682
2.899
2.584
2.111
1.682
1.337
1.093
0.905
Q.770
0.677
0.621
0.595
0.574
0.583
0.601
0.645
0.702
0.771
0.8S7
0.946
1.039
1.114
1.178
1.236
1.268
1.284
1.277
1.248
1.194
1.132
1.066
0.994
0.934
0.890
0.8S1
0.878
f.046
1.101
1.006
0.930
0.972
1.037
1.033
0.986
0.972
0.999
1.020
2.008

0.880
0.591

0.000
0.000
0.003
0.169
1.128
2.592
3.279
3.032
2.440
1.864
1.401
1.081
0.8S3
0.713
0.617
0.563
0.532
0.520
0.518
0.548
0.590
0.651
0.733
0.830
Q.951
1.058
1.153
1.217
1.261
1.286
1.306
1.30S
1.288
1.244
1.179
1.100
1.015
0.945
0.876
0.825
0.842
1.059
1.129
1.010
0.911
0.960
1.051
1.047
0.981
0.959
0.992
1.029
1.012

0.850
2.888

0.007
0.145
0.716
1.545
2.093
2.210
2.069
1.834
1.586
1.372
1.196
1.058
0.949
0.872
0.818
0.778
0.751
0.742
0.741
0.759
0.782
0.817
0.863
0.913
0.967
1.019
1.075
1.118
1.143
1.156
1.151
1.135
1.108
1.084
1.046
1.016
0.992
0.968
0.952
0.939
0.950
1.016
1.035
1.002
0.980
0.992
1.009
1.008
0.998
0.994
0.999
1.003
1.001

0.850
2.202

0.001
0.060
0.490
1.310
2.076
2.350
2.228
1.973
1.699
1.438
1.223
1.068
0.945
0.859
0.798
0.754
0.724
0.719
0.720
0.732
0.757
0.792
0.839
0.891
0.954
1.016
1.071
1.174
1.153
1.172
1.180
1.165
1.131
1.097
1.064
1.029
0.998
0.969
0.946
0.930
0.937
1.016
1.045
1.005
0.975
0.988
1.011
1.011
0.998
0.992
0.998
2.005
2.003

0.850
1.273

0,000
0.004
0.135
0.799
1.846
2.508
2.587
2.309
1.944
1.597
1.323
1.107
0.947
0.840
0./58
0.699
0.672
0.661
0.652
0.667
0.696
0.738
0.794
0.854
0.920
0.992
1.062
1.127
1.188
1.220
1.232
1.225
1.203
1.160
1.112
1.056
1.007
0.967
0.934
0.906
0.933
1.017
1.071
1.012
0.959
0.976
1.017
1.023
0.997
0.984
0.996
1.009
1.006

0.850
1.127

0.000
0.002
0.085
0.610
1.750
2.560
2.710
2.413
2.009
1.643
1.349
1.122
0.955
0.824
0.739
0.682
0.640
0.627
0.625
0.644
0.677
0.725
0.781
0.854
0.930
1.009
1.079
1.137
2.191
1.231
1.248
2.241
1.214
1.172
1.122
1.068
2.011
0.960
0.924
0.892
0.894
1.026
1.080
f.p14
0.951
0.974
1.023
1.026
0.994
0.980
0.996
2.012
1.007

0.850
0.880

0,000
0.003
0.030
0.412
1.511
2.546
2.871
2.594
2.151
1.744
1.386
1,121
0.946
0.8f 7
0.742
0.664
0.622
0.597
0.599
0.626
0.656
0.701
0.757
0.831
0.907
0.986
1.072
1.142
1.198
1.240
1.267
1.269
1.246
1.207
1,151
1.090
1.021
0.967
0.923
0.881
0.876
1.023
1.095
1.021
0.942
0.966
1.026
1.034
0.995
0.974
0.994
1.015
1.010
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Tmxx IV (continued)

0.850
0.786

0.850
0.719

0.850
0.658

0.824
0.820

0.750
2.845

0.750
1.304

0.750
1.070

0.750
0.827

0.84
0.88
0.92
0.96
1.00
1.04
1.08
1.12
1.16
1.20
1.24
1.28
1.32
1.36
1.40
1.44
1.48
1.52
1.56
1.60
1.64
1.68
1.72

1.76
1.80
1.84
1.88
1.92
1.96
2.00
2.04
2.08
2.12
2.16
2.20
2.24
2.28
232
2.36
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80
4.00
4.20
4.40
4.60
4.80
5.00

0.000
0.000
0.017
0.324
1.377
2.514
2.938
2.726
2.246
1.794
1.419
1.143
0.938
0.790
0.703
0.634
0.594
0.579
0.581
0.595
0.632
0.681
0.748
0.827
0.916
1.014
1.095
1.160
1.202
2.247
1.275
1.280
2.255
1.223
1.164
1.093
1.025
0.964
0.916
0.869
0.866
1.030
1.102
1.020
0.936
0.963
1.030
2.037
0.993
0.972
0.994
2.018
2.011

0.000
0.000
0.010
0.254
1.257
2.491
3.001
2.807
2.327
1.822
1.433
1.145
0.930
0.793
0.694
0.628
0.591
0.564
0.566
0.587
0.623
0.674
0.735
0.820
0.927
1.014
1.090
1.161
1.213
1.252
1.272
1.283
2.268
1.226
1.169
1.099
1.034
0.972
0.916
0.872
0.857
1.030
1.207
1.022
0.934
0.959
1.031
1.040
0.994
0.969
0.993
1.019
1.013

0.0000
0.0000
0.0039
0.1315
0.8487
2.1002
2.9569
3.0373
2.6773
2.1735
1.6837
1.2824
0.9929
0.7894
0.6499
0.5575
0.5144
0.5045
0.5175
0.5404
0.5759
0.6081
0.6472
0.6985
0.7857
0.9117
1.0656
1.2284
1.3447
1.4091
1.4166
1.3729
1.3015
1.2201
1.1429
1.0713
2.0051
0.9461
0.8989
0.8766
0.853
1.031
1.110
1.022
0.932
0.958
1.032
1.042
0.993
0.968
0.993
1.020
1.013

0.000
0.000
0.020
0.332
1.337
2.422
2.829
2.629
2.220
1.794
1.434
1.179
0.977
0.843
0.745
0.682
0.633
0.618
0.626
0.624
Q.649
0.687
0.745
0.812
0.890
0.974
1.056
1.116
1.178
1.224
1.256
1.264
1.244
1.206
1.156
1.097
1.042
0.984
0.936
0.901
0.876
1.009
1.088
1.028
0.952
0.963
1.018
1.032
1.001
0.979
0.991
1.011
1.011

0.004
0.104
0.555
1.280
1.823
2.031
1.978
1.810
1.624
1.432
1.270
1.147
2.037
0.954
0.898
0.849
0.823
0.803
0.792
0.796
0.810
0.830
0.855
0.886
0.926
0.965
1.006
1.048
1.079
1.104
1.110
1.108
1.101
1.085
1.062
1.040
1.020
1.004
0.983
0.973
0.969
0.995
1.021
2.010
0.993
0.991
1.001
1.005
1.002
0.998
0.998
1.000
1.002

0.000
Q.002
0.099
0.618
1.533
2.194
2.362
2.209
1.940
1.662
1.414
1.226
1.076
0.949
0.857
0.806
0.764
0.739
0.728
0.724
0.732
0.758
0.783
0.830
0.880
0.930
0.988
1.044
1.093
1.138
1.162
1.169
1.169
1~ 149
1.117
1.091
2.055
1.016
0.990
0.962
0.923
0.985
1.041
1.026
0.986
0.979
1.000
1.023
1.006
0.994
0.994
2.001
1.004

0.000
0.000
0.048
0.457
1.369
2.268
2.461
2.340
2.036
1.731
1.471
1.248
2.086
0.946
0.857
0.790
0.742
0.713
0.703
0.699
0.716
0.735
0.776
0.824
0.870
0.928
0.980
1.044
1.100
1.142
1 ~ 173
1.2SS
1~ 181
1.160
1.141
1.107
1.063
1.030
0.994
0.962
0.914
0.982
1.046
1.031
0.985
0.975
0.999
1.015
2.007
0.993
0.993
1.002
1.005

0.000
0.000
O.Q25

0.300
1.050
2.120
2.480
2.620
2.188
1.844
1.526
1.279
1.086
0.954
0.845
0.783
0.722
0.685
0.675
0.677
0.692
0.715
0.750
0.791
0.847
0.924
0.973
1.036
1.087
1.146
1.183
1.202
2.207
1.298
1.167
1.127
1.080
2.035
1.004
0.960
0.897
0.975
1.054
1.040
0.982
0.967
0.997
2.020
1.011
0.992
0.989
1.001
1.070



LOUP VERLET

TABLE IV (continued)

0.650
3.669

0.650
1.827

0.650
1.584

0.650
1.036

0.650
0.900

0.500
1.360

0.450
2.934

0.450
1.710

0.450
1.552

0.84
0.88
0.92
0,96
1.00
1.04
1.08
1.12
1.16
1.20
1.24
1.28
1.32
1.36
1.40
1.44
1.48
1.52
1.56
1.60
1.64
1.68
1.72
1.76
1.80
1.84
1.88
1.92
1.96
2.00
2.04
2.08
2.12
2.16
2.20
2.24
2.28
2.32
2.36
2.40
2.60
2.80
3.00
3.20
3.40
3.60
3.80
4.00
4.20
4.40
4.60
4.80
5.00

0.013
0.170
0.640
1.228
1.633
1.776
1.750
1.659
1.526
1.393
1.275
1.166
1.086
1.019
0.958
0.924
0.897
0.875
0.862
0.856
0.859
0.871
0.891
0.907
0.927
0.955
0.982
1.003
1.025
1.040
1.059
1.066
1.064
1.055
1.046
1.036
1.029
1.019
1.005
0.999
0.878
0.991
1.007
1.007
1.000
0.996
0.999
1.001
1.001
1.000
0.999
a.ooo
1.000

0,000
0.015
0.200
0.765
1.457
1.821
2.021
1.922
1.751
1.565
1.405
1.256
1.136
1.032
0.968
0.913
0.866
0.841
0.818
0.808
0.809
0.813
0.827
0.855
0.887
0.916
0.950
0.995
1.032
1.062
1.083
1.096
1.102
1 ~ 103
1.087
1.065
1.051
1.028
1.016
1.004
0.961
0.981
1.013
1.016
1.000
0.992
0.996
1.003
1.003
1.000
0.998
0.999
1.001

0.000
0.006
0.138
0.658
1.411
1.921
2.076
2.003
1.821
1.608
1.425
1.263
1.145
1.044
0.965
0.906
0.861
0.833
0.805
0.797
0.796
0.805
0.820
0.844
0.873
0.916
0.951
0.991
1.029
1.064
1.087
1.104
1.110
1.101
1.097
1.083
1.056
1.035
1.019
1.001
0.956
0.981
1.015
1.018
0.999
0.990
0.996
1.004
1.004
1.000
0.998
0.999
1.000

0.000
0.000
0.034
0.343
1.120
1.892
2.258
2.225
2.024
1.749
1.516
1.326
1.165
1.043
0.959
0.884
0.841
0.801
0.776
0.763
0.764
0.774
0.794
0.822
0.854
0.899
0.934
0.974
1.022
1.064
1.097
1.126
1.139
1.140
1.123
1.102
a.o82
1.052
1.024
1.003
0.943
0.967
1.015
1.027
1.000
0.985
0.993
1.005
1.007
1.000
0.996
0.998
1.002

0.000
0.000
0.018
0.257
1.016
1.890
2.328
2.335
2.118
1.815
1.545
1.340
1.173
1.044
0.936
0.860
0.809
0.779
0.756
0.744
0.745
0.765
0.775
0.804
0,847
0.891
0.947
0.987
1.039
1.083
1.117
1.144
1.155
1.155
1.137
1.113
1.088
1.055
1,021
0.992
0.934
0.975
1.026
1.029
0.996
0.982
0.995
1.008
1.007
0.998
0.995
0.9%
1.002

0.000
0.001
0.069
0.428
1.109
1.694
1.961
1.946
1.830
1.658
1,491
1.335
1.227
1.129
1.059
0.982
0.929
0.898
0.881
0.863
0.860
0.859
0.854
0.873
0.894
0.907
0.938
0.966
0.994
1.021
1.047
1.062
1.075
1.082
1.073
1.066
1.056
1.044
1.030
1.022
0.982
0.984
1.004
1.012
1.005
0.982
0.973
1.001
1.002
1.001
1.000
1.000
1.000

0.002
0.064
0.353
0.841
1.298
1.551
1.620
1.573
1.504
1.411
1.323
1.241
1.167
1.107
1.051
1.006
0.975
0.959
0.929
0.921
0.913
0.912
0.913
0.925
0.933
0.954
0.965
0.978
0.990
1.005
1.016
1.025
1.023
1.025
1.026
1.022
1.016
1.014
1.009
1.009
0.995
0.993
0.999
1.003
1.002
1.000
0.999
1.000
1.000
1.000
1.000
1.000
1.000

0.000
0.007
0.122
0.543
1.169
1,640
1.852
1.828
1 ~ 734
1.573
1.439
1.311
1.219
1.139
1.075
1.013
0.968
0.938
0.923
0.907
0.900
0.890
0.893
0.900
0.909
0.923
0.942
0.969
0.989
a.o14
1.025
1.044
1.054
1.051
1.051
1.050
1.042
1.028
1.024
1.018
0.990
0.990
1.001
1.007
1.004
1.000
0.999
1.000
1.001
1.001
1.000
1.000
1.000

0.000
0.004
0.092
0.498
1.125
1.613
1.837
1.848
1.753
1.604
1.479
1.336
1.219
1.133
1.060
1.006
0.962
0.935
0.916
0.897
0.898
0.885
0.884
0.889
0.906
0.919
0.937
0.959
0.983
1.009
1.022
1.041
1.053
1.061
1.054
1.053
1.046
1.035
1.028
1.011
0.995
0.990
1.000
1,007
1.005
1.001
0.999
1.000
1.001
1.001
1.000
1.000
1.000


