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The damping of the ion acoustic waves by Coulomb collisions is studied by using the Fokker-Planck equa-
tion of Rosenbluth et al. for both the species constituting the plasma, namely, the electrons and the ions. In
a plasma with weak collisions and in the absence of any external field, one finds that irrespective of the ratio
T of the ion temperature to the electron temperature, the characteristic freqeuency gets affected only by
the electron-ion collisions. However, as far as the collisional damping is concerned, both the ion-ion and the
electron-ion collisions play a somewhat equally important role; the electron-electron and the ion-electron
contributions are negligible compared to the other two. The damping increases with increase in the collision

frequency but decreases with increase in 7.

I. INTRODUCTION

ON acoustic waves, which were first predicted by
Tonks and Langmuir! using the fluid analysis,
have been studied by a number of authors®= on the
basis of the collisionless Boltzmann equation. The
collisionless theory shows that when the electrons and
the ions have the same temperatures, these waves are
very heavily Landau-damped. Experimentally, the
ion waves were first observed by Revans,® and their
Landau damping was measured by Wong ef al.” Wong
et al. studied the space damping rather than the time
damping in cesium and potassium and observed that
the damping constant depends on the magnitude of the
ion drift.

The collisional damping of the ion waves was studied
by Bhadra and Varma?; they used Krook’s model® to
describe the ion-ion collisions. Kulsrud and Shen®
used a slightly more realistic model for the collisional
process. In their model, the ions were described by the
Fokker-Planck equation of Rosenbluth et al.!'; however,
the electrons were treated by a fluid equation with the
further assumption that the electrons were isothermal.
This assumption of electrons being isothermal is
equivalent to considering the Vlasov equation for the
electrons, thereby neglecting the electron-electron and
the electron-ion collisions. We remove this restric-
tion on the electrons and treat both the electrons and
the ions by the corresponding Fokker-Planck equations.
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We indeed find that the electron-ion contribution to
the collision term can not be neglected as compared to
the ion-ion contribution.

Similar calculations for high-frequency plasma waves
have been done by Comisar!? and Buti.’*='* The effect
of strong collisions on the low-frequency electrostatic
plasma oscillations with and without an external mag-
netic field has been studied by Kuckes!® by using fluid
equations. Following Comisar and Buti, we solve the
Fokker-Planck equation on the assumption that the
Coulomb collisions are weak, i.e., w7>>1, where w is the
characteristic frequency of the wave and 7 is the mean
collision time for the collision process under considera-
tion. We find that in the absence of any external field,
irrespective of the ratio of the ion temperature to the
electron temperature, the characteristic frequency gets
affected only by the electron-ion collisions; however,
as far as the collisional damping is concerned, both the
electron-ion and the ion-ion collisions play a role: The
electron-electron and the ion-electron contributions are
negligible compared to the other two.

II. GENERAL THEORY

Consider an unbounded fully ionized hot plasma con-
sisting only of electrons and ions without any external
field. In equilibrium, both the electrons and the ions
obey Maxwellian distribution of velocities (for the
validity of the Fokker-Planck equation, see the
Appendix), i.e.,

Joa(v) = (2mug?) =3/ @va®) 1)

where the subscript @ stands either for the electron or
for the ion and v,2=KT,/m, with m,=m and m;=M.
N foa is the equilibrium distribution function for species
a. For small perturbations, the linearized Fokker-

2 G. G. Comisar, Phys. Fluids 6, 76 (1963) ; 6, 1660 (1963).

13 B. Buti and R. K. Jain, Phys. Fluids 8, 2080 (1965).

1 B. Buti and S. K. Trehan, Ann. Phys. (N. Y.) 40, 296 (1966).
16 B. Buti, Phys. Rev. 160, 188 (1967).

6 A. F. Kuckes, Phys. Fluids 7, 511 (1964).

195



196 B.

Planck equation for longitudinal oscillations is given by

3fa/0t4v-3fa/0x+ (Nea/ma)E- (8 foa/ V)
= (afa/at)c ’ (2)
where f,(x,v,f) is the perturbed distribution function

and (9 f,/3?). takes into account the collisions between
like and unlike particles and is represented by

<6fa>c= _;_v.[ FoalA)at ful& o]

at
l 2
+- [foalAA)at falAA)oa], (3)
2 dvov
with
a 9 J !
(A)a=NT, X (1+n >—— /dv’ J ) , @)
Jm=ei my/ v |v—v’|
a a 0 !
(A)u=NT. 5 (1+"’ )a vl )
T=e,i my/ v [v—v'|
62
(AAY,=NT, X /dv’f; V) |v=v'|, (6)
J=e,i VAV
and
62
@a=t T [wju@lv-vl. @)
J=¢,i VOV

In these equations T';= (4we.?/m,?) In(4wrNAp?®), with
Mp?=KT./(4r Neé?); Ta is the average of the electron
and the ion temperatures. The perturbed electric field
in Eq. (2) is given by the Poisson’s equation,

divE=4r3" e;/dv fr. (8)
7

To solve the pair of coupled equations (2) and (8), we
take the Fourier transforms in space and Laplace trans-
forms in time of all the perturbed quantities; Eq. (2)
then becomes

(s+ik-v) 1 (kv,s)—g.(k,v)+ (Neo/mq)E,’
“(3f0a/0V)=(8fs'/00)c, (9)

where f,’ and E,’ are the Fourier-Laplace transforms
of f, and E and g,(k,v) is the Fourier transform of the
initial perturbation in the distribution function. To
ensure the convergence of the integrals, we can have s
in Eq. (9) such that Res>0. On further taking the
Fourier transforms in velocity space, thus defining

F.(ko,s)= /(Iv e v f) (k,v,s), (10)
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Eq. (9) takes the form

s d 1
<;— ———>F..—- -Ga(k,o)
do, k

1:6,;N0‘¢Eg, 1 aFu
$E () )
mak k\ at /.

where
4im

E/=——
k

Z CJFJ(k,O,S) . (12)
J

In writing Eqgs. (11) and (12), we have assumed that k
is along the z axis. Following the procedure outlined in
Refs. 12-14, we can easily evaluate the collision term
and on integrating Eq. (11), we get

te.NE, ot
eav,/k

P.(o ’
k ( )]+kL

Fa(k,a,s)=emfk[oa<o>+

ma a

0

X/ ddzle—suz//k/dn[Fa(n) (K1b+K2a+K30)

+Fb(‘l1)K4“], tl?fb (13)
where ¢’ = (0,,0,,0.),
1 0
0= / do/Ga(ka e 1k, (14)

P.(o)= —/:: do. o, exp[:—sj: —-%'vaza'?], (15)
1 ma\o- (o—n) {o-(e—n)}®
Ki(om)=— (1
o) w[( o e (e ]
Xexp[—3v(e—n)*], (16)
1re-(e—m) {o-(0—n))?
K (o, )=<[ ]
- (e—m)?  2(e—n)*
Xexp[—3va2(e—n)*], (17)
1r(e- o-n)?
Ks"(v,n)=—[( m_{ ")]exp —he—n)?], (18)
L 29t
and
1 <\ (o a-n)?
K4“(o,n)=——l:<1+m>( ) ( n):|
272 my/ 7? 7t
Xexp[—3va2(e—n)*]. (19)

In Eq. (13), we have introduced the Coulomb mean
free path L,=1v,*/(NT,). If we assume that the collisions
are infrequent, i.e., kL,>>1, then to first order in (2L,)7,
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Eq. (13) gives
Vot

P.,(u>}+
kL

ie.NE,'

F,<k,o,s>=e~'=/{oa<«>+

Ma a

x {Qa(n)—l-

On substituting Eq. (20) in Eq. (12), we obtain

E.'=®(k,s)/¥(k,s),

where

41|
P(k,s)=+
k

vle

2 eQs(0)+

Jume, 1 kL'
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eau,/k/ da,'e“"’"”‘/dn esn;/b[(Klb_l_Kza_*_Kaa)

1€

/N teyE,’N
- Pa(n)}+K4 [Qb(n)+ - Pb<n)}]. (20)

Ma m

(21)

/ da,z/e—aa;’/k/(l'neaﬂz/k{Qe(n) (K1i+K2¢+K3‘) om0
0

QK K+ K)ok QK =00, da=0)| | 22

and

V(ks)=1— ¥ w—”f—P:(o=0)—

J=¢,i e

Viwpe [

m
——Pm)K(e=0)—
M

In Eq. (23),wps2=4m Ne2/m, is the plasma frequency for
the species J.1%= We may note here that ®(k,s) depends
only on the initial perturbation. If we consider only
those perturbations for which ®(k,s) is analytic in the
complex s plane, then for the Laplace inversion of
Eq. (21), we have to consider only the zeros of ¥(k,s)
which are given by
w,,f’

1= Z N P;(e=0)

J=e,i

'1)9311,;601,02
k3

where v,=v,/ L, is the effective electron collision fre-
quency and

@ei= / do.'emse' 1k / (lne‘""‘[Pe(n)Kl‘(“=0)
0

(aai+ait+aee+aie) ) (24)

m
—-——P«'("")Kaie(“=0):|1 (25)
M
md
= dO’z'e—""/k/d
M3/, !
Xe ! ¥ (K '+ K 3%) gm0 JPi(m) , (26)

au=/ dcrz’e“""“‘/dn e*/*P. () (K2+K3%) om0, (27)
0

m2 e
Qje=—— / da, eIk | dnesn:lk
M2/,

m
X[ﬂPi(n)Kxe(o=0)—Pe(n)Kﬂ'(c'—'O):I- (28)

1% In Eq. (22) and subsequently, the subscript ¢ appearing
should be a vector.

/ d”z,e_‘n,/k/dne”‘/k[l)e (n) (Kl‘+K2e+ K3e) o=0
0

m2

m3
—Pe(n)K4"(o=0)+—Pf(n)(K1’+Kz"+Ks")u.=o]. (23)
M2 M3

Equation (24) represents the required dispersion rela”
tion which gives the oscillatory behavior of the plasma
under consideration.

III. ANALYSIS OF THE DISPERSION
RELATION

From Eq. (15), we have

1
Pilo=0)= = —T1—Vlases erf(as/\D)], (29)

v
where a;=s/(kvs) and

erf(x) 2/‘” dy e . (30)

While evaluating these integrals (P, etc.), strictly
speaking we should take into account the pole contribu-
tion which gives Landau damping but since this has
been discussed earlier, we shall not repeat it here. We
shall further assume that ¢>1 but ¢,<1 which actually
is a consequence of the fact that 1, 2>v2; thus on using
the proper asymptotic and series expansions for the
error function,’” we immediately get

1 3 1
om0~ (1-Yso( 1)
vﬁaf ll,'2 d.‘ﬁ

1/ mn
P.(o=0)= ——<1-—v2fa,)+0(a3) NG

2,2

(31)

and

As in the collisionless theory, we shall neglect terms of
the order of a.2. Moreover, in evaluating the collision
integrals, we shall retain terms only up to 1/a2.

7 E. Jahnke and F. Emde, T'ables of Higher Functions (McGraw-
Hill Book Company, Inc., New York, 1960), 6th ed.



198 B.

Let us first consider the electron-ion contribution
which is given by a.; in Eq. (25). On substituting Egs.
(16) and (19) in Eq. (25), we obtain

aai=11‘+14¢y (33)

where
1 ® Y/
11‘=—/ do e‘"”‘/ane(n) exp[——-%vﬁ(aéz—-ny]
272 J o k
m\ o(e—n.) o*(o—n.)?
) ] e

10

M/ (cti—n) (st.—n)"

and
m 0
If=——— do e ”/k/ani(n)
2mM J,
NP on: ot
Xexp[——%vez(aéz—n)ﬁ]< — ) (35)
k 7” ot

On rewriting Eq. (15) as

©

Pa(n)=—esin? / dy(y+n.)

0

><exp[—£<y+nz>—%v.f(yﬂz)?], (36)

and on using Eq. (36) for P;, Eq. (35) on performing 5
integration reduces to

m * dv ® Sa
Io= / / doa exp(———— %v,faz)
4ri2M fo (w0252 /, k

i d l: N 4 [ +8
X ———1y; -
/; 'y exp T 30 yﬁ] vay+By

va3?
1—voy)—3vg}——— |, (37
S S vaeees) I

2(v+-0?)
where
B= (vie—v2y) and b=3(v2+v?). (38)

Now, to carry out the y integration, we shall neglect
terms of the order of 82=1v2/v,2 as well as terms of the
order of (1/a#). The resulting expression can then be
put into the dimensionless form by using the variables
(veo) == and 30,2 (v+062)1=22; Eq. (37) thus reads

m (1—482/2) ) x
/ dz / dx—
T2Ma 5 ), o £

Xexp[-—aex—-xz(l—zz)][bg+$+ (ba—36%,)

148'——-

8%,  §%;
(bt -], @)
g 2 2
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where
£= (a1 8%%),
bo=2[1—3x2(3—522) —122x4(1—22)],
b= —3x[1— 3224222 (1—2%)],
bo=—8%2(1 — x> +a%?),
and

by=—36%%c(1—22%). (40)

I,* can be evaluated by proceeding on the lines similar
to the ones for 7,4, and we get

21/2 (1—582/2) © %
/ dy[ dz z/ dx
eG 0 0 H

1rl/27)
Xexp[—aa—322(1—3%) J[y*+ (1—3?)
X{ =y +3xz(1+ay?—3y*—aty*) } .

The ion-ion contribution can be similarly obtained by
simplifying Eq. (26); this gives

ai;=—8/(15x' % %a5). (42)

This, with 7 replaced by e, is exactly the same as the
electron-electron contribution obtained by Comisar.!?
Equation (28), however, gives, on integration,

Ili=

(41)

V2m? J’ 10  8m
Aie™ - 'Lr
m 1/ 2‘1) 931) ,’30 1:3M 2|_. a,-"’ 3ae2M
200M 6\ V2a,
——(1———)— S], (43)
3Im d,‘“’ 7(‘1/2
where
V2v,y
/ / dye‘"2/ dz exp[—z2 :I
Y . By
6 jll'l)i2 4A4"1)i4
X[(l——)(l———-22>+ z“:l. (44)
a? mb? vmbia?

Now it easy to see that Smax is 1/8; so we immediately
find that a;.~ (a.*M/m)a;; and can thus be neglected.
On using the similar argument, we can show that
e~ (a.8M/m)a;;. Hence to analyze the dispersion
relation, we have to consider only the ion-ion and the
electron-ion collisions.

Let us now introduce the following dimensionless
variables:

w/wpi=w*, and

vo/wpi=B, T./T.=T, a=k\.,

where \?=KT./(4r N¢?) is the Debye length for the
electrons. Equation (24), with the help of Egs. (31),
(32), (39), (41), and (42) can be written as

1/ 3aT\ 1/ =
=—<1+ ———<1~—ae>+C (43)
(.0*2 w*2 (12 21/2

C=(Cii+C..)Be?/a?,

where

(46)



165

with e=m/M, C,,=vfa;;, and C.;=1,%a,,. We shall solve
Eq. (45) by the method of successive approximations.
To lowest order, on neglecting C and a., we obtain

w¥=(1/20[14+ (1+12Xa?T)J=we?, say. (47)

Here X stands for (14-1/a?). For 7«1, Eq. (47) further
reduces to

wo?=1/X+3k2\?; (48)

the result obtained by Bernstein and Trehan.'® A; in
Eq. (48) is the ion Debye length. To next order, Eq.
(45) takes the form

1 3a? wo
X=———<1+ D—i(%ﬂr)m:—l-C(w*:wn) , (49)
a

0)*2 w *

which we shall solve numerically. It is worth pointing

Tasre I. Ci; and C.; for various values of a=kN, and T=T:/T..

a T ImCi; ReCe ImC.
1.0 0.10 —2.3183 3.3309 —0.0228
0.05 —6.9959 3.6253 0.0217
001  —10.7640 4.0307 0.0686
0.1 0.10 —0.56356 2.1755 0.0465
0.05 —1.0082 2.2879 0.0648
0.01 —2.8690 2.4265 0.0825
0.05 0.10 —0.5568 2.1659 0.0471
0.05 —0.9915 2.2770 0.0652
0.01 ~2.8175 2.4039 0.0826
0.01 0.10 —0.5540 2.1629 0.0473
0.05 —0.9862 2.2736 0.0653
0.01 —2.8011 2.3999 0.0827
0.001 0.10 —0.5539 2.1627 0.0473
0.0 —0.9860 2.2734 0.0653
0.01 —2.8004 2.3998 0.0827

TaBLE II. Re w* for ¢=0.1 and 7'=0.1, 0.05 and
0.01 for various values of B.

B T=0.1 T'=0.05 T=0.01
0.0 0.110936 0.105914 0.100927
0.0001 0.110938 0.105916 0.100929
0.001 0.110959 0.105939 0.100953
0.01 0.111167 0.106160 0.101187
0.05 0.112108 0.107161 0.102213
0.10 0.113323 0.108447 0.103456

TaBLE III. Re w* for a=1.0 and 7'=0.1, 0.05 and
0.01 for various values of B.

B T=0.1 T=0.05 T=0.1
0.0 0.883308 0.858313 0.838316
0.0001 0.883309 0.858313 0.838317
0.001 0.883315 0.858318 0.838322
0.01 0.883376 0.858370 0.838368
0.05 0.883647 0.858599 0.838566
0.10 0.883987 0.858881 0.838807

18 1. B. Bernstein and S. K. Trehan, Nucl. Fusion 1, 3 (1960).
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¥16. 1. Variation of Im w* with B for 7=0.1is
illustrated for ¢=0.01, 0.1, and 1.0
out that

Cir(w*=wo) = —8ia®/15x1 2T 2%¢? (50)

being pure imaginary, does not affect the real part of
w*; however, C.;(w*=wo) is a complex quantity and
thus changes both the real and the imaginary parts of
w*. The values of C;; and C.; for various values of @
and T are given in Table I.

According to Eq. (49), Re w*=w,* increases with an
increase in a, T, or B; but this increase, as shown
in Tables IT and III, is negligible. As illustrated in
Figs. 1 and 2, Im w*=w,* increases with an increase in
a or B, but decreases with an increase in T. So two-
body Coulomb collisions have a tendency to stabilize
the ion acoustic waves. As T increases, Landau damping
takes over the collisional damping. For the sake of
completeness, in Fig. 3, we have shown the thermal
effects on the ion waves.

In a system where the collisions are frequent, this
model will break down; in this case one should use the
kinetic equation which takes into account the correla-
tions between the charged particles.

IV. CONCLUSIONS

Independent of the ratio of the ion temperature to
the electron temperature 7, the characteristic fre-
quency of the ion acoustic waves in a plasma with weak
Coulomb collisions gets affected only by the electron-

40~

30

—wiX104
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0 1 1 o
0001 .001 .01 10
B

Fi16. 2. Variation of Im w* with B for ¢=0.1 is
illustrated for 7=0.01, 0.05, and 0.1.
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.001 01 a 0.1 1.0

F16. 3. Variation of Re w* with a for B=0 is
illustrated for 7=0.01 and 0.1.

ion collisions. Just as in a collisionless plasma, in this
case also w, increases with increase in T'; moreover, it
increases with increase in the collision frequency v,
as well as with (k)\,). The electron-electron and the ion-
electron collisions are negligible compared to the ion-ion
and the electron-ion collisions. The latter two play a
somewhat equally important role in damping these
waves. The collisional damping increases with increase
in », and (k\.) but decreases with increase in T.
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APPENDIX

The distribution function given by Eq. (1) satisfies
the Fokker-Planck equation only if the electrons and
the ions have the same temperatures. In case they have
different temperatures, which indeed is the case in our
problem, we can show that we can have a quasi-steady
state. To prove this, let us take the Fokker-Planck
equation for the electrons, namely,

af./dt+v-af./ox
—(Ne/m)E- (8fc/av)=(3f./3t)., (A1)

where

(afe/at)c= - (6/3V) * (f8<A>a)‘
+3(8%/avav)(f.(aa).);

(A). and (AA), are defined by Egs. (4) and (6). The
collision term of Eq. (A1) can be written in a more

(A2)
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convenient form as

<6f,) =~§\I‘ 5> dav’

at vy a=eiJ |v—v|
(vi—v/) (vs—2v,")
o G
(lv=v'])?

[ f..(v’)—T—— . (v)———:]. (A3)

4 Ma

For a quasi-steady state, let the distribution function be
fa= foa(14+9(8)), (A4)

where fo, is given by Eq. (1) and ¢<<1. On substituting
Eq. (A4) in Eq. (A1), we obtain

Joe(V)dop/di= (3 fo/31)..

On multiplying Eq. (AS5) by #? and integrating over v,
we get

(A5)

d¢/di= (NP,/61)¢4)(1+¢)I s (A6)

where

=/dvv2£:[f09(v)[|v‘f;/;fm(v’)(vi_;)

(vi_ 'lh") ('UJ"" ‘UJ')
Lot

(lv=v'])?

X ( dis—
and T=T,/T.. On using Eq. (1) for fo, and f., after
angular integrations Eq. (A7) yields

2 0 0
dve—v212Vely2 / dv'e=?"? 12V - (AB)
0

where

ﬁxm —? —(v2+v’2 2vv'x)
{v2+—1j—vv (1+ )x-— ’/v(v’+-—2>x
s}

Now if we use the relation

/ dv/ dv' f(v,0")F (|v—2'|)
0 0

- / dv/ W J(00)+ 7@ ) IF (=), (A10)
0 0
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Eq. (A8) can be written as

2

I=— / dv vzf dv'v?[S exp(—av*—a'v"?)
0 0

w0503
+S’ exp(—a'®—av?)], (Al1)

where a=1/(2v2), a’=1/(2v2), and S’(v,0")=S(',v).
The result of simplifying S and S’ is to take Eq. (A11) to

I=—(8/3nr0 23 (1—1/T)[e(1,4)+B8(4,1)], (A12)

where

a(m,n)=/ dv/ dv'vmv'™ exp(—ar*—a'v?)  (A13)
0 J O

and B(mmn) is obtained from a(m,) by simply inter-
changing @ and a’. Finally on using the relation

© (a.’r)l/Z

dy ye~*¥* erf(a'?y) = ———,
fg Y 4s(a+s)'72
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we obtain
(1-1/ T)r 1 1
B 27! ”-u,“v,-“Laa'2 (a+a" )2 a*(a+ta’)3?

1 1

—_ Il —_

+ . (A14
a'(a+a’)’? ga’®? a(a+a’)5/2] (A14)

As done in the text, if we neglect terms of the order
(v2/v.2), then Eq. (A6) with the help of Eq. (A14) gives

d¢ 23"’2AVI‘ev.»"’<1 1 >

(A15)

T
which in terms of the electron collision frequency v,
can be rewritten as
1 dp 222 /v, \/m
—_ = (—)(k—)(l—T). (A16)
wpi dt 3w \wp,
In case of weak collisions, (v./w,:)<<1, so (d¢/dt) is
negligible and thus Eq. (1) holds good to a very good
approximation.
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Equilibrium correlation functions for a dense classical fluid are obtained by integrating the equation of
motion of a system of 864 particles interacting through a Lennard-Jones potential. The behavior of the
correlation function at large distance, and that of its Fourier transform at large wave number, are discussed
in detail and shown to be related to the existence of a strong repulsion in the potential. A simple hard-sphere
model is shown to reproduce very well the Fourier transform of those correlation functions at high density,
the only parameter of the model being the diameter ¢ of the hard spheres.

I. INTRODUCTION

SING a technique directly inspired by the beauti-

ful work of Rahman,! we have performed some
experiments on a classical fluid composed of 864 mole-
cules interacting through a Lennard-Jones potential
V(r)=4€ (a/r)2— (¢/r)%] cut at r,=2.5¢ or r,=3.30.
The details of these computations and a discussion of
the thermodynamical results have been given else-
where.? Here we give a discussion of the pair function
g(r) and of the various quantities which can be derived
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from it, namely its Fourier transform and the direct
correlation function.

We discuss in Sec. II the pair function as given by
the machine computation. Some comparisons are made
with the results of the integral equations. The maximum
of g(r) is seen to be a compromise between the tendency
of the particles to cluster around the core of the po-
tential at high density and the attraction due to the
bowl of the potential, which plays an essential role at
low temperature. These results would be meager if it
were not possible to extend them (Sec. III). Firstly, it
is shown that the effect of the tail of the potential, for
r>r,, which has been neglected in the molecular-
dynamics calculation, would not have changed g(r)
appreciably for r<r, if it had been included. The
results can thus be extended to an uncut potential.
Secondly, a procedure is constructed to extrapolate g(r)



