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The damping of the ion acoustic waves by Coulomb collisions is studied by using the Fokker-Planck equa-
tion of Rosenbluth et al. for both the species constituting the plasma, namely, the electrons and the ions. In
a plasma with weak collisions and in the absence of any external field, one finds that irrespective of the ratio
T of the ion temperature to the electron temperature, the characteristic freqeuency gets affected only by
the electron-ion collisions. However, as far as the collisional damping is concerned, both the ion-ion and the
electron-ion collisions play a somewhat equally important role; the electron-electron and the ion-electron
contributions are negligible compared to the other two. The damping increases with increase in the collision
frequency but decreases with increase in T.

I. INTRODUCTION
' 'ON acoustic waves, which were first predicted by
- - Tonks and Langmuir' using the Quid analysis,
have been studied by a number of authors' ' on the
basis of the collisionless Boltzmann equation. The
collisionless theory shows that when the electrons and
the ions have the same temperatures, these waves are
very heavily Landau-damped. Experimentally, the
ion waves were first observed by Revans, ' and their
Landau damping was measured by Kong et al. ' Kong
et al. studied the space damping rather than the time
damping in cesium and potassium and observed that
the damping constant depends on the magnitude of the
ion drift.

The collisional damping of the ion waves was studied
by Bhadra and Varma'; they used Krook's model' to
describe the ion-ion collisions. Kulsrud and Shen'
used a slightly more realistic model for the collisional
process. In their model, the ions were described by the
Fokker-Planck equation of Rosenbluth et al.";however,
the electrons were treated by a Quid equation with the
further assumption that the electrons were isothermal.
This assumption of electrons being isothermal is
equivalent to considering the Vlasov equation for the
electrons, thereby neglecting the electron-electron and
the electron-ion collisions. We remove this restric-
tion on the electrons and treat both the electrons and
the ions by the corresponding Fokker-Planck equations.
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Ke indeed find that the electron-ion contribution to
the collision term can not be neglected as compared to
the ion-ion contribution.

Similar calculations for high-frequency plasma waves
have been done by Comisar' and Buti." "The e6ect
of strong collisions on the low-frequency electrostatic
plasma oscillations with and without an external mag-
netic field has been studied by Kuckes" by using Quid

equations. Following Comisar and Buti, we solve the
Fokker-Planck equation on the assumption that the
Coulomb collisions are weak, i.e., co7&)1, where or is the
characteristic frequency of the wave and r is the mean
collision time for the collision process under considera-
tion. We find that in the absence of any external field,
irrespective of the ratio of the ion temperature to the
electron temperature, the characteristic frequency gets
affected only by the electron-ion collisions; however,
as far as the collisional damping is concerned, both the
electron-ion and the ion-ion collisions play a role: The
electron-electron and the ion-electron contributions are
negligible compared to the other two.

II. GENE&Q THEORY

Consider an unbounded fully ionized hot plasma con-
sisting only of electrons and ions without any external
field. In equilibrium, both the electrons and the ions
obey Maxwellian distribution of velocities (for the
validity of the Fokker-Planck equation, see the
Appendix), i.e.,

f (~) (2~r/ 2)—3/2e —v /(2ea )

where the subscript u stands either for the electron or
for the ion and v, '= KT,/rr/, with es, =m and m, =M.
%f0, is the equilibrium distribution function for species
a. For small perturbations, the linearized Fokker-
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with o= m/M, C„=o,oa...and C„=r,on„W. e shall solve

Eq. (45) by the method of successive approximations.
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which we shall solve numerically. It is worth pointing

l IG. 1. Variation of Im co* with B for T=0.1 is
illustrated for a=0.01, 0.1, and 1.0

out that

C;, (co~ =coo) = Sia "/—15s'"T'"ceo' (50)

1.0

0.1

0.05

0.01

0.001

0.10
0.05
0.01

0.10
0.05
0.01

0.10
0.05
0.01

0.10
0.05
0.01

0.10
0.05
0.01

ImC, ;
—2.3183—6.99S9—10.7640

—0.5656—1.0082—2.8690

—0.5568—0.9915—2.8175

—0.5540—0.9862—2.8011

—0.5539—0.9860—2.8004

ReC„.

3.3309
3.6253
4.0307

2.1755
2.2879
2.4265

2.1659
2.2770
2.4039

2.1629
2.2736
2.3999

2.1627
2.2734
2.3998

ImC„
—0.0228

0.0217
0.0686

0.0465
0.0648
0.0825

0.0471
0.06S2
0.0826

0.0473
0.0653
0.0827

0.0473
0.0653
0.0827

TABLE II. Re co~ for a=0.1 and T=0.1, 0.05 and
0.01 for various values of B.

TABLE I. C;, and C.; for various values of a=k), and T= T;/T, . being pure imaginary, does not affect the real part of
co*; however, C„(s&*=coo) is a complex quantity and
thus changes both the real and the imaginary parts of
co*. The values of C;; and C„. for various values of a
and T are given in Table I.

According to Eq. (49), Re co"=oo,~ increases with an
increase in a, T, or B; but this increase, as shown
in Tables II and III, is negligible. As illustrated in
Figs. 1 and 2, Im co*=—co,* increases with an increase in
a or B, but decreases with an increase in T. So two-
body Coulomb collisions have a tendency to stabilize
the ion acoustic waves. As T increases, Landau damping
takes over the collisional damping. For the sake of
completeness, in Fig. 3, we have shown the thermal
effects on the ion waves.

In a system where the collisions are frequent, this
model will break down; in this case one should use the
kinetic equation which takes into account the correla-
tions between the charged particles.

IV. CONCLUSIONS

0.0
0.0001
0.001
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0.05
0.10

T=0.1
0,110936
0.110938
0.110959
0.111167
0.112108
0.113323

T=0.05

0,105914
0.105916
0.105939
0.106160
0.107161
0.108447

T=0.01

0.100927
0.100929
0.100953
0.101187
0.102213
0.103456

Independent of the ratio of the ion temperature to
the electron temperature T, the characteristic fre-
quency of the ion acoustic waves in a plasma with weak
Coulomb collisions gets affected only by the electron-

a=0 1

TABLE III. Re co* for a = 1.0 and T =0.1, 0.05 and
0.01 for various values of B.

40-

0.0
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0.858318
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0.858599
0.858881

T =0.1
0.838316
0.838317
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0.838368
0.838566
0.838807
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"I. B.Bernstein and S. K. Trehan, Nucl. Fusion 1, 3 {1960).
Fj:G. 2. Variation of Im ~* with B for a=0.1 is

illustrated for T=0.Oi, 0.05, and 0.1.
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APPENDIX
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we get

where

diti/dt = (Sr,/6v, ') (1+4)I, (A6)

I8 dv 'v;I= dvv' fo.(v) fo (

X
(V;—V; )(Vz Vg )

(I v—«'I)'
(A7)

I=——
ÃVe Vi 0

3 .3

cohere

"'""''v' dv'v "'"v"V~5, (AS)vg
—tt&/2 vP

0

v2dx
v ——s-

v'+v" —2vv'x)'i' T (vv+ '2—2v+v —
VV x

vv

/o
1 (x ~+—-' 1+—

~*
—'/

~

~+
T Tj T

T= T;, T.. On using Eq. (1) for fo, and f„, after
A7 i ldangular integrations Eq. y'
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where
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Eq. (A8) can be written as

2 n

I= — dv vs dv'v"L5 exp( —av —a'v")
1lVe Vs 0 0

+5' exp( —a'v' —av")j (A11)

where a= 1/(2v 2), a'=1/(2vs), and 5'(vv')=5(v', v).
The result of simplifying 5 and 5' is to take Eq. (A11) to

I= —(8/3v v, 'v,s) (1—1/T)La(1,4)+P(4,1)], (A12)

where

a(m, n) = dv dv'v"'v'" exp( —av' —a'v") (A13)
0 0

and P(ns, n) is obtained from a(tn, n) by simply inter-
changing a and a'. Finally on using the relation

00 (an)'"
dy ye

'&' erf(a'~'y) =
4s(a+s)'"

we obtain

(1—1/T) 1 1

2v'"v 'v' aa" (a+a')'" u"(a+u')'"

(A14)

which in terms of the electron collision frequency v,
can be rewritten as

1 dP 2'" / v, ) ns)——= „,I —I
—i(1-T)

covj dt 3v' E(dv,) )
In case of weak collisions, (v,/cov;)«1, so (~/dt) is
negligible and thus Eq. (1) holds good to a very good
approximation.

+
a'(a+a')'" aa"" a(a+a')'"

As done in the text, if we neglect terms of the order
(v;2/v, s), then Eq. (A6) with the help of Eq. (A14) gives

d@ 2'"Vt'.v;2( 1
(AIS)

dt 3vgv'" k T
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Computer "Experiments" on Classical Fluids.
II. Etluilibrium Correlation Functions*
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Equilibrium correlation functions for a dense classical fluid are obtained by integrating the equation of
motion of a system of 864 particles interacting through a Lennard-Jones potential. The behavior of the
correlation function at large distance, and that of its Fourier transform at large wave number, are discussed
in detail and shown to be related to the existence of a strong repulsion in the potential. A simple bard-sphere
model is shown to reproduce very well the Fourier transform of those correlation functions at high density,
the only parameter of the model being the diameter a of the hard spheres.

I. INTRODUCTION

[SING a technique directly inspired by the beauti-
ful work of Rahman, ' we have performed some

experiments on a classical Quid composed of 864 mole-
cules interacting through a Lennard-Jones potential
V(r)=4ana/r)" (a/r)'j cut at r,—=2.5a or r, =3.3a
The details of these computations and a discussion of
the thermodynamical results have been given else-
where. ' Here we give a discussion of the pair function
g(r) and of the various quantities which can be derived

* Supported by the U. S. Air Force 0%ce of Scienti6c Research,
Grant No. 5Q8-66.

t Permanent address: Laboratoire de Physique Th&rique et
Hautes Energies, Sh,timent 211, Faculty des Sciences, 91-0rsay,
France.' A. Rahman, Phys. Rev. 136, A405 (1964).' L. Verlet, Phys. Rev. 159, 98 (1967).

from it, namely its Fourier transform and the direct
correlation function.

We discuss in Sec. II the pair function as given by
the machine computation. Some comparisons are made
with the results of the integral equations. The maximum
of g(r) is seen to be a compromise between the tendency
of the particles to cluster around the core of the po-
tential at high density and the attraction due to the
bowl of the potential, which plays an essential role at
low temperature. These results would be meager if it
were not possible to extend them (Sec. III). Firstly, it
is shown that the eGect of the tail of the potential, for
r) r„which has been neglected in the molecular-
dynamics calculation, would not have changed g(r)
appreciably for r&r, if it had been included. The
results can thus be extended to an uncut potential.
Secondly, a procedure is constructed to extrapolate g(r)


