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We suggest such generalizations of the static strong-coupling group as would incorporate multispin meson
sources in place of the conventional p-wave source only. A model which contains both p- and d-wave sources
but no internal symmetry is considered in detail. This serves to illustrate the essential arithmetic of the
problem. Also, the results of this model are directly adaptable to the corresponding group with isotopic-spin
internal symmetry.

I. INTRODUCTION

~ 'HE large number of resonances that have been
discovered in recent years and the expectation of

an indefinite increase in this number suggest very
strongly that one look for symmetries based on non-
compact groups. This is because the physically interest-
ing representations of such groups, namely, the unitary
representations, are all infinite dimensional and could
therefore accommodate in a natural way an indefinitely
large number of particles and resonances in one single
multiplet. This would enable a great deal of experi-
mental information about all these particles and
resonances to be correlated. .

Such studies were initiated some time back by several
authors, ' but this was done within the context of relativ-
istic dynamics, which makes the problem much too
complicated. It would be of interest to pursue such a
program within models which are simpler to deal with
and which at the same time may have at least an
approximate validity from the point of view of applica-
tion to physical systems. This is what we wish to do in
this series of papers.

Our starting point is the dynamical group of the
static strong-coupling model for the pion-nucleon
system, which was erst obtained by Cook et al.' This
group is a semidirect product of a mutually commuting
set of nine operators T; (rz= 1, 2, 3; i = 1, 2, 3) and. the
group SU(2)xSU(2)~, where SU(2)r and SU(2)~ are
the usual isotopic-spin and spin groups. T; are essen-
tially the source operators for the p-wave pion. They
are nine in number because we are assigning the p-wave
pion isopic spin 1, so that there are three degrees of
freedom due to angular momentum and likewise three
due to isospin. An interesting representation of this
group is the one with I=J= ~~, 2, ~ . It has often been
studied in the literature. Unfortunately, in view of the
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experimental situation, this representation is rather
restrictive. To illustrate the point, let us survey the
data4 on x-X scattering, in which case one has seen
resonances up to a spin of 15/2 for I=s. For I= s also,
resonances up to spin 19/2 have been seen. On the other
hand, the above representation can accommodate only
one resonance for each of the above I values. As a erst
step in our approach then, we consider a larger represen-
tation of the above group. In fact, we choose the most
general representation for which we have I=—„-',
and J= ~, &, but without any restrictive constraints
on I and J in the above representati. on.

The consideration of a larger representation of the
above group, however, does not provide sufhcient scope
for getting any interesting results. There are two
reasons for this. Firstly, many of the resonances we are
interested in are odd parity resonances. The group which
we are dealing with corresponds, on the other hand, to
only p-wave pion sources (with intrinsic odd parity),
so that its representations can accommodate only even
parity resonances. Secondly, even if we confine ourselves
to only even-parity resonances, their most interesting
decay mode, namely, the decay into a nucleon and a
pion, is forbidden as soon as we consider J values
greater than ~. This is because the final pion in these
cases comes out in higher waves, whereas the group
contains only p waves. The theory, therefore, does not
have much predictive power.

To improve the situation, we therefore enlarge the
group itself. This is done by enlarging the set of nine
p-wave meson source operators so that one now has d
and f waves, etc. In principle, it is possible to incor-
porate in this manner sources up to arbitrary high
angular momenta, but because of computational
complexities we confine ourselves to only s, p and er,

waves. This is enough to bring about the required
"parity doubling" in the corresponding representations,
and already many interesting decays modes can be
calculated.

Our calculations follow the conventional method of
exploitation of the commutation relations of the group. '
This way we obtain at one stroke the representations
of the group as well as the required Clebsch-Gordan

4 A. H. Rosenfeld et al. , Rev. Mod. Phys. 39, 1 (1967).
~ M, A. Naimark, Linear Representation of the Lorentz Group

(Pergamon Press, Inc., New York, 1964).

1927



1928 V. S. BHASIN AND L. K. PANDE

coeKcients that we need to compute various decay
widths, etc.

The group that we have to consider is SU(2).q
QxSU(2)rXTp7, where the 27 T's now include 3-wave
operators, 9 p-wave operators, and 15 d-wave operators.
The representation that will be studied is characterized
by I=—' —' . ~ and J=- — ~ ~ ~ with all I and J values
allowed. Besides, we shall have parity doubling. This
representation will be of interest for application to the
m-E system. A somewhat different representation that
is characterized by I=O, 1, ~ but the same J values
as above will also be considered in connection with the
discussion of the hyperon isobars. '

The s-wave part of the problem in the above is quite
trivial. It turns out that the p- and d-wave part of the
problem gets essentially completely solved if the
solution for the case of SU(2)~XTp is known. This
latter group corresponds to p- and d-wave sources but
without the internal symmetry SU(2)r. In the present
paper, we confine ourselves therefore to a detailed
discussion of this group. We obtain the relevant
representation and all the Clebsch-Gordan coeKcients
of interest. This is all contained in the following section.
In the Appendix, we obtain the Casimir operators of
this group, which we have used in the text.

In the following paper the results obtained here will
be adapted to the case of SU(2)~xSU(2)rXTp7, and
application will then be made to the pion-nucleon and
the hyperon-pion systems.

EJ~,J ]=2J.,
EJ*,J+]=~J+,
EJ+,P-]=E(1~ )(2~ )]"'P.
EJ.)P-]=~P- ~

EJ~,T.]=E(2~» ) (3~» )]'"T.~i,

EJ„T„]=»T„;

(1a)

(1b)

(1c)

(«)

~For the p-wave case, an isobar series for which J=I&$=~
$ ~ ~ has been considered by V. Singh and B. M. Udgaonkar,
Phys. Rev. 149, 1164 (1966).

II. THE GROUP WITH p AND d WAVES

(1) We shall here consider the case of a pseudoscalar
meson interacting with a baryon, with neither of these
particles having any internal quantum numbers. For
the sake of definiteness, if we wish, we could take these
particles to be p and A, respectively. Since we want to
include in our discussion both p and d waves, the group
of interest is SU(2)XT„ i.e., the semidirect product
of the SU(2) group of spin and the Abelian group of
eight generators Ts, the 6rst three of which correspond
to p waves and the last 6ve to d waves. The underlying
commutation relations, in the spherical basis which we
shall always employ, are as follows:

EP,Ps]= 0,

ET„,T„]=0,

EP,T„]=0.
(2b)

(2c)

A=~~P ',
&= lE-'P-'+( —1)"T.T-.]

(3)

(4)

C= —(1/36) Tp' —p T+pT—pTp+ (1/4/6) T+pT T-
+ (1/4/6) T pT+T+ (3/32+6) T+pP —P
—(3/32+6) T pP+P++ (3/16+6) T+PpP
—(3/16+6) TMpP+ pp TpP P++ ,'~ Tp—T+T-

+x'g TpPp'. (3)

From the above expressions, it is clear that A and 8

7 See, e.g., A. R. Edmond, Angular Momentum in Quantum
Mechanics (Princeton University Press, Princeton, New Jersey,
1957).

8 E. Inonu and E. P. Wigner, Proc. Natl. Acad. Sci. U. S. 39,
510 (1953). See also E. Inonu, Group Theoretical Concepts and
Methods ie Elementary Particle Physics (Gordon and Breach
Science PuMishers, Inc., New York, 1964).

J+, J—,and J, here stand for the usual angular-
momentum operators; P corresponds to the first three
operators of the set Tp, and T„ to the last five; a (and P)
take the values +1, 0, and —1 and p (and v) take
values +2, +1, 0, —1, —2. The commutation relation
of E and T„with the J's follow easily from the require-
ment that they go as irreducible spin one and spin two
operators under SU(2).' The commutation relations
between the various T's and P's are characteristic of
our dynamical model. They may be classed as "dynam-
ical" commutation relations. The remaining ones may
then conveniently be labelled as "kinematical" com-
mutation relations.

The fact that we are dealing with a pseudoscalar
meson means that the operators P are even under
parity and the operators T„are odd. The simultaneous
presence of these even and odd operators will lead to
representations with "parity-doubling, " i.e., we shall
6nd that if we have a particle in the representation
with spin 1V and even parity, then the representation
will also contain a particle with the same spin but
opposite parity. To make this point clearer, we construct
the three independent Casimir invariants of our group.
EAs the group we are dealing with is not semisimple,
there presumably do not exist general expressions for
the corresponding Casimir invariants in the literature;
we therefore go through some details of this construction
in Appendix A, following a contraction procedure'
which enables us to obtain our group from the compact
group SU(2)QxSU(3) and likewise enables us to obtain
our Casimir invariants also from the well-known
Casimir invariants of this group. ] Denoting these by
A, B, and C, we have
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TABLE I.The functions az" (M), bz (M), and cz (M) in Kq. (9) of the text.
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aJ (M)
bJ (M)

(M)

+1
t (J—M}(J—M —1) '~
t (J+M+1}(J—M) '~'

t:(J+M+1)(J+M+2) l"2

~(Jo Mo)1/2
—v2M
V2((J—M+1) (J+M+ 1)g'/'

L (J+M) (J+M —1)g'/'
—L(J—M+1) (J+M) g'/'

t (J—M+1) (J—M+2) j'i'

ag (M)=agag (M),
bJ (M) =baby (M),

cJ+y (M) = cJyycz+y (M),
(9)

with the M-dependent functions a~«(M), etc. , given in
Table I.

It remains now to determine ag, b~, and cg. To do
this, we first note that up to now there has been an
arbitrariness in the definitions of aJ and cq+~. This
arbitrariness stems from the fact that all our formulas
remain unchanged if we work with f'2r~=p(J)$2r~

~ See, e.g. , W. Pauli, CERN Report No. 56-31, 1956 (un-
published).

'0 Dr. B. Sakita has kindly pointed out to us that the group
corresponding to d-wave pion sources has recently been mentioned
by C. J. Goebel in Sorz-compact Groups iri Particle Physics,
edited by Yutze Chow (W. A. Benjamin, Inc., New York, $966).

are even, but C is odd under parity. The latter imme-

diately leads to parity doubling. '
With these preliminaries over, we now come to the

problem of constructing the representations of our

group. The simpler part of the problem here is essen-
tially identical to constructing the representations of the
smaller group SU(2) XT2 and has been dealt with by
other authors. '' We shall therefore go through sum-

marily, though keeping the discussion self-contained.
The next section is devoted to this part.

(2) Let us start by considering a state for~, corre-
sponding to spin J and the s component of spin M,
which is a representation of the SU(2) subgroup of the
group SU(2) X To. Using the SU(2) commutation
relations t l(a)7 and L1(b)7, we obtain

JA2r'= L(J+M) (JISM+1)7'%~+i' (6)

J.P////~ =M/2/~.

We now consider the application of P on P~~.
Since I' is a spin-one object under SU(2), acting on
/or~, it can only produce states which have spin J—1,
J, or J+1.Furthermore, it follows from the commuta-
tion relations (1d) that the s component of spin for all
these states will be M+/2. Hence we can write

P $2r aq«(M)$2——r '+b g«(M)$2r+«~

+c~+i (M)k~+-"' (8)

We now apply the commutation relations (1c) on
for~ and make use of the expansion (8). On equating
the coeKcients of for+«~~~ ', $2r+«~~~, and $2r+,~2~+'

on both sides, we get a pair of equations each time
involving, respectively, a, b, and c. These equations
can be solved easily to yield

instead of for~, where p(J) is an arbitrary function of J.
The only change this brings in is that we now have
ag~ag, cq —+cq with agcy ——ag'c~'. As is demon-
strated by Naimark, ' this allows us to choose $(J) such
that we may have

ay= cg. (10)

aJ,=O.

The Eqs. (11) can be solved easily. The result is

(12)

iJpC
bJ=

J(J+1)
C(J2 J 5 1/2

J(4J'—1)

(13)

(14)

C in these equations is an arbitrary constant. In order
to have our representations unitary, we shall have to
choose this constant to be purely imaginary. To see
this we note that in a unitary representation the
operator Pp should be Hermitian and the operators
I'+ and I' should be Herrnitian conjugates of each
other, i.e., we should have

(4'2r ~»o+2r ~)= (I'o42r ~,&//r~)

and
'»+e ')=(I'-a + ',O ').

Using Eqs. (8)—(10), (13), and (14) and Table I,
we can check that these conditions are satisfied only
if we choose C as purely imaginary. Thus, if we take C&

We shall therefore assume this equality. To proceed
further, we now apply the dynamical commutation
relation $2(a)7 on for~, making liberal use of Kqs. (8),
(9), (10), and Table I. We choose, for instance, a=+1
and p=0 in t 2(a)7. Acting on $2r~, the commutator
now gives terms containing $2r+~~ ', $2r+~~ ', for+, ~,

$2r+q~+', and $2r+q~+2. The coeKcients of the erst and
the last terms come out essentially to be zero. Equating
the coefficients of the remaining terms to zero, we get
the following equations:

L(J+1)b~—(J—1)bJ x7ag ——0,
[(J+2)b~+, Jb~7a~+, =—0,

(2J—1)ago—(2J+3)ag~P —b~2=0

It should be noted that J here characterizes the
representation pe ~ of the SU(2) spin group with which
we started. J could therefore only be ~&Jp, where Jp=0
or —',. It is clear from the expansion (8), then, that
az«(M) =0, or from Kq. (9) that
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Z„~(M)=A&~;(M) =0,
B&,~(M) =0.

Next, we apply the commutator L1(e)j on P~~ ..
(17)

P~,2;3~'= E(2~~)(3~~)l"'2'.+~4~' (1g)

We now use Eq. (16) and Eqs. (6) and (7) to solve

(18).Note that both sides of the equation now involve
P~' with J'= 7+2, 1+1,J, J—1, or J—2. Comparing
the coefficients of each P~', we obtain equations the
solutions of which give us the desired expressions for
J~&(M), Bq"(M), etc. These equations clearly show
that we may write

A, ~(M) =A,~(M)A,

and similar expressions for 8~I"(M), etc. A rather
tedious calculation now needs to be performed to evalu-
ate Ag'(M), etc. The results we thus obtain are con-
tained in Table II. A point which should be noted in
obtaining these results is that one should be careful to
choose consistent phase convention. We do this by relat-
ing the phases of all A qI'(M), etc. for y = 1, 0, —1, —2 to
that of the corresponding function for p=2. For the
latter we choose the phase to be +1, without, of course,
any loss of generality.

Following now an argument identical to that which
gave us Eq. (10), we can show that the functions Az
and 8& are related, respectively, to DJ+» and Eg+~.
In fact, we have

to be a real constant, we have

C= iC», C» real.

We now proceed to the discussion of the d-wave part
of our problem.

(3) To solve the d-wave part of the problem, we
note that 2'„ is now a spin-2 object under SU(2) so
that, acting on a state P~~, it leads to states ranging
from J—2 to 7+2. From the commutation relations
$1(f)j, it follows that the s component of spin for all
these latter states will be M+p. We thus have

Ar~=~z" (M)4~+ '+Br"(M)Asp
+C&&(M)f~+„+D&+»(M)P~+„'+'

+&~+2"(M)4'~+u +' (16)

It should be noted that since T„ is an odd-parity
operator, we have actually two sets of A+I'(M), etc. ,
one resulting from the operator of T„on P~~ with
positive parity and the other resulting from this operator
on a f~~ with negative parity. It is a simple matter to
check. , however, that because of time-reversal invar-
iance, these two sets are identical. This result has been
anticipated in the notation of expression (16). Further-
more, the argument which led to Eq. (12) in the
previous section now implies.

U'

~ ~

CO

~\

0
~~

M

I &+4~(

I ~+)
t g+g~g+g i~+~ I

I ~+g
I gg+g+N+N ~
g+/+/+A+++~ (

~ I ~ I w

+
I I

=wg+&++
((

+ ~0~4++
I ~+0~~~++
+~+=~

I C4 +

(

I ~~~ +g+~-+g- i

I

w +
n ++g

+
I I I

I + ++~My
I I I

=-=++
I I

~~ I++
I I

+++
I +++

=++++
+

I ++++

+ ~
(

g+Q ~g

g% g —. —.

Eg=Ag, Dg=8 g. (20)
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A JQ A JQ+1 0 ~JQ (17')

Let us write Eq. (22) in the form

(J—1)BzAz+p (J+3)Az+zBz+p=—o; J~& Jp. (29)

Furthermore, let us consider the case Jp= —,'. We can
then check that the Eqs. (22)—(28) imply that if any
A J=0 for J~&Jp+2, then all Ag's and Bg's, and con-
sequently, all CJ-'s vanish. Likewise, if any B&=0 for
J~& Jp+1, then again the same happens. We thus have
either a trivial solution of our Eqs. (22)—(28), wherein

A g=Bg=Cg=o; J~& Jp, (30)

In what follows, we shall therefore write all our
expressions in terms of only Az, Bz, and Cz.

The next step in our problem is, of course, to solve
for these functions A J, B~, and C~. To this end, we use
the dynamical commutator [2(b)]. We choose p=+1
and v=o, and apply it on the state fpr~'.

(7'+,7'p)4~'= o. (21)

From the expansion (16), it is clear that the left-hand
side will now contain states Ppr+i~' with J' taking values
J+4, J+3, J+2, J+1,and J.This gives us nine terms,
the coeKcients of which must all separately vanish.
Consequently, we get nine equations. The solutions of
these will give us the desired expressions for A J' 8J,
and CJ. It turns out that for J'= J&4, the coefficients
vanish identically, so that nontrivial relations are
obtained only for the remaining seven cases. We shall
discuss in the following only the latter. Furthermore,
the computations involved are immensely tedious and
long and we shall therefore spare the reader from them
and only quote the final result, which incorporates the
following independent equations:

JBJ+iA g~p (J+4)A —g+pB g~p=o, (22)

(1 2J)Ckg—+p+3Bg+iBg+p

+ (2J+7)A J'+pCz+p =0 . (23)

—3(J—1)BgAg+i (J 3)CgB—g+i-
+(J+5)BJ+iCz+.i+3(j+3)Az+pBz+p=O, (24)

3J(J+1)(J 1)BgA g+i —J(J'+J+3—)CzBz+i
+J(J'+3J 1)BggiCg+i—

—3(j+1)(J+3)(j+4)Ag+p g+p ——0, (25)

3J(J—2)(J 3)Aug, +—(J+1)( J'+J+3)BgCg —i
+(J+1)(J'+J+3)CzBz

—3J(J+1)(J+2)BgpiA gpi=o, (26)

(2J+5)A J+pP+ (J+3)Bz iP+2CgP

+(2—J)Bg'+(3—2J)Ag'=0, (2'I)

2(2J+5) (J—'+3J+2)A g~p' J(J+2)Bg—iP+Cgs

+ (1—J')Bg'+2J(2J —3)(J—1)Ag' ——0. (28)

We shall now solve this set of Eqs. (22)—(28). While
doing so, we have to keep in mind the constraints
given by Eq. (17), which now read,

8JBJ+]
(J—1)J'(J+1)(J+2) = —JpPE

A J+]
or simply

(34)

—EJp'A g+j
~J~J+1 J&Jp. (35)

(J—1)J(j+1)(j+2)
Let us now substitute in Eq. (23) the expression for

Bg+iB~+p that we obtain from (35) and eliminate Aq+p
from all the terms, so that we get

(2J+3) (1—2J)Cg+ (2J+3) (2J+7)Cz+p

(—3jp'E) (2J+3)

J(J+1)(J+2)(J+3)

This can be rewritten as

( 3Jp'EC)—
(2J+3)(1—2J)Cg+

2J(J+1)

=o. (36)

(-3J.It)—(2J+3)(2J+7)Cg~p+
2(J+2)(J+3)

=o. (37)

Denoting the first term here by x(J), we can write this
equation as

(38)x(J)—x(J+2)=0.
This equation enables us to write

x(J)= (2J+3)(1—2J)Cg—
3Jp'E =—Cg,

2J(J+1)

and
J&~Jp+2n (n=o, 1, 2, ~ ~ ) (39)

3Jp'E
x(J+1)= —(2J+5) (2J+1)Cg+i— =—Cp,

2(J'+1)(J+2)
J~& Jp+2n (n=o, 1, 2, ), (40)

or we have

A„,~O, B„,~O, C,~O; J&j. (31)

The case corresponding to the trivial solution, Eq.
(30), is of no interest to us. We shall not consider it at
all. By virtue of (31), we are now free to rewrite Eq.
(29) as

~J~S+1
J(j+1)(j+2)(J—1)

A g+j

=J(J+1)(J+2)(J+3) . (32)
Ag 2

Denoting the left-hand side by p(J), we can express
(32) as

e(j)-e(j+1)=0. (33)

This implies that p(J) is independent of J. We may
therefore write
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(Jo+2) (2Jp+5)
CJ,= ~ Jp+1 ~

(Jp—2) (2Jp+3)

but the two constants C~ and C2 are now unrelated. To with CJ, given by
relate them to each other and to the constant E
introduced earlier, we exploit Eqs. (24)—(28). Let us
take the difference of Eqs. (24) and (25). This gives

(43')

12(J 1)(j+1)BgAz+2
—(J—2) (J+2)(2J+3)BJ+iCg
+(J+2) (2J+5)BJ+iCz+2 Oj j~& Jo (41)

From Eq. (42) we then get (fixing the arbitrary phase
factor that arises from going from B~' to Bq),

(2J+1)(2J—1)
We now take J=JD. This gives us

(Jo—2) (2jo+3)Cgo= (Jp+2) (2jo+5)Cgo+i. (43)
Lastly, from Kq. 35 we get

J~&Jp+n n=0, 1, 2, (52)

( J 1/2

Substituting in this for A J+2 from Eq. (35) and dropping Bz= pi JoE~
a nonzero common factor, we get (Jp+1 J(J+1)(J—1)

12j(j—1)'(j+1)B~'—(j—2) (2j+3)Ej 'C~

+ (J+2) (2J+5)EJp C'z+2 =0 J~& Jp . (42)

Thus the two series of the solutions given by Kqs.
(39) and (40), involving Ci and C2, get connected.
Unfortunately, the coefficient of Cz, in (39) vanishes,
so that CJp is not really known yet. We therefore do
the following two things. First we exploit the vanishing
of the coefficient of C~o in (39) to get

4(Jp+1) J(J+1)(2J+1)
L3J2 J 2 J ]L3(j+1)2 J 2 J j i/2

X
(2J—1)(2J+3)

Ci ——
t
—3Jp'E/2 Jp(jp+ 1)]; (44) J& Joyn (53).

258Jp+g2= —16CJp'. (46)

Now we put J=Jp+1 in Eq. (42) and obtain BJ~i
in terms of CJ~~ and CJ,+2, substituting for the former
the expression involving Cz, from Eq. (43) and using
Eqs. (39) and (44) for the latter, we get

(9/2E) 25Bg~i' (6/5)Cgo ———(2/5) E. (47)

Substituting (46) in (47), we get a quadratic equation
for CJ„ the solutions of which yield

C~,—— E/12 or CJ,—E/15. (4——8)

From (40), (43), and (48), we now get

C2= —E/2=Ci for Cgp= E/12, —
C2 ——11E/50 for Cg, E/15. (49——)'

It is easy to check that the latter solution is incon-
sistent with our Eqs. (22)—(28). We, therefore, take

Ci ——C2 ——L
—3jo'E/2 jp(jp+1)1. (50)

Thus from Kqs. (39), (40), and (50) we finally get

3JoE (J—Jo) (J+Jo+1)
CJ=

2(Jo+1) J(J+1)(2J—1)(2J+3)

J&J +n n=1, 2, " (51)

and next, from Kqs. (27) and (28) we get for J=Jp

P(jo'+3jo+2)(jo+3)—jo(jo+2)jBz~i'
L4(jp2+3jp+2)+1jCg 2 (45)

or simply

To these we may add the following:

A Jp A Jp+& 8Jp 0. (54)

The Kqs. (51)—(54) along with Kqs. (8), (10),
(12)—(16), and (20) now give us a representation of
our group SU(2) X To which is characterized. by J=Jp
+n, n=0, 1, , with Jp ——2. As discussed earlier, the
representation contains both parities. Furthermore, it
can be checked just as was done in the case of the
p-wave operators, that in this representation Tp is
Hermitian. and T++(T+) and T (T ) are Hermitian
conjugates of each other; the representation is therefore
unitary. The above equations, along with Tables I and
II, now furnish us with all relevant Clebsch-Gordan
coefhcients that occur in the coupling of the representa-
tion obtained with a p- or d-wave pion and the
representation itself. In the sequel to this paper it
will be seen that the knowledge of these Clebsch-Gordan
coeKcients is crucial in obtaining the representations
of the bigger group SU'(2)~xSU(2)r)(T27 which can
be directly adapted to get the relations between various
isobar widths that are experimentally known.
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1 1
Q+s, Fs= sKo, Fs= — Qo,
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1 1 1

Fs&iFs —— —K~&—Qg—
2 V2 v3

1
Fs+iF7 —Kpa —Q——p—

2 v2 v3

where F s satisfy the well-known commutation rela-
tions

LF;&F;]=sf,;&Fs.

Now we make the following transformations:

I =K +L, F =o(K —L ), and T„=og„. (A2)

Substituting these in the commutation relations (A1)
and taking the limit when ~ —+ 0, we get the following
algebra:

LJ+ I-]=2Jo LJo I+]=+I+
(~+,I' ]=2I„PZ,P+]= 2I„—
I:Io,T,]=»„P+,I'o]= ~&~,

LI+,Tp]= I:(2+A) (3~l )]"'T,+i,

(A3)

the other commutation relations reducing to zero.
Further, we note that in order to describe this algebra
on a completely spherical basis we require the trans-
fol matlon

I,= VZF„P =VLF, I',—=Fo, (A2')

APPENDIX

In this Appendix we shall obtain the Casimir opera-
tors of the group SU(2) X Ts by using the method of
group contraction. We consider the Lie algebra of
SU(2)QxSU(3) defined by

PKo,K~]=&K~, PK~,K ]=2Eo,
LKo Q.]= s Q~ P4 Qs]= L(2~~) (3~~)]"'Q~i,

Lgo Q+i) = ~3(&s)K+ Lg+ Q-]= —3Ko, (A1)

t.g+,g.—.]=«o, Lg .,Q+ ]=~3K„LQ.,Q,,]=O,
LQ+s,g+s]=0, LLo,Lg]= aL~, LL~,L ]=2Io,

LK,Lp]= LL,Q„]=0.

In writing down the above commutation relations we
have employed the spherical rather than the Cartesian
basis for both SU(2) and SU(3). Thus, while K+, K,
Ko, and Q„represent the generators of the group SU(3),
Ly L and Lo correspond to the group SU(2). The
eight generators K and Q„bear the following simple
relations with the usual generators F; (s=i to 8) of
Gell-Mann, i.e.,

which from (A3) finally leads to the commutation
relations of the group SU(2) XTs described in the text.

The second-order Casimir operator of the group
SU(3) is given in a standard form as

Cs=djA;~' (i, j=1,2, 3), (A4)

where the A 's are expressed in terms of the above
generators as

~ i'= —
s (Ko—sQo),

A is = — Q~s,
6

~s'= s (Ko+ sgo), & s'= —sQo,

1
As Q—s)

Q6

1 1 1 1 1 1 (A 5)
A s'=- —K ——Q i, A i' ————K++—Q+i

2 v2 v3 2 V2 v3

11 1 q 11 1
s,'=- E~ Q—~ ~,—A,'=- IC +—Q)—,

2 W2 v3 & 2 vT v3

which, on substituting (A2), gives on contraction the
second-order Casimir operator

A =-,'E'. (A8)

Similarly the third Casimir invariant of our group can
be obtained by considering a third-order Casimir
operator of the group SU(3). This is given by

C3=AjA I,Q.;~.

Here again we use the relations (A5), employ the
transformations (A2), and multiply the resulting
expression by e'. Then, defining e'C3 —=C and taking
the limit when e approaches zero, we get the required
expression (5) (given in text). We have further checked
that the Casimir operator (—1)I'T„T „operating on
the state vector Psi~ gives

( 1)"TsT u4~'= oK'&—~'. -

where Ai'+Ass+Ass=p and A, "s satisfy the commuta-
tion relations

Lg .s g,s] g,sg s g sg .s

Using (AS) in (A4) we get, after simplification,

C =-'L3Ks+( —1) Q„Q „]. (A6)

We now multiply (A6) by o', define o'Cs=B as a second-
order Casimir operator of the required group SU(2)
XTs, make use of the transformations (A2) and (A2')
and take the limit when e —+0, which gives 6nally

F= '['P'+( 1)&T„T--„]. — (A7)

We note further that there exists also another Casimir
operator of second rank corresponding to the group
SU(2) given by


