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A lower bound on the momentum derivative of the phase shifts, dé;/dk, is derived from the combination
of unitarity, crossing, and analyticity (in the domain resulting from axiomatic field theory). As an applica-
tion, a lower bound for the #%z° scattering length is deduced.

I. INTRODUCTION

T was shown, long ago, by Wigner! that the deriva-
tive of the phase shifts with respect to energy must
exceed a certain limit if the interaction of the scattered
particle and scatterer vanishes beyond a certain dis-
tance a; for example, for the .S wave,

ddo(k)/dk> — a+ (2k)~" sin2(8o+ak).

A similar limit has been obtained by Goebel, Karplus,
and Ruderman? for a relativistic neutral two-particle
system, again under the restriction that the interaction
be of finite range.

For short-range interactions like the Yukawa or
Gaussian ones, to our knowledge, no such explicit
bound exists; even if one existed, it would depend on the
strength parameters (or coupling constants) of the in-
teraction. The first attempt to show that there exists in
field theory an analog to Wigner’s theorem was made
by Bincer and Sakita.? Assuming the validity of the
Mandelstam representation, they obtained the follow-
ing bound: '

where 7 is the number of zeros of the real part of the
S matrix along the unphysical cut.

In this paper, we wish to show that a lower bound for
db;/dk can be derived from the results of axiomatic field
theory alone. Our aim is to obtain a bound which is
independent of any hypothesis on the interaction or on
the number of zeros of the S matrix. Our basic assump-
tions are as follows: (i) a certain amount of analyticity
for the scattering amplitude as given by axiomatic field
theory*; (ii) unitarity; and (iii) crossing symmetry.

The derivation proceeds in the following way: In the
first step, we show that a lower bound on dé;/dk can be
related to an upper bound of the partial waves on some
curve of the analyticity domain; in the second step, this
upper bound is derived from the assumptions (i), (ii),
and (iii).

The definitions needed in the body of the paper as
well as the precise formulation of the basic assump-
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tions (i), (ii), and (iii) are given in Sec. II. In Sec. ITI,
a lower bound on dé;/dk is expressed as a function of the
partial-wave amplitude upper bound, the explicit form
of which is derived in Sec. IV. As an application we show
in Sec. V that the value at threshold of the bound, thus
obtained, yields a lower bound on the 7%r? S-wave scat-
tering length.

II. BASIC ASSUMPTIONS

Let us consider the 70 scattering amplitude F(s,t,u),
where s=(c.m. energy)? for the first channel and ¢,
have analogous definitions, s+i+#=4. In the c.m.
system for the first channel,

s=4(k?+1) ’
t=—2k*(1—cosb),
u=—2k2(14cosf) ,

where % is the relative momentum in the c.m. system
and the = mass is taken as unity. We define

‘ 2ik
Sik) =it = 1+
\/'s

X f F(s=4(14%2), t=(4—s)\/2)Pi(1=N)d\. (1)

(The integration goes from 0 to 1 by taking into account
the Bose statistics of the 270 system.)
Our basic starting assumptions are the following:

(i) Forany fixed ¢such that |¢| <4, F(s,}u) is analytic
in a cut plane in s, with two cuts from s=4 to s=  and
s=—ttos=—o ,and it is bounded by a polynomial in
|s|; for any fixed s real >4, F(s,t,u) is analytic in ¢ for
[¢] <4.

(ii) Si(%) satisfies the general unitarity requirement:
[Si(k)| <1 for real k.

(iii) F(s,tm) is completely symmetric in s, ¢, % because
of crossing symmetry.

From the assumptions made, it has been shown by
Jin and Martin® that for |¢| <4, F(s,!) satisfies a twice-

8Y. S. Jin and A. Martin, Phys. Rev. 135, B1375 (1964).
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Fic. 1. The analyticity domain of S;(%) in the
s plane and the % plane.

subtracted dispersion relation:

s? 2 A(s"\)ds' ut 2 A(s)ds’
Fls)=C)+— / ; / .
wJs $2s'—s) 7 J4 s's'—u)

This dispersion relation holds for |¢| <4, consequently
the analyticity domain of S;(k) is given by [s—4]<S8,
since ¢=(4—s)\/2 with 0SAK 1 (see Fig. 1).

III. LOWER BOUND ON db&;/dk

Let us consider the analyticity domain of S;(%) in the

% plane and the semicircle (C) of radius R<1 (Fig. 1).

Then according to a theorem due to Nevanlinna,® at
any point % lying inside (C), one has:
(k= k) (R —kih)

(k—k;*) (R*—k;*k)

E 2R Imk

Pi1n|Si(x) |dx+

T J_r T

X / Ps In|Si(Re'%) |singd, (3)
0

I|S;#)|= ¥ In

kil S B

Imk
S —

where
1 R?

47— 2 Rek+ |k|2 R4—2R%c Rek+22|k|?’
R2—|E|2
| R%2#— 2Rei Rek+|£]?|?’

and #; are the possible zeros of Si(%). In a neighborhood

k plane k' plane

15 /
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FicG. 2. The conformal mapping of the % plane onto the 2’ plane.

19; 1§ P. Boas, Entire Functions (Academic Press Inc., New York,
4).
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of the real axis, i.e., for k= k;+1ie (¢>0), the left-hand
and right-hand sides of Eq. (3) are, respectively, left-
hand side=In|1—2edd;/dk:| [since |Si(k)|=1 by
elastic unitarity”], and

RZ
right-hand side=2¢ 3
kil R (R2~—k1 Rekj)2+ (kl Imk;)?

1 R
— +f{/ P;In|Si(x)|dv+2R
(kl_ Rekj)2+ (Imk,)2 ™ —R

X / Py 1n|Si(Re') |singde ; .
[}

Hence, for real k, we obtain

d8;/dk= — (the contribution of the zeros)

1
- Py 1n|Si(x)|d»
2w J-r

R T
— / Py In|Si(Re'®) |singdp. (4)
T Jo

Now one can check easily that the first two terms are
positive; therefore,

R T
dé/dk> —— / Py In|Si(Re*) |singdp.  (5)
TJe

Furthermore, if |Si(k)| has an upper bound M (k) on
the semicircle (C), since P; is positive, the inequality
(5) implies the following one:

R T
déy/dk> —— / Py InM (Re'*) singd¢, (6)
T Jo

which gives us a rigorous lower bound on dé;/dk, once
M (k) is explicitly determined. Such a determination
will constitute our next task.

Actually, to exploit fully the analyticity domain of
S1(k), one should apply the Poisson formula on a curve
like (C’) (see Fig. 1). This can be done by mapping con-
formally the % plane onto a %’ plane in such a way that
the real axis is conserved and that the semicircle plus
the unphysical cut maps onto the unit semicircle (see
Fig. 2), and then applying the Nevanlinna theorem on
a slightly smaller semicircle (I') in the %’ plane. Such
a transformation exists and is defined by

O Lo
3k

with
Re{[(1+£%)(4+%2)]?} >0 for Rek>0.

7 This is no Ionger true if one considers the combination S;(%)
= 1e2iaiT=0 2,28, T=2 However, for k=0, |S:| is always 1, since

8,7(0) =nm.
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IV. UPPER BOUND M;(k) FOR |S;(k)|

According to Eq. (1), the search for the upper limit
M, on (T) implies the knowledge of an upper bound for
|F(s,t)| in a complex domain containing (T') and for ¢
lying on some complex path joining 0 and %(4—s). Be-
cause of the subtraction function C(f), it seems very
difficult to find an upper bound for |F(s,t)|. Neverthe-
less, Martin,® by an extensive use of assumptions (ii)
and (iil), succeeded in solving the problem for real
s, ¢, u inside the triangle s<4,f <4, u<4. However, the
method does not apply for physical or complex values
of s, t, u (which we need for our purpose).

In fact, using again assumption (iii), we can write

F(s2)=F(s,0) = F(so,)+F(t,50)—F (lo,50)+F(so,lo) . (7)

Now, if so, £ are chosen inside the triangle s<4, <4,
%<4, an upper bound for F(sof) is known. A good
choice seems to be so=1=2; then F(2,2)<37. On the
other hand, the first four terms, taken as differences, no
longer contain the arbitrary subtraction constants, and,
after some algebraic manipulations, one gets

PP =20

o A(s' ) (2s'+i—4)ds’ ®
s (5"=5)(s'—4+t+5)("—2)(s'—2+4)
and
2(t—2)¢
F(t,2)—F(2,2)=

©  A(s,2)(s"—1)ds’
o (=)' =245 (s"—2)

We are now left with the problem of finding upper
bounds for the moduli of the integrals occurring in Egs.
(8) and (9). Unfortunately, we do not have much infor-
mation about the absorptive parts A(s’,2) and A(s',f).
However, if we consider the difference

©  A(,2)(s"—1)ds’

6
F(3,2)—F(2,2)=— (s'—3)(s'+1)(s'—2)s"’

m™J4

(10)

it is positive. Furthermore, from Martin’s results,
|F(3,2)| <150 and |F(2,2)| <37; hence
6 r°  A(s,2)(s’—1)ds’
<_
w/; (s"=3)(s'"+1)(s'—2)s"
8 A. Martin, in Proceedings of the Seminar in High-Energy

Physics and Elementary Particles, Trieste, 1965 (International
Atomic Energy Agency, Vienna, 1965), p. 155.

<187.

(11)
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Now, it is easy to show that
©  A(s,2)(s'—1)ds’ (s"+1)(s'—=3)
/4 "= =24 (s"—2)s (=8 (s'"—241)

©  A(s,2)(s'—1)ds’
¢ (=3 (=2)s

Putting this in Eq. (9) and taking into account the in-
equality (11), we find

[F(t,2)—F(2,2)| <(187/3) | (t—2)|
('+1)(s'—3)
('—B(s' =24

An upper bound for |F(s,f)—F(2,f)| is slightly more
difficult to obtain. However, by noticing that | 4(s",¢)|
<A(S,]t]), we have

[(s—2)(s—2+1)|

™

<Sup
4g¢’

(12)

(13)

4g e

[F(s,)—F(2,0)| <

A, || 25"+ t—4]ds
/ . (19)
o |S=s||s—u]|s'—2+1|(s'—2)
Let us consider now the difference
(4—|1])?
F(4—|t|, [t])—F(@4~1t])/2, |t])=—
™
® A(s'|¢])ds’
X f ; (15)
4 s’(s'——4+[t[)(23’—4+[t[)

it is positive. Furthermore, for |¢| <4 (Ref. 9),

an
F((4—1tD)/2,|th 2 F(4,$) > —100,

since the absolute minimum for F is attained at the
symmetry point. Therefore, for |¢| <4, it is clear that

<M—MP/” A(s',|¢])ds'
T s S =44 |t]) (2 —4+¢])
< F(4,0)—F(4/3,4/3)<100.

(16)

If we compare Egs. (14) and (16), and use again the
same arguments as for deriving formula (13), we can
find

100|s—2]| | s—2+¢
|Fls,)—F(2,0)| < S

(4— ¢
XSup (25" +1—4) 25"+ |t]| —4)s' (s'— 4+ |¢]) an
34 (s"—=9)("—u)(s"—2410)(s'—2)

? Here we restrict ourselves to negative values of F(4,0).
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Finally, collecting the results given by Egs. (13) and
(17), we obtain

|F(s,0) | <374 (187/3)|4(t—2) |
G"+1)("—=3) , [(s—2)(s—2+1)|
100
("= (s'—2+17) (4—¢])?
(2s'+1—4) 25"+ |t]| —4)s'(s'—4X [t])
(s"—$)(s"—u)(s'— 2+ (s'—2)

The right-hand side of this inequality, when introduced
in Eq. (1), gives us an upper bound M (k) for |Si(%)]|.

Evidently, this bound becomes meaningless when s,
f, u are such that the denominators of the right-hand
side of the inequality (18) vanish. It may occur for
|s'—s| — 0 or |s'—u| — 0. These latter singularities
are harmless since they lie on the unphysical cut in the
k plane or on the unit circle in the %’ plane. The
|s’—s| — O singularities are more serious because they
occur for physical s or, equivalently, in the £’ plane when
Imk’ — 0. However, in formula (6), they are inserted
under the logarithm and then multiplied by sing which
precisely behaves like Imk’ on any semicircle (T'), so
that the right-hand side of formula (6) is always finite.

X Sup
8’24

. (18)

X Sup

8’24

V. APPLICATIONS TO THE ='m® S-WAVE
SCATTERING LENGTH

The S-wave scattering length is defined as
exp[ido” (k) ]sindo”(k)) . tando”(k)
=lim ——k——— .
k>0

aT=1lim
k>0 k

Expanding 8,7 around k=0 and, using the fact that
50T(0)=71«7l',

tan(kdso?(0)/dk+---) dde%(0)
aT=1lim = .
k-0 k dk

For the real #%r° system, we have

So0= %eziaoo_'_ % £2i00% — 218000

The derivative of this expression taken at threshold
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along with the property 6,7(0) =#m, yields
daooo(O)/dk = %doo+%ao2= ao"" .

Therefore, formula (6), considered at threshold,®
gives a lower bound for the #%r° S-wave scattering
length. We have computed this lower bound, using Egs.
(18), (1), and (6), and the numerical result is

"> —4pion Compton wavelengths,

while Martin and Lukaszuk!! obtained %> —18 from
the same assumptions but by a different method.

Let us mention, for comparison, some values or
bounds for @, found by several authors: Goebel,'?
using forward dispersion relations and, neglecting the
higher partial waves in a limited energy region, got the
value —0.33 as a bound for a,%.

The 7-N'® analysis yields @°°>~0.4, assuming that
a¢"=?=0. From current algebra and the hypothesis of
partially conserved axial-vector current, Weinberg!
found @,°~0.022.

In conclusion, we think that the result obtained in
this work demonstrates once more the severe restriction
imposed by analyticity, unitarity, and crossing sym-
metry on physical observables in spite of the crudeness
of the mathematical techniques we have used. Our
value might, of course, be improved in different ways
and the most obvious one would be to keep the integral
over the physical region which gives a positive contri-
bution, but then we have to know something about the
inelasticity in w%° processes.
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