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Connection between the Wigner Inetlualities and
Analyticity and Unitarity
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A lower bound on the momentum derivative of the phase shifts, db~/dk, is derived from the combination
of unitarity, crossing, and analyticity (in the domain resulting from axiomatic field theory). As an applica-
tion, a lower bound for the ~'x scattering length is deduced.

I. INTRODUCTION

'T was shown, long ago, by Wigner' that the deriva-
~ - tive of the phase shifts with respect to energy must
exceed a certain limit if the interaction of the scattered
particle and scatterer vanishes beyond a certain dis-
tance a; for example, for the S wave,

dip(k)/dk& —a+ (2k)-' sin2(bp+ uk) .

A similar limit has been obtained by Goebel, Karplus,
and Ruderman' for a relativistic neutral two-particle
system, again under the restriction that the interaction
be of 6nite range.

For short-range interactions like the Yukawa or
Gaussian ones, to our knowledge, no such explicit
bound exists; even if one existed, it would depend on the
strength parameters (or coupling constants) of the in-
teraction. The 6rst attempt to show that there exists in
6eld theory an analog to Wigner's theorem was made
by Bincer and Sakita. ' Assuming the validity of the
Mandelstam representation, they obtained the follow-
ing bound:

dr, /dk& (~+-;—),
where e is the number of zeros of the real part of the
S matrix along the unphysical cut.

In this paper, we wish to show that a lower bound for
dpi/dk can be derived from the results of axiomatic field
theory alone. Our aim is to obtain a bound which is
independent of any hypothesis on the interaction or on
the number of zeros of the S matrix. Our basic assump-
tions are as follows: (i) a certain amount of analyticity
for the scattering amplitude as given by axiomatic 6eld
theory', (ii) unitarity; and (iii) crossing symmetry.

The derivation proceeds in the following way: In the
first step, we show that a lower bound on d8~/dk can be
related to an upper bound of the partial waves on some
curve of the analyticity domain; in the second step, this
upper bound is derived, from the assumptions (i), (ii),
and (iii).

The de6nitions needed in the body of the paper as
well as the precise formulation of the basic assump-

tions (i), (ii), and (iii) are given in Sec. II. In Sec. III,
a lower bound on d5~/dk is expressed as a function of the
partial-wave amplitude upper bound, the explicit form
of which is derived in Sec. IV. As an application we show
in Sec. V that the value at threshold of the bound, thus
obtained, yields a lower bound. on the x'm' S-wave scat-
tering length.

II. BASIC ASSUMPTIONS

Let us consider the xPx P scattering amplitude F(s,t,N),
where s= (c.m. energy)' for the first channel and t, I
have analogous definitions, s+t+N=4. In the c.m.
system for the 6rst channel,

s=4(k'+1)
t = —2k'(1 —cos8),

I= —2k'(1+ cos8),

where k is the relative momentum in the c.m. system
and the x mass is taken as unity. Ke de6ne

2ik
S (k) —&2ibi(k) —1+

gs

X F(s=4(1+k'), t= (4—s)X/2)Fi(1 —X)dpi. (1)

(The integration goes from 0 to 1 by taking into account
the Bose statistics of the 2x' system. )

Our basic starting assumptions are the following:

(i) For any fixe t such that
~

t~ (4,F(s,t I) is analytic
in a cut plane in s, with two cuts from s=4 to s= ~ and
s= —t to s= —~,and it is bounded by a polynomial in
s; for any fixed s real ~&4, F(s,t,e) is analytic in t for
t &4.

(ii) Si(k) satisfies the general unitarity requirement:
~
Si(k) ~

~& 1 for real k.
(iii) F(s,t,cc) is completely symmetric ins, t, ubecause

of crossing symmetry.

From the assumptions made, it has been shown by
Jin and Martin' that for

~
t~ (4, F(s,t) satisfies a twice-

' E. Wigner, Phys. Rev. 98, 145 (1955).' C. J. Goebel, R. Karplus, and M. A. Ruderman, Phys. Rev.
100, 240 (1955),' A. Bincer and B, Sakita, Phys. Rev. 129, 1905 (1963).' A. Martin, Nuovo Cimento 44, 1.219 (1966}. ' Y. S. Jin and A. Martin, Phys. Rev. 135, 31375 (1964).
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J right-hand side=2 +
(R2 k, Rek )'+(kI

~~

fkjI &~&

1 +-
k —Rek )2+ (Imk;) ' P, ln ISI(~) I
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5,(R~'4)

I inpd4

( )0) the left-handof the zeal ax's, ~

are respectively, e

chiastic unitarity ]~ an
R2

main of Si{k) in the1 The analytlclty domain
nd the k Plane.s pane an

Hence, f«real ~"e obtainsubtracte d dispersion relation:

tribution of the zeros)d&,/dk = —(the co
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LOWER BOUND ON d5,/dk

Then according
an oint k lying inside p, oneyp

(k k;) (R' k—;k)—
(k k;~) (R' k, ~—k)—

2R Imk
P, lnIS, (') Id.+

'
n

'
d for III (4, consequently

b

'
n relation hol s or, 1

&X&1( F . 1).

'
it domain of S~ is g'

slllce $= (4—$)X/2 with 0~
p

P2 ln IsI(Re'&) I sinpdp. (4)

P In ISI(Re'4) Ising'.dbms, /dk & ——

5 k has an upper bound MI(k) on

the semicircle (C), since P2 is posi ive,

(5) implies the following one:

asil that the erst two terms areNow one can check easily t a
positive; therefore,

x P2 1nISI(Re'&) Ising', (3

4 ~ —— Pm InMg(Re'&) sinIf dP,d84/dk ~& ——
7f p

(6)

where
R'

U

1

k+IkII R4—2Rmz Rek+~2IkI2x'—2x Rek+

R'—IkI'

I
R's"' 2«*' Rek+—Ik I'I'
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IV. UPPER BOUND Mi(k) FOR
I St(k) I

According to Eq. (1), the search for the upper limit
Mi on (P) implies the knowledge of an upper bound for

I F(s,t) I
in a complex domain containing (P) and for t

lying on some complex path joining 0 and io (4—s). Be-
cause of the subtraction function C(t), it seems very
difficult to find an upper bound for

I F(s,t) l. Neverthe-
less, Martin, by an extensive use of assumptions (ii)
and (iii), succeeded in solving the problem for real
s, t, I inside the triangle s&4,t &4, 1&4.However, the
method does not apply for physical or complex values
of s, t, I (which we need for our purpose).

In fact, using again assumption (iii), we can write

F(s,t) =F(s,t) F(so,t)—+F(t,so) F(to,so—)+F(so, to) ~ (7)

Now, if sp, fp are chosen inside the triangle s&4, t&4,
u&4, an upper bound for F(so, to) is known. A good
choice seems to be so ——to 2; then ——F(2,2) &37. On the
other hand, the first four terms, taken as differences, no
longer contain the arbitrary subtraction constants, and,
after some algebraic manipulations, one gets

(s—2) (s—2+ t)
F(s,t) —F(2,t) =

Now, it is easy to show that

A (s',2)(s'—1)ds' (s'+1)(s'—3)
&Sup

4 (s' —t)(s' —2+t)(s' —2)s' 4&" (s' t)—(s' 2—+t)
A (s',2) (s' —1)ds'

X — . (12)
4 (s' —3)(s'+1)(s'—2)s'

Putting this in Eq. (9) and taking into account the in-
equality (11), we find

I F(t,2)—F(2,2) I & (187/3)
I t(t—2) I

(s'+1)(s'-3)
XSup . (13)

4& ' (s' t) (s—' 2+—t)
An upper bound for IF(s,t) —F(2, t) I

is slightly more
diQicult to obtain. However, by noticing that

I
A(s', t) I

~&A(s', jtj), we have

I (s—2)(s—2+t) I

IF(s t) —F(2,t) I
&=

A(s',
I
t I) I

2s'+t 4l ds'—
(14)

4 js'—sj js' —Nj js'—2+tj(s' —2)

Let us consider now the diQ'erence

and

A (s', t) (2s'+ t 4)ds'— (4- ltj)'
(.. .)(,, 4~t+,)(,, 2)(,, 2+,)

8 F(4—ltl Itl) —F((4—ltl)/2, ltl)=

2(t—2)t
F(t,2) —F(2,2) =

A (s',2) (s'—1)ds'
~ (9)

4 (s'—t)(s'—2+t)s'(s' —2)

%e are now left with the problem of 6nding upper
bounds for the moduli of the integrals occurring in Eqs.
(8) and. (9). Unfortunately, we do not have much infor-
mation about the absorptive parts A(s', 2) and A(s', t).
However, if we consider the di8erence

6 " A(s', 2)(s' —1)ds'
F(3,2)-F(2,2)=-, (10)

4 (s'—3)(s'+1)(s'—2)s'

it is positive. Furthermore, from Martin's results, '
I F(3,2) I &150 and

I F(2,2) I &37; hence

6 " A (s',2)(s' —1)ds'
0&— — &18/.

(s'—3)(s'+ 1)(s'—2)s'

A. Martin, in Proceedings of the Sem&zar irI, High-Erjergy
Physics md Elementary Particles, Trieste, 1965 (International
Atomic Energy Agency, Vienna, i965), p. 155.

&Sup
(2s'+t —4)(2s'+ jtl —4)s'(s' —4+ Itl)

~ (1&)
(s'—s) (s' —I)(s'—2+ t) (s' —2)

' Here we restrict ourselves to negative values of F(4,0).

A (s',
I
t

I )ds'
(15)

s'(s' —4+ Itj)(2s' —4+ jtl)

it is positive. Furthermore, for
I
t

I &4 (Ref. 9),

F(4—Itl Itl) =F(ltl, 0) &F(4,0)«
F((4—Itl)/2, ltl) ~&F(o,—;)& —100,

since the absolute minimum for Ii is attained at the
symmetry point. Therefore, for

I tl &4, it is clear that

(4—ltl)' " A(s', jtj)ds'
0&

o s'(s'-4+Itl)(2s'-4+Itj)

&F(4,0)—F(4/3, 4/3) & 100. (16)

If we compare Eqs. (14) and (16), and use again the
same arguments as for deriving formula (13), we can
Gnd

1oo
I
s-2I Is-2+t I

I F(s,t)—F(2,t) I
&

(4- Itl)'
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Finally, collecting the results given by Eqs. (13) and

(17), we obtain

IF(s t) I &37+(»7/» It(t—» I

(s'+1)(s'—3) I(s—2)(s—2+t) I

XSup +100
"&4 (s'—t)(s'—2+t) (4- itl)'

(2s'+t —4) (2s'+
I
t

I
—4)s'(s' —4X I

t I)
XSup . (18)

"&4 (s' s)—(s' u)—(s' 2+—t) (s' 2)—

The right-hand side of this inequality, when introduced
in Eq. (1), gives us an upper bound M&(k) for

I St(k) I.
Evidently, this bound becomes meaningless when s,

t, I are such that the denominators of the right-hand
side of the inequality (18) vanish. It may occur for
Is' —sl ~ 0 or Is' —ul ~0. These latter singularities
are harmless since they lie on the unphysical cut in the
k plane or on the unit circle in the k' plane. The

I

s' —s
I
~ 0 singularities are more serious because they

occur for physical s or, equivalently, in the k' plane when
Imk' ~ 0. However, in formula (6), they are inserted
under the logarithm and then multiplied by sing which

precisely behaves like Imk' on any semicircle (I'), so
that the right-hand side of formula (6) is always Gnite.

V. APPLICATIONS TO THE &oo S-VIVE
SCATTEMNG LENGTH

The 5-wave scattering length is dehned as

along with the property bpr(0) =N7r, yields

dbp" (0)/dk= -', ap'+-,'ap'= apP'.

Therefore, formula (6), considered at threshold, "
gives a lower bound for the x'm' 5-wave scattering
length. We have computed this lower bound, using Eqs.
(18), (1), and (6), and the numerical result is

Gp & —4pion Compton wavelengths,

while Martin and Lukaszuk" obtained up"& —1.8 from
the same assumptions but by a diGerent method.

Let us mention, for comparison, some values or
bounds for ap00 found by several authors: Goebel, "
using forward dispersion relations and, neglecting the
higher partial waves in a limited energy region, got the
value —0.33 as a bound for ap".

The ~-E" analysis yields up"~0.4, assuming that
up

-' ——0. From current algebra and the hypothesis of
partially conserved axial-vector current, Weinberg"
found ap ~0.022.

In conclusion, we think that the result obtained in
this work demonstrates once more the severe restriction
imposed by analyticity, unitarity, and crossing sym-
metry on physical observables in spite of the crudeness
of the mathematical techniques we have used. Our
value might, of course, be improved in diferent ways
and the most obvious one would be to keep the integral
over the physical region which gives a positive contri-
bution, but then we have to know something about the
inelasticity in x x processes.

gp = llm
k~p

exPLibp (k)j sinbpr(k) tanbp (k)= lim ACKNOWLEDGMENT

Expanding 80 around k=0 and, using the fact that
b,r(0) =u~,

~o~= hm
k~p

tan(kdhpr(0)/dk+ ) dbpr(0)

k dk

For the real x x' system, we have

g pp 1~2iboo~ 2t 2ilo~ ~2+ooo
3 i 3

The derivative of this expression taken at threshold
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'o Note that in this threshold case So'0(0) =1, so that we do not
need to use elastic unitarity and can then allow the competition
of the 71-07fo~ (anything) reactions.

'~L. Lukaszuk and A. Martin, Cambridge University Report,
1967 (unpublished).

'~C. J. Goebel, in the Rapporteur talk by F. Low at the
Thirteenth International Conference on High-Energy Physics,
Berkeley, 1966 (University of California Press, Berkeley, Calif. ,
I967).

'3 A. Donnachie and J. Hamilton, Phys. Rev. 133, $053 (1964).
~4 S. Weinberg, Phys. Rev. Letters 17, 616 {1966).


