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Algebraic Classification of Regge Poles~
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Starting from the Lorentz invariance and usual on-mass-shell analyticity properties of scattering ampli-
tudes, we prove that: (a) massless "particles, " transforming according to in6nite-spin representations
of the two-dimensional Euclidean group, are necessarily "elementary, " corresponding to Kronecker-8 singu-
larities in the j plane; (b) the classification algebra of Regge poles, at vanishing invariant mass, is neces-
sarily the Lie algebra of the homogeneous Lorentz group SL(2,C). We calculate the contributions of Regge
poles to scattering amplitudes of particles with arbitary Gnite mass and spin at vanishing momentum
transfer, taking into account the "conspiracy" of Regge poles arising from their classification according to
SL(2,C). The Regge contributions are indeed found to have the required analyticity properties and, there-
fore, a uniform asymptotic behavior for large energies.

I. INTRODUCTION

'HERE has been much interest lately in the so-
called particle "conspiracy. "New restrictions on

physical theories, imposed by Lorentz invariance, were
first realized by Domokos and Suranyi' in 1963, when
they studied the bound states in a Bethe-Salpeter
model; these were investigated in considerable detail in
a series of elegant papers by Toiler and his collabora-
tors. 2 8 More recently the phenomenon was encountered
by Freedman and Wang, ' in connection with the
validity of the Regge representation for backward
elastic scattering.

Toiler's main point is that the symmetry group of a
scattering amplitude is the full Lorentz group at zero
four-momentum transfer. This leads to a natural classi-
fication of Regge bound states according to representa-
tions of the homogeneous Lorentz group. However, his
method applies only in the case of the scattering of
particles with pairwise equal masses, since only in that
case can one assert that one has a zero momentum-

transfer four vector. -

In this paper, we show that the generally accepted
S-matrix analyticity properties and Lorentz invariance

together imply that, in ad scattering process, Regge
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bound states should be classified according to the repre-
sentations of the homogeneous Lorentz group, at zero
momentum transfer. The result is achieved by clearly
distinguishing the imvariance group of a scattering
amplitude from the ctassigcation group of the bound
states, the spectrum of the amplitude. The former de-

pends on "external" properties of the amplitude, in
particular the masses of the incoming and outgoing
particles, whereas the latter —in view of the unitarity
of the S matrix —obviously does not. Therefore, the
classification group of the spectrum need not coincide
with the invariance group. This fact has been already
observed in a Bethe-Salpeter model. '

In the next section, we review the group structure of
the scattering amplitude for particles of arbitrary finite
mass and spin. We then observe that the contribution
of a single Regge pole at zero momentum transfer,
develops a logarithmic singularity, which is not associ-
ated with the kinematic factors which are usually re-
moved. The appearance of this singularity is simply a
consequence of the change in group structure of the
scattering amplitude at s=0. The phenomenon is in-

vestigated in detail in the third section. We recall that
one associates with Regge poles a Lie algebra, the classi-
fication algebra of the spectrum, and show that, pro-
vided the structure of the algebra does not change as
the "mass" of the pole is varied, the unwanted singu-

larity does not appear. Further, we use a theorem on Lie
algebras to prove that the only physically admissible
algebra is the Lie algebra SL(2,C) of the homogeneous
Lorentz group.

In the fourth section we calculate the contribution
of Regge poles to the scattering amplitude at vanishing
invariant momentum transfer. The form of the expres-
sion obtained coincides, in the equal-mass case, with
that of Toiler. ' In the case of arbitrary-mass particles
the form of the expression is the same, provided we
make the necessary changes in the kinematics. In
particular, it follows that Toiler's results on the inclusion
of reQections can be taken over to the general mass case
without modification.

' G. Domokos, Phys. Rev. 159, 1587 (1967).
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In the Appendix we compute the transformation where
matrix between irreducible representations of the s"' (2j+1)dj
Poincare group and. the homogeneous Lorentz group. &v'I&+(»t)l "&= . . &v'I&a(s~g)lv&

3r IP(s) I, sin j3r

II. GROUP STRUCTURE OF THE
SCATTERING AMPLITUDE

Consider a process (1)+(2)—+ (3)+(4), where the
symbols (i) may denote particle groups or individual
particles. Let the squares of the c.m. energies of this
process and the two others obtained from it by crossing
be denoted by s, t, and I, respectively. Now according
as s, the square of the energy-momentum four-vector
given by s= (p3+p3)', is positive or negative, the little
groups of the energy-momentum vector are SU(2) and
SL(2,R), respectively. The scattering amplitude may
be considered a function, in fact a matrix function, on
the little group and may be decomposed in terms of
irreducible representations. ' 8

We may treat the scattering amplitude as a function,
rather than a matrix, on the little group because: (a) the
total four-momentum is conserved, (b) by construction
the generators of the little group,

t V), = e),„p,p„Mp„
2 P2

commute with both the momentum operators P„and
the scattering operator. Let us denote the total four-
momentum, spin, and helicity of the particle group (i)
by p;, s;, and X, , respectively, with p 3=m;3. Then the
scattering amplitude of the process (1)+(2) —+ (3)+ (4)
on the momentum shell with p3+p3 ——p3+p4 has been
written by Trueman and Wick" in the following form:

&p3$3X3)p4$4X4 I
T

I p3$3X3)p3$3X3)
=Dg3„3'3(R,)Dg„4'4 (R4)D„,3,'"(R3)D„33""(R3)

xh„, „„b„,„,„(v'lr(s, t) lv), (2.1)

where, as is usual, t= (P3—P3)'.
The Wigner rotation elements of the little group,

E&. . .E4 are given by the expression

R;=L '(p;)1L(/ 'p;). (2 2)

Here, L(p) is a "boost" which produces the state
I ysX)

from the corresponding rest state,

I p,s,X& = U(L(p))
I
O,s,m),

and the Lorentz transformation l is uniquely deter-
mined, up to a rotation around the 3 axis, by the require-
ment that t ' transforms the momentum P3+P3 to rest
and rotates the vector p~ into the direction of the posi-
tive 3 axis. The amplitude &v'I F(s,t) I v) then admits the
partial-wave decomposition

&v'I &(s,t) I v) = &v'I o'+(s, t) I
v&+&V'I &-(s,t) I v&,

(cos0,-+ —cos0',&x D„.„(R(y, o., —&))~I

S(t'—I)+ (m33 —m33) (m33 —m4')
cosO. ,=

6 (s,m3', m3') 6 (s,m3', m4')
(2 4)

The contour of integration in. Eq. (2.3) depends on the
nature of the little group. With s&0, when the little
group is SU(2), c may be taken as a "hairpin" contour
around the positive real axis; however with s&0, when
the little group is SL(2,R), after a suitable deformation
of the contour, one obtains an integral over the principal
series of unitary representations of SL(2,R),

(j=—-33+iv, —~ (r(~),
plus a sum over the Regge poles.

Equation (2.1) gives the scattering amplitude in an ar-
bitrary reference frame. In the s-channel c.m.s. we have
p3+y3=0 and the right-hand side reduces to (v'I Pl v),
whereas the helicity amplitudes in the t-channel c.m.s.,
with y3+p3 ——0, are given by the Trueman-Wick trans-
formation" derivable from Eq. (2.1):

&p3$3X3,p4$4X4I F(s,t) I p,s,x,,p3$3X3)

d.,3,"(&3)d.33,"(X3)d;3,"(X3)d,434"(&4)
P 1v2t'3$'4

x(p3$3v3pp38]v3I F(t,s) I p484V4) p3s3v3) (2,5)

The bar over a particle eigenvalue symbol means one
deals with the corresponding antiparticle and, as usual,
d, 3'(x) denotes the matrix representation of a rotation
through a real or imaginary angle x about the 2-axis.

In these formulas, D, 3&(R(a',p,y)) denotes a matrix
element of the representation (j) of SU(2) or SL(2,R),
depending on whether or not the Euler angle P is real or
pure imaginary. These matrix elements can be continued
into each other, and the continuation procedure is de-
scribed in detail in the work of Andrews and Gunson, "
In Eq. (2.3) I PI stands for the magnitude of the three-
momentum in the center-of-mass system (c.m. s.)

I
Pl = (4s) "'6(s,m3', m3')

where

6 (z,y, z) = Lx3+y'+ z' —2'—2'—2yzg't3.

The variable cosO', is the scattering angle in the
s-channel c.m.s., which, as is well known, "may be
expressed in terms of the Mandelstam invariants.

11 T. L. Trueman and G. C. Wick, Ann. Phys. (X. V.) 26, 322
(1964}.

~ M. Andrews and J. Gunson, J. Math. Phys. 5, 1391 (1964).
'I T. W. 3. Kibble, Phys. Rev. 117, 1159 (1960).
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A partial-wave decomposition analogous to that of
Eq. (2.3) holds for (v~5(t, s) ~v'), with s and t inter-
changed in Eq. (2.4) and the azimuthal angles inter-
preted correspondingly.

The angles X;(s= 1, 2, 3, 4) are given by the expression

2m, t y(s, t) j»s
(cycle), (2.6)

6 (t,mrs, mss) 6 (t,mss, m4s)

where sts(s, t) is the Kibble function,

Q(s, t) = stss s(m—ss m4'—) (m ss m—ss)
—t(mis —mss) (mss —m4')

—(mi'm4' m—s'ms')(mi'+m4 ms ms).

The representation (2.3) should exist for s&&0. More-
over, we expect that a Regge-pole contribution to
(~G:(s,t) ~) should be regular in s at s=0 with t in its
physical region. However, a glance at a term in the
representation (2.3) shows that the contribution seems
to develop singularities at s= 0. In fact let us recall the
well-known expression for the rotation matrix

D„„.&(np7) =e '" d, .s(s)e *' '&,

where

-r(j+ my 1)r{q—m'y 1)-
d„„.&( )s=

-F(j+m'+1)I'(j—m+1)

(f+g)t + ')I

(f
—

g)
t

X
0 2 2

&(—j+m, j+m+1; 1+m—m, ', (1—s)/2)
X—

1(1+m—m')

and z= cosp.
Barring accidents we have lim, p cosO, = 1, and both

terms in the square bracket of Eq. (2.3) become
singular. The singular contributions of the factor

(
(m—rn')/2 f~~ (m—m )/2

2 2

are well known'4 and have been separated out as
kinematical singularities. However, in general, the
hypergeometric function also has a singularity when
the argument of the exchange term tends to 1.Here we
have a logarithmic branch point which has been dealt
with essentially by using a Laurent series expansion. '
This unwanted singularity arises because of the sudden
change in the structure of the little group at s=0. It is
known, from Wigner's classical work, " that the little
group corresponding to a lightlike momentum is E(2),
the group of rigid motions in the Euclidean plane. The
effect of contraction of the groups SU(2) or SL(2,R)
on our formulas can be followed easily.

"L.L. Wang, Phys. Rev. 153, 1664 (1967).
~ E. P. Wigner, Ann. Math. 40, 149 (1939).

Let us recall that the rotation entering (2.3) is defined

by the relation E(P, O~» —g)=L s(I 'P)l 'L(P) so it
clearly depends on the mass gs. In fact, without loss
of generality, we can choose both p and p& to lie along
the positive 3-axis when we have

I '=~(4, O., —4) '(P).

Here, L(p)=s(p), is a pure Lorentz transformation
along the 3-axis and O~„p are the polar angles of ps iss

the rest system of p The .dependence on the "total mass, "
implicit in this definition, is conveniently exhibited in

Eq. (2.4). Indeed, Eq. (2.4) can be looked upon as
introducing an invariant parametrization of the little

group, involving (t u) inst—ead of the frame-dependent
Euler angles. "

As s —+ 0 and the velocity of the c.m.s. tends to the
light velocity, the degree of freedom corresponding to
the parameter (t I) "fre—ezes in" so that we have the
following relation:

lim D s(L(t 'P)t 'L(P))=e "'" "'4'
y2 ~p

(2.7)

where j is an integer or half integer.
The right-hand side of Eq. (2.7) is clearly a matrix

element of a 6nite spin representation of E(2), with a
vanishing Casimir operator. Thus we see that the "un-
wanted singularities" in the scattering amplitude arise
entirely as a consequence of the sudden change in the
structure of the little group, when the momentum of the
c.m.s. becomes lightlike. It is quite easy to show that
the converse statement is also true. If we insist on

maintaining the analyticity of the scattering amplitude
represented by Eq. (2.3), it will have incorrect trans-

formation properties under homogeneous Lorentz trans-
formations. " A careful study of the little group will

indicate a method of reconciling Lorentz invariance with
the analyticity properties of the amplitude.

'~ We apologize to the reader for repeating material which is so
well known, but a full understanding of these properties of the
little group is essential for later development of the theory.

D To show this it is suKcient to take a pure Lorentz transforma-
tion along one coordinate axis. The details of the proof are left to
the reader.

III. STRUCTURE OF THE LITTLE GROUP
AND THE ELIMINATION OF THE

UNWANTED SINGULARITIES

To be deinite, let us start from a state with timelike
momentum. We wish to follow the change in the struc-
ture of the little group, as the "mass, "or square of the
total four-momentum of the state, varies continuously
through zero. This study will provide us with a clue,
enabling us to avoid. the unwanted singularities of the
amplitude. In the following argument it proves essential
to consider states with a nonvanishing three-momentum.
Without loss of generality, we may assume that ps&0
and p&= ps=0. That this is important is borne out by



ALGE 8 RA I C C I.ASS IF I CATION OF RECCE POLES 4909

the following simple argument. For E'&0, =0, and. &0,
the canonical forms of the three-momentum can be
chosen as (O,o,o,m), (O,o,p,p), and(o, o,p,o), respectively.
Evidently these forms do not go into each other under
a continuous variation of P'. However, if we choose the
following representations of the three Wigner classes,

(0, 0, p, Q(p'+s)), (O,o,p,p), and (0, 0, p, g(p'+s)), we

can eGect the "timelike —+ lightlike —+ spacelike" tran-
sition smoothly, by varying s with P fixed.

Let us take P'=s&0 and consider a state with

angular momentum j and magnetic quantum number m.
If IPI =0, the set of states IP=O, j™)forms a basis
of an irreducible representation of the algebra SU(2),
with matrix elements deGned in the usual way:

(P=o, j', m+11S+IP=O, j™)
=&;;,L(~~ )(j~ +1)j"',

(3 1)
(P=o, j', m'ISpIP=O, j,m)™~'
(P=o, j™IS'IP=O,j, m)= j(j+1)8;;.8

We now construct operators which "step" between

states with diferent values of the total spin j. The
simplest possibility, suggested by Geld theory, is to take
a nondegenerate tower of states and enlarge the algebra
(3.1) to SL(2,C). We shall see that this "minimal" en-

largement of the spin algebra (3.1) is suKcient to get
rid of the unwanted singularities of the scattering ampli-
tudes. Let the minimal spin in the tower be jp, then we

defil the new operators T+, Tp by giving the nonvanish-

ing matrix elements in the following way. "

{P=o, j+1,m&11T+IP=O, j, m)=~
j+1

((j+1)'—jp')((j+1)'—(1+o)')(j™~2)(j™~l)-'~'
(2j+1)(2j+3)

(jism+1) (jism)
(P=o, j, m&11T+IP=O, j, m)=ij p(1+o)

j(j+1)
1 (j'—jp')(j' —(1+~)')(jism+1)(j~m) "'

(P=o, j—1, ma11T+IP=O, j™)=a-
(2j—1)(2j+1)

1 ((j+1)'—jp')((j+1)'—(1+o)')(j—m+1)(j™+1)
(P=O, q+1, mIT, IP=O, q, m)=

j+1
(1+o)

(P=o, j, mITpIP=O, j, m)=ijp
j(j+1)

1 (j'—j')(j'—(1+o)')(j—m)(j™'p
(P=o, j 1™ITIP=O, j, m)=-

(2j—1)(2j+1)

(3.28)

The relations of the operators S~, T~ to the Cartesian
components is the usual one,

Sg——Sg~i52, T+ T$+$T2 0

By construction the operators S and T satisfy the com-
mutation relations of SL(2,C):

LSg,S,]=ip;,pSp,

I- 6 ij= 'i&»
[7;,T~]= i p,,pSp—

(3.2b)

F=-'(S'—T') =-'( ( + 2)+j")
G=S T=ijp(o+1).

(3.3)

The labels jp, and 0- characterize the "tower" of states
on which the operators S and T act. The number 2jp is
by definition always an integer, whereas 0. is an arbi-
trary complex number. The Casimir operators of the
algebra (3.2b) are expressed in the usual way in terms
of cr and jp.

We now list some of the types of representations of the
algebra (3.3):

0-=jp= 0 trivial,

o= —1—ir (—~(r(m) principal series,

o=$ (—1~/~0) supplementary series,

o =a+j„e&0.Finite dimensional.

jp=0
The reader should notice that the representations

which we are considering here are "classical" in the
sense that 2j is an integer. "Reggeization" will lead
us to consider other representations of the algebra with
"unphysical" values of j.The latter cannot in general
be used to induce representations of the group generated
by the algebra (3.2b); nevertheless, the prescription to
obtain them by analytic continuation is well known, ' ' "
and we shall not discuss it here.

'8 H. Joos, Fortschr. Physik 10, 65 (1962).
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Under a Lorentz transformation which boosts the
state

I
P=0, j, m) into

I P,j,m), the algebra spanned
by S, T undergoes a similarity transformation. Evi-
dently we have

I P,j,X)= U(L (P)) I
P= 0, j, m), so the

operators
S;(P)= U(L(P))5;U '(L(P))

2''(P) = U(L(P))2'U '(L(P))
(3.4)

have the same matrix elements between the boosted
states as S; and T; had between rest states. Although
Eqs. (3.1) to (3.4) are sufhcient in principle to define a
"tower" with arbitrary momentum P, it proves con-
venient to give explicit expressions for the generators
S;(P) and T;(P) by stating index transformation prop-
erties under the boost L(P). We define the spin pseudo-
vector S„and vector T„ in such a way that in the rest
system they have components (S,O) and (T,O), respec-
tively. Then, after noticing that the components of the
boost L(P) in the defining (vector) representation are

Lao(P) =io(gs,

Lo*(P)=L'0(P) = P'(v'~,

P'-Pf
Lv(P) = 4+

(V's) (c0+gs)

with ~= (s+P')'i', we obtain the relations

(P S)P
S(P)=8+

(v'~) (~+v'~)

So(P) = (1(gs)P S,

(P T)P
T(P) =T+

(gs) ((u+gs)

2'o(P) = (1/gs)P T.

The four-vectors S„and T„satisfy the relations

(3.5a)

(3.5b)

and
Pg„(P)=P„T„(P)=0

[S„,P„]=0. (3 6)

Evidently the operators (3.5a) coincide with the gener-
ators of the little group, the Pauli Lubanski spin
operators,

8'g= (4s) '"~),,„.pP„M„p(P) . (3.7)

To see this it is sufhcient to recall an explicit ex-
pression' for the generators of Lorentz transforrnations
Ã„„(P)operating on a state

I P,j,ns),

and insert relations (3.8) into Eq. (3.7).
It is worth noticing that had we chosen to describe our tower

of states by a multicomponent field, the algebra which we have
constructed would coincide with the generators of index trans-
formations on the Fourier transform of the Geld. Using a spinor
basis we should simply obtain

S), (P) =P„S„7„T),(P) =P„S„7„
where Ssjj=EsgrSr S01,——TI, and $»=46„pp&Sp&.

It is clear that the assignment of the above transforma-
tion properties to the operators S; and T; is consistent
with the following set of commutation relations be-
tween S;, T; and the generators of rotations and pure
Lorentz transformations or boosts M; and S;,
respectively:

[M, ,S;]= ie,,gSg,

pm;, r,]=i~...r„
[S;,N;]=is),gTi,

[T;,Ng]= i eg—gSi, .

(3.9)

It follows that as far as general algebraic properties,
in particular the commutation relations, are concerned,
we need not distinguish between the generators of
Lorentz transformations and the operators defined by
Eqs. (3.1) to (3.4); in other words we can speak about
ore SL(2,C) algebra instead of one generating homo-
geneous Lorentz transformations and the other acting
on spin states in the rest frame. So for the purpose of
the following considerations we identify the operators
S, I according to the relations

S,~M;,
The states IPjX) behave in the usual way under a

Lorentz transformation, A.

U(&) IPj&)= U(it) U(L(P)) IP=O, jm)

= U(L(itP))U(L '(AP)AL(P)) IP=O, jm)

= g U(L(AP))IP=O, j'm')(P=O, j'm'I
j'm'

X U(L '(i1P)A.L(P)) IP=Ojm).

The operator L '(AP)AL(P) is evidently an element of
the little group generated by the operators (3.5a). The
reader can verify this by taking for example, an
infinitesimal transformation A in the (—„0) representa-
tion of the Lorentz group.

We now come to the crucial point. Keeping P jinxed,
as discussed at the beginning of this section, we let s
tend to zero. A glance at the Eqs. (3.5a,b) indicates that
both the operators S(P) and T(P) develop singu-
larities. In particular, the coefficient of the leading term
in S(P) becomes

where
N;i, (P)= e;;gM;(P), Mo;(P) =N;(P),

M(P) =iPX v',+S,
PXS

N(P) =no%',+
Qs+ GD

(3.8)

~"'S(P) (P S)P/IPI (

and the little group contracts to the group of rotations
around the direction of P. This we have already
explicitly observed with the help of representations in
the previous section.
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Let us pause here for a moment and point out an
important physical consequence of the previous con-
siderations. Evidently the integrand in Eq. (2.3) forms
a basis of the type I

P=O, jm) for the algebras deiined
here. In particular, if we isolate one Regge pole, its
contribution transforms according to an irreducibl" —in
general nonunitary representation of the algebra (3.5b).
As we follow the trajectory of the Regge pole, j=cr(s),
to s=0, the family of representations contracts to a
representation of the smaller algebra (3.10).

To be specific, let us choose P= {0,0,p). Then, apart
from the irrelevant factor p, (3.10) reduces to Ms. On the
other hand we know from Wigner's work that the
generators of the little group of the four-momentum
I'= (0,0,p,p), where s=0, are given by the operators
3Ii+S~, 3f2—Xr and 3f3. In other words, after per-
forming the limit operation s —+ 0 we obtain not the full
Lie algebra of E(2) but only the subalgebra spanned by
the single generator 313. The representations of the
latter coincide with those of E(2) corresponding to the
zero eigenvalue of the Casimir operator, signer's
"finite spin" representations. Ke have thus proved the
following:

1. Theorem: In a theory where the spin of the states
is a function of the mass, j=n(s), and lim, s(o.(s))
exists, only the finite-spin-type representations of the
lightlike little group are realized.

An immediate consequence of this theorem is that if
for some reason one needs a "tower" of particles with
zero mass, then either those particles are all elementary,
in which case they can belong to irreducible representa-
tions of E(2), or they lie on Regge trajectories and
necessarily individually span reducible representations
of the lightlike little group. The significance of this
remark should be obvious to the reader who is familiar
with the elementary theory of the so-called "con-
spiracy. "%e shall return to the "conspira, cy" problem
later. Note that the elementary particles correspond. to
Kronecker-8 singularities in j and can be subtracted out
of the amplitude. In this paper we are principally con-
cerned with the singularities of the analytic amplitude
corresponding to Regge poles or cuts. T'he result of the
previous theorem is more easily understandable if one
recalls the Wigner-Inonu procedure of obtaining E(2)
by contraction from SU(2). In fact if the contraction
is performed on the representations in order to obtain
the full group E{2) one has to let the mass tend to
zero and the spin j tend to inanity with j=0(1/s).
Evidently this would mean that a Regge trajectory has
a 6rst-order pole at s= 0. Such a possibility is excluded

by the unitarity of the scattering operator.
Let us now continue our group-theoretical investi-

gations.
At the point of contraction, s=O, the singularity dis-

covered in Eq. (3.5a) must be reflected in at least one
of the matrix elements in the representations of the
algebra. In fact one can prove that if, ul the P0ill s=O,

Wi M i+Ms+ Ni Ni-— —
X=i

Ws Mi Ms+ Ns+——Nr— (3.'I)

Ws= Mr+Ms+Nr —Ns )=—i.
Ws Ms Mi+Ni+Ns—— —

Some algebras spanned by the root vectors are:

(1) the Abelian algebra, (Ms,Ns)
(2) the algebra E(2) where we have "two copies"

with generators 3fj+X2, M2 —Er, Ma and 3fj—Ã2,
Ms+Ni, Ms, respectively, and last but not least

(3) the algebra SI.(2,C) itself.

According to theorem 2, these are the only algebras

"Q. Dornokos and G. L. Tindle, Commun. Math. Phys. 7, 160
(1968).R. Hermann, I-fe GrouPs for I'hysI', cists (W. A. Benjamin,
Inc., ¹wYork, 1966).

none cf the rePresentuiiori matrices of the algebra (3.5)
hove u singularity mrs s, thee the Poiwl s=O calssol be a
poiet of contraction. The proof is straightforward and is
left to the reader.

Conversely, if we want to make sure that none of the
transition amplitudes (2.3) have an unwanted singu-
larity at s =0, we have to arrange theirredgcible amplitssde
coritribltioris to form the basis cf c! reprcscntatiors of ae
algebra which is Preserved ai the corikracliori point. The
question as to which subalgebras "survive" contraction
is answered by a theorem" on Lie algebras. Provided
certain conditions are satisfied, which they are in our
applications, we have the following:

2. Theorem: A subalgebra g of an algebra 6 survives
the contraction if and only if it is spanned by the root
vectors of 6.

For the reader's convenience, we briefly recall some of the
definitions involved, which can be found for example in Hermann's
book on Lie groups. ~

If G is a Lie algebra and M its maximal compact subalgebra, then
the decomposition G=MSN with LM,Nj&N and fN, NgQM is
a Cartan decomposition. A Cartan subalgebra, A is a maximal
Abelian subalgebra of ¹ A root vector, 8', of G is an eigenvector
of the elements of A in the sense that for NQA we have
LN, Wg =X(iV)W, where the root X(iV) is a linear form on A.

The elements g=exptX, where XQG, form a one-parameter
subgroup of G, the Lie group generated by 6.The symbol Ad g(F)
denotes the set of elements of 6 of the form gI'g ~ where FQG,
Ke say that if

g(~}=lim Ad exptx(g)

exists it is a corhtractf'orI of g, and g services contraction if g(~)
is isomog hie to g.

%e now apply theorem 2 to the Lorentz group con-
tractions. Ke work with HIermitean generators and the
transformation in question, the boost along the a-axis,
for example, is represented by exp(iPNs), where
coshP =~o/Qs. Evidently we have P -+eo as s ~ 0 with

I PI fixed. It is an easy task to find the root vectors X
such that )X,Nsj=) Ns.
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which survive the contraction s —& 0, so at first glance
we could choose any one of them to classify the singu-
larities at s=0. Physical considerations, however, restrict
the choice. If s is nonzero, say s&0, the Regge poles are
classified by SU(2) and going to s=0 cannot chan. ge
their number. Now we know that SII(2) does not
survive the contraction so we must classify the Regge
poles according to a reducible representation of SII(2),
and the "surviving algebra" must contain SU(2) as a
proper subalgebra. This restricts the choice to SL(2,C).
The argument could be formalized by invoking the
continuity theorem on the singularities of a function of
two complex variables but we do not want to dwell on
this here. We now summarize these results.

3. Theorem: In order to make the analyticity properties
and Lorentz invariance of the scattering amplitude corn

patible, it is necessary and sufhcient for the analytic part
of the partial wave amp-litudes at s=0 to "conspire" to

form the basis of a representation of SL (Z,C).In particular,
the analytic singularities, Eegge poles or cuts, of the

amplitude must form the basis of a reducible representation

of SU(Z) which for s= 0 goes over to one of SI.(ZC).

IV. REGGEIZATION OF SCATTERING AMPLI-
TUDES WITH ARBITRARY MASSES AND
SPINS DT THE REGION OF VANISHING

MOMENTUM TRANSFER

Using Eq. (2.3), we can easily exhibit the contribution
of Regge poles to the scattering amplitude. Let us, Qrst

of all, recall that the partial-wave expansion (2.3) can
be obtained by decomposing the amplitude,

(pgssxs, p4$4X4l T
l
p]spry, p2$21%.2),

with respect to irreducible representations of the
Poincarh group. Writing formally P;, instead of the
contour integral, we have, in an arbitrary reference
frame,

&p3$3X3)p4$4X4I T
I pgslkg, p2$2hs)

Let us denote the Clebsch-Gordan coefficient of the
Poincare group, 2' in the representation where the scat-
tering amplitude is diagonal, by (p&s&X&,pcs&X&lP jmy),
where

(P&s&X&,P2$2X& l
Pjmy)

= g&pgsg4p2$2xg
l
Pjm; vgv2)&vgv2ly).

(The set of quantum numbers y contains parity if we
assume, as is usual, that it is conserved by strong inter-
actions; in some cases, such as xX scattering, no other
quantum numbers are needed. ) In this representation
the contribution of Regge poles to the amplitude can be
written as follows'2:

&p3$3~8pp4$4~4 l
T

l plsl~lpp2$24) (vole)

mm'y, ai~ (s)
d4P&p3$3hq, p4$4X4llPu;~(s), m,y)o „

»mu~„~(s) =u;»(0) —s, (x=0, 1, 2 ); (4.2)

j~~—im ai7(e)

Xp;,*(s, ;,(.)) p;, (s, ;,(s))
sinv u;„(s)

X&P,u;„($),m'yllpxs, x,,p2$,),)
Xb(P P P)b—(p+—p p p) —(4—~)

where we have omitted some unimportant normalization
factors. Here, u,~(s) is the ith Regge pole in the eigen-
channel y and p,~(s,u;„(s)) is the corresponding form
factor. The coeScient (p~s~h~p2$2XsllP, u,my) is the con-
tinuation of the "reduced" Clebsch-Gordan coefBcient
of the Poincare group (the momentum-conserving b

function has been factored out) to arbitrary values of
angular momentum (cf. Andrews and Gunson). "

Theorem 3 of the previous section now states that:
(a) in every eigenchannel 7, there is at least one

subset of Regge trajectories, say u;,„(s), such that

g4pg4pl
jjrmm, r, vyvyvav4

(p,s,xs, p~,x4lP~m; v&v4)
(b) the residues p,„~ become correlated in such a way

that

Now

X&Pjm»v4ITIPi''m' »»)
hmp'. ($ '. ($))p. *($, '. ($))~, ~

X (P'j 'm'; vsv2 l pqsq4, p2$24)+ (crossed term) .
=hmpv($ o*v($))P~*($o'v($))b

(Pjm; vav4l T
l
P'j'm'; vzvz)

=b(P—P')btrb (v3v4llT(s, j)llvgvg),

where P'=s and (v3v4llT(s, j)llvzv2) is the reduced
matrix element with respect to the Poincare group.
Further, it is convenient to introduce the eigenampli-
tudes T~(sj) by a unitary transformation:

&„,.llT(s j)llv, v,&=p&v...l,)T,(sj)&, l„v,).

X g (u,„„(s),mlo, ,(s)j,; j"m")

X&o;~($)jo, j"m" lu, „„(s),m). (4.3)

The coe«ients (um la j&,' jm) are essentially generalized
Clebsch-Gordan coeflicients, decomposing a basis state

"G.C. Wick, Ann. Phys. (N. Y.) 18, 65 {1962).~ We recall that the residue factorization theorem holds for the
eigenamplitudes cI., e.g., G. Domokos, thesis, Dubna, 1963
(unpublished}.
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~o jp, j2)4) of a representation (o jp) of SL(2,C) into
representations of SL(2,R). Explicit expressions for
these, together with some of the important properties,
were given by Sciarrino and Toiler. ' The coefficients
I'„are the form factors of a Lorentz pole. [Let us note
at this point that, strictly speaking, the "states" ~n, 2)2),

~ITjp, jm) form bases for the representations of the
"boosted" algebras (2.5), so that we should write them
in the form

~
o jp, j2)2; P), . ~42,2)4; P) ~ However, the

dependence of the coupling coefficients on the four-
momentum P is trivial. ]

The position of the Lorentz pole o;~ (0) is simply given

by the relation

Ir'v (0) =42'o. (o) .

After inserting (4.2) and (4.3) into (4.1), we obtain
the pole contribution to the amplitude 1 arranged
according to Lorentz poles. The evaluation of the re-
sulting expression in the general case is quite compli-
cated, However, if we make the customary assumption
that in some region (for example when the invariant
energies of the crossed channels 3 and I tend to infinity)
the amplitude is dominated by the contributions of the
Regge poles, the expression (4.1), together with (4.2)
and (4.3), can be evaluated quite easily.

In this case we can assume that the set of improper
states tam) is complete so that operators of the type

d'P
z

2M~

can be replaced by the unit operator (a "Reggeized"
version of the familiar closure approximation). In this
way after some straightforward manipulations we
arrive at the expression

with Pp=+$. In the Appendix we calculate the coeffi-
cients (P$)I, P$—'h'~Ppojpjm) and find that they are
proportional to the matrix element, D,'1,; & s'»(L-'(p))
of the inverse of the I orentz transformation L(P) which
produces the relative momentum P.

Th~ s, after multiplying together the Lorentz trans-
formations and taking into account the results of the
Appendix, we And

f~~
—iXO'sg (s)

lim F= lim p I'),($,Ir;~($))" siS &s) 'Y Slnsririy($)

Xl',*($,lr;, ($)) Q ($2) 4$4—)I4~ j') ')

XD., +~, „+)„( sis()s. s)p( ,L—1(P )L(P ))
X(j"))"~$1)I1, $2—) 2), (4.6)

where j' and j"are the total spins of the initial and final
states.

We note that the unwanted singularities occurred in
the amplitude (2.3) when considering D (L(P)) with
complex n after j Reggeization. However, we now
Reggeize in o, and D&(L(P)) appears where j, the total
spin, is integral or half integral and Di(L(p)) is simply a
polynomial in the cosine of the scattering angle.

With trivial kinematical modifications, Eq. (4.6) is
identical to the expression derived for the scattering
amplitude by Toiler, ' for the equal-mass case, and
generalizes what was called a "broken-symmetry ex-
pansion" in Ref. 10 to the case of arbitrary spins.

However, we must emphasize that we obtained Eq.
(4.6) on the basis of theorem 3 and the customary
assumption that the Regge poles dominate the ampli-
tude as the energy tends to infinity and have not used
the invariance of the amplitude under SL(2,C) at zero
four-momentum transfer.

os~(e), y

g~~—s~osg(e)

d4Pr, ($,ir;, ($)) 1„*($,o;„($))
sinwo;, ($) V. CONCLUSION

Xg(P 4$2hzp4$4X&~~Po;~($) jp,'jm)

X (Po;„($)jp, j))4~~P1$14P2$2X2)

X&(pl+P2 P)&(pl+P2 Pp
——P4)—
(t —+m, $ -+ 0) ~ (4.4)

[The integration over P is again trivial and a;s~($) has
been replaced by o;„($) according to (4.2).]

We now define the c.m. amplitude 5':

$~ &
—isa&~(e)

lim& = lim g I') ($,Ir;„($)) I 2*($,o;„($))
s 0 s-p siS(s) 'Y Slnpriri&($)

XQ(p2$3)12 p4$4)I, 4
~
PQIT y($) s)0, m)'

X(Pplr &($)j,; j))4~p&$24 p1$24) s (4.5)

The results of the present work show clearly that the
so-called "conspiracy" is essentially a kinematic phe-
nomenon and has nothing to do with some mysterious
dynamical interplay of various Regge poles, like the
x-A ~ conspiracy.

We were able to resolve the problem, in full generality,
because we recognized the essential diBerence between
the invariance group of a scattering amplitude and the
classification group of the spectrum. The role of the
homogeneous Lorentz group is to classify the singulari-
ties in the angular momentum plane, at vanishing in-
variant energy, and this role is universal in the sense
that the properties of the spectrum are independent of
any particular scattering process. The circumstance that
a scattering amplitude, with all the external particle
masses equal, actually becomes invariant under the
homogeneous Lorentz group, at vanishing momentum
transfer, thus appears somewhat accidental.
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Evidently our procedure is not restricted to two
particle amplitudes or to Regge poles. A generalization
to Regge cuts is straightforward, but the extension to
many-body amplitudes will require a careful analysis of
the analytic properties of the group structure of these
amplitudes.

There has been some controversy in the literature
whether spin is or is not an essential complication in
5-matrix theory. Ke do not want to take sides in this
controversy but want to emphasize the point that
Lorentz invariance is an essential complication.
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APPENDIX

In order to calculate the coupling coeS.cient,
(Po(ojo)j 223~ psiX1'—ps' 2), used in Sec. 4, we first of all

note that, following Jacob and Wick, "we can write the
helicity states

~
psixi, —p1s24) as follows:

~
psih1,' —ps2l12)

= V(R(p, 0, p)) ~
p—os1~1 j P3s2~2), (Al)

where on the right-hand side we have a helicity state
with momentum along the 3-axis.

After defining the one-particle momenta in a general
Lorentz frame by

In particular, if the relative momentum p points
along the 3-axis, we have

P3=»o(o)P'= (P')""/(1—")'",
po= oo( )P= (p')"'/(1 —~)"",
pi= p2= 0,

(A3)

where P'= (P')'"=21L2(22312+233 ') —s]'~2 obtained di-
rectly by adding the squares of Eqs. (A2). As usual we
have P12=22312, P22=22322 and P'=s. LThis procedure
corresponds to a partial recoupling of the product state
(Al).j After combining these results with (A1) we
obtain the equation

i yisiX1, —ys2X2) = U(L (p)) i
p= 0, sinai, y =0, s2X2), (A4)

where L(p) is a Lorentz transformation acting on the
relative momentum alone:

L(p)=&(4» 0, —4) () (A5)

The state on the right-hand side of Eq. (A4) can be
reduced out with respect to the rotation group

~1+s2

~p=0, sik1, p=0, s24)= p ~

j'X)(j'&~»&1, s2 ~2),
j'=I sl—~2l

with P =X~—X2. Thus for the coupling coefficient we
have

&Po, ~joj223~ps14 —ps2~2)=p(Po~jojm~ ~ '(L '(p))

(Pooj ojm
~
psiX1, —ps2X2) = p D;,'. "&'~'»(L—1(p))

j'm'j'

X
~
g'X)(g'X

~
sikis2 —X2). (A6)

(We omitted the labels y=0, Po from the right-hand
side. ) The bra-vector (Poo joj223~ in Eq. (A6) transforms
according to an irreducible representation of the Lorentz
group so that Eq. (A6) becomes

p1=2P+p,
P2=2P P—(A2) X&Po~joj"223"

~
j'&)&j'X(sp. is2 X2),

and finally, noticing that we have the relation

(2p being the relative momentum, P the total four-

momentum of the two-particle system), we can obtain

the given values of the relative momentum p by a
Lorentz transformation acting on p but not on P.

"M. Jacob and G. C. %'ick, Ann. Phys. (N. V.) 7, 404 (1959).

(Po~j oj "223"
~
j9,)= 8,'., 8„"1,

we obtain the desired result

(Poogog223~ psiX1—ps2l12) =p D, ;. , ),
'~ 1'3&(L—'(p))

X (j'X ~
sinai, s2—X2) .


