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I
G.(x,y) I «Z„(x,y) then the limit f(x) =lim „f (x) satisfies

+e'IXI R (x,s)R (s,y)ds+, (A11) f(*)=g(x)+l~ K-(*,y)f(y)dy, (A14)

and therefore G is also relatively uniformly convergent
to zero.

In the limit n —+ ~ the second and fourth terms of
(A9) vanish by (A2) and (A3), and we have

f(x) =g(x)+l~ K (x,y) f(y)dy . (A12)

If we define a sequence of functions {f„(x))which
satisfy

f„(x)=g(x)+h K„(x,y)f„(y)dy, (A13)

which is identical to (A12).
We have therefore proven the following theorem:

If {K ) is a relatively uniformly convergent sequence
of separable approximations to K, f= g+XKf and f„
=g+K„f„, then f=lim„„f„up to the possible addi-
tion of a solution of the homogeneous equation. "

When ) is not a characteristic value of E, the solu-
tion of (A9) may be written explicitly in terms of g,
G, and K„(Ref. 14, p. 45). One can tlien determine
the rate of convergence of {f„) to f once the rate of
convergence of {G„)is known.
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A recent model of the odd-parity baryon resonances is extended to include even-parity meson resonances.
The resonances are assumed coupled to S-wave and D-wave MM states (where M denotes a pseudoscalar
or vector meson) with interaction constants such that the resonance pole contributions to the collinear
MM ~ MM scattering amplitudes satisfy SU(6)~ symmetry. The relative coupling of the 3S-fold and
1-fold M representations is taken in accordance with a bootstrap model. The set of even-parity resonances
predicted in this model are octets of j~=0+, 1+, 2+, and 1, and 0+, 2+, and 1 singlets, where C is the
particle-antiparticle conjugation quantum number of the I,= F=O particles. The partial widths for MM
decays and the principal terms in the mass splitting are computed in the model. The agreement with the
present experimental data is good.

I. INTRODUCTION
' 'N a recent paper (referred to here as R1), an SU(6) s-
t - symmetric bootstrap model of MB and MM states
was developed. ' The B and M considered were the 56-
fold baryon supermultiplet, and 35-fold supermultiplet
of odd-parity mesons. The SU(6) s symmetry was ap-
plied to the forward and backward one-particle ex-
change amplitudes Tf and Tb. The linear combinations
Ty&T~ represent potentials in states of even and odd
orbital angular momentum, respectively. It was found
in R1 that the M and B can be bootstrapped success-
fully only if baryons of odd parity and mesons of even
parity exist. The simplest exact solution is one in which
these "o6-parity" baryons and mesons correspond to the
SU(6) iv representations 70 and 35 $1, respectively.

Two basic steps are necessary to determine the physi-

* Supported in part by the National Science Foundation.
f Present address: Purdue University, Lafayette, Indiana.' R. H. Capps, Phys. Rev. 161. 1538 (1967).Herein referred to

as R1.

cal consequences of the model. The first is that of R1,
the formulation and solution of the self-consistency
equations in terms of SU(6) s states. The second is the
interpretation of the SU(6) w states in terms of spin and
other physical quantum numbers. In a recent work, it
was shown that the odd-l MM and MB composites may
be associated with the basic M and B particles, and that
the even-l MB states correspond physically to the
representation (70,3) of SU(6) 80(3).' The pur-
pose of this paper is to make a similar analysis of the
even-parity meson states of the model, and to compare
the predicted properties of these mesons with experiment.

Attention was limited to M35M35 and M35836 states
in R1, where the subscript is the SU(6) s multiplicity.
(This did not imply the assumption that these are the
only important states coupled to the composites, be-
cause the bootstrap condition of R1 may be applied
separately to processes involving different external par-

2 R. H. Capps, Phys. Rev. 158. 1433 (1967).Herein referred to
as R2.



1900 RI CHARD H. CAPPS 165

ticles). In order that we may discuss thoroughly the
MM branching ratios of the meson resonances, we must
consider M1M35 and M1M1 states as well as MS~M35
states. Predictions of co decay modes would be unreliable
without this extension, since the zero helicity state of
the vector singlet is the M1 multiplet, while the other
two helicity states are in the M35 multiplet. (A similar
problem does not arise in the baryon resonance analysis,
since M1856 states are not coupled to the resonance
multiplet 70.)

In Sec. II of this paper, the model of R1 is extended
to include the M1M1 and M1M35 states. The classifi-
cation in this section is in terms of the group SU(6) s.
The interpretation of the predicted resonances in terms
of physical spin is given in Sec. III, and compared with
experiment in Sec. IV.

IL BOOTSTRAP CONDITIONS FOR M1M1
AND MIM35 STATES

We consider the general group SU(jj) s, where ji)2,
and denote the odd-parity meson multiplet by M, M1,
where r and 1 refer to the regular and identity repre-
sentations of the group. ' The M are taken to be de-
generate. In R1 a bootstrap model was developed, in
which the hadrons are composites of superpositions of
two-hadron states, held together by one-hadron ex-
change forces. A self-consistency equation was derived
and applied to the one-meson-exchange potentials in
M„M„states of both parities. A solution was found in-
volving the composites M„N„and N1, where N; is an
even-parity state corresponding to the SU(6) jr repre-
sentation i The p. hysical significance of these SU(6) s
states is not discussed until Sec. III. Here, we extend
the arguments to M1Mr and M,M, states.

The possible Vukawa interactions that involve at
least two M mesons are

MrMrMry +rMrMrq N1MrMrq NrM1Mrp N1M1M1

The coupling constant associated with the 6rst of these
interactions is denoted by Fr, and the constant as-
sociated with the X,MsM~ interaction is denoted by
G,p~. These are total constants, i.e., the squares
are sums over MM states. For example, G, ,«'=
g,kG(Ã, MjMj, )', where the sum includes every M„M„
state once and only once. The constants F„Gr,,r, and
G1r«are equal to F~, Fz, and Fz of R1.

The M1 are not coupled to MM states, and so are
not bootstrapped in this paper. The M1 are coupled to
ME states. However, it was pointed out in R1 that
states of different external particles may be considered
separately, so that the neglect of MX states in this
paper is not an approximation, but means only that all
possible self-consistency conditions are not utilized.

' The SU{n)~ group is defined and discussed by H. J. Lipkin
and S. Meshkov, Phys. Rev. 143, 1269 {1966).

Consideration of MrM, states in R1 yields the results

2(e' —1) 2(ji'—1)
G„„„'=If, ' F 2

n2 —4

where ~, is an undetermined constant that measures the
effective ratio of N and M exchange potentials in the
even-parity MM states. We must extend the bootstrap
argument to the following four processes:

Singlet processes: (A) MiMi-+MiMi

(B) MiMi ~M,M,
(2)

2G1,112=2G1,11')

2Gi, iiGi, „——(I'—1)'"G, i '

2Gr, ir =Gr, ir +2(S 1) G1,11G1,rr r

2Gr, rlGr, rr =2Gr, rlGr, rr.

(4a)

(4b)

(4c)

The first and last of these equations are identities, and
the second and third are equivalent.

Self-consistency also requires that the potentials in
odd-parity states vanish. There are no odd-parity M1M1
states, so this condition applies only to processes C and
D. In process D, the odd-parity M,M, states of the
representation r are of the antisymmetric (f-type) cou-
pling, while the N, exchange couples to M,M, states
with symmetric (d-type) coupling. It is easy to show
that crossing does not connect f and d-type Mi-M, —+

MrM„processes, so the odd-parity potential vanishes
for process D. The N1 and N, exchange contributions
to the odd-parity potential for process C separately do
D.ot vanish; however, the Nr potential is associated wj.tb.

Representation r processes: (C) MiMr ~MiM,

(D) MiM, -+ jV,Mr r

Only the exchange of even-parity mesons (Ei and E„)
contribute to the potentials for these processes, but the
potentials may be present in states of both parities.
We consider the even-parity states first. The self-con-
sistency equation for these states is Eqs. (17) of R1,
with the constants related by Eq. (20). In the absence
of M exchange potentials, this condition for the process
M~i, -+ MJfd may be written in the simple form

2G , biGac id' CijGjacGjbd, +g, a CijcGicadGtc, g„, (3)

where the C are crossing matrix elements.
This condition is easily transformed into the SU(6) s

representation. The N1 exchange contributes to pro-
cesses A and C of Eq. (2), while E„e xcha nge contributes
to processes 3, C, and D. Since all processes involve
the singlet, the crossing matrix elements may be de-
termined easily, although one must be careful to take
into account the symmetry of the MM states properly.
The results of applying the condition to these processes
are, respectively,
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an "exchange-type" interaction and thus is opposite in

sign from the corresponding even-parity potential. The
condition that the total odd-parity potential vanish is

2(88'—1) '"G1,11G1,«—G, 1 '=0.

This condition is equivalent to Eq. (4b).
Thus, all the bootstrap conditions are satisded if

Eq. (4b) is satisfied. The G are determined only within
a multiplicative constant E", where v is the number
of 3f~ particles associated with the vertex. Consider-
ation of the ME states might allow the determination
of the constant K. We will follow an alternative pro-
cedure, choosing the value of K that leads to a "total
d-type" interaction, which possesses a very simple sym-
metry. One may determine the coupling constants cor-
responding to such an interaction by associating an n
by n matrix with each of the E and M multiplets. The
MM state associated with the ik element of the S
matrix is then given by the symmetrized product
S;8 pf (M;,Mj8+Mj8M;;). This construction is a well

known method of computing the G, ,„Clebsch-Gordan
coe%cients. 4 We assume that the value of E is given
by this prescription for three reasons: (i) The prescrip-
tion is simple; (ii) it is consistent with the bootstrap
requirements of Kqs. (1) and (4b); (iii) it is supported by
the experimental evidence on 8 meson decay, as dis-
cussed in Sec. IV A.

The ratios of the 6' that follow from this prescription
are

G, „'.G, 1,'.Gl „'.Gl 11'——(-'l8' —2):2:(88'—1):1. (5)

III. PREDICTED PROPERTIES OF THE
MESON RESONANCES

We now turn our attention to the physical interpre-
tation of the E resonances. The formalism used is the
logical extension of that of R2; we will discuss it here
brieQy. The even-parity potential T in j/13' states is
the average of the forward and backward, one-particle-
exchange amplitudes. The potential is determined from
the arguments of Sec. II; in the SU(6) lr representation
it may be written

2 PjmP' f'm' =G35,PG3,5,P'~f, 85')f', 35~mm'+ Gl, PG1,P'~f, 1~f'ls

where f and f' denote irreducible representations of
SU(6) s, m and m' are states within these representa-
tions, and p and p' indicate whether the state is of the
type M»M35 M]M35 ol 3fjMQ The G are the constants
of Sec. II. We may combine the f and P labels by de-
fining MM states {35a},{35b},{1a},and {1b}in the

The states {35b} and {1b}are orthogonal to the (5

states. The coeKcients have been chosen so that only
the (8 states resonate. With these labels, Eq. (6) may
be rewritten in the form

Tfm, Pm& =G85 t)f35ab ,j'85a'f), mm'+Gl ()f,la()f', las

G85 G35, (85,85) +G85, (1,85)

Gl —Gl, (35,85) +Gl, ll ~

(g)

(9a)

(9b)

The potentials are attractive. Since we are not interested
in the over-all magnitude of T, we set

635'= 1, Gg'= 2.

The relation between these two values follows from
Kqs. (5), (9a), and (9b).

The wave functions of the eigenstates of the potentials
must be expressed in terms of physical spin and internal
quantum numbers. We denote by (MM) P an MM
state of internal quantum numbers a, total intrinsic
physical spin s, and s component of spin m. One com-

putes the potentials T in the ns3f representation, using
SU(6) Clebsch-Gordan coefllcients and the known cor-
respondence of the f' and If states with SU(6))r states."
The amplitudes X corresponding to the exchange of
spin 6 are determined from the T by the formula of
R2, i.e.,

/2d, +1) '(3
X .. ..,q=

~ ~ P C(s'As; m0m)T;. . . (11)
(2s+1

where the C are angular-momentum Clebsch-Gordan co-
eiBcients. In the MB case discussed in R2, the SU(6) )r
symmetry restricts 6 to the values 0 and 2, but in the
MM case 6=4 is also possible. (This can be shown to fol-
low from the fact that in the quark construction, there
are two antiquarks in MM states and only one in 3fB
states. ) However, the 3 =4 terms do vanish, as is shown
later. It is assumed that the lowest partial waves domi-
nate, the S-S and S-D amplitudes being the lowest par-
tial waves that correspond to 6=0 and 2, respectively.
The S-S potential connecting the states as and n's is
denoted by U, , ~ and the S-D potential connecting
the S statens with the D staten's'is denoted by U .. ., .
These are given in terms of the I by the equations

Uas, a' = (2s+1) Xas, a' s, os

U .. ., =(2s+1) '"X,.

(12a)

(12b)

following fashion:

{35a}= (8/9)'"{35 (35 35)}+(1/9)'"{35(1 35)} (7a)

{1a}= (35/36) '"{1,(35,35)}
+ (1/36)'"{1,(1,1)}. (7b)

4 See, for example, J. J. Sakurai, Theoretical Physics, Lectures
presented at a Seminar, Trieste, (International Atomic Energy
Agency, Vienna, 1963), pp. 227-249.

' Conveinent tables of SU(6) Clebsch-Gordan coefFicients are
given by C. L. Cook and G. Murtaza, Nuovo Cimento 39, 531
(&965).
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We discuss the results for the SU(3) octet states first.
These are associated with the SU(3)(@SU(2)w repre-
sentations (8,3~) and (8,1w) of the SU(6) w multiplet
35. Ke denote an octet state of TV spin m and t/t/', =m
by X(w), omitting the SU(3) indices. One may use
SU(6) Clebsch-Gordan coeflicients and the known W-
spin properties of the M to derive the relations'

X(1)'= (2)"V2'+(2)"Vi',
X(o)'= (2)"V"+(2)"Vo',

(13a)

(13b)

X(1)'=4(—)i', (15)

0(—)1=(5/18) '"(&V)'+(2)'"(V&2)+(2)'"(Vl&)
+(2)'"(VV)1 (16)

where the (—) indicates that C= —1 for the I.= V=0
states.

The coeKcients of Eqs. (13a) and (13b) are such that
the 6=4 term connecting the state f2 to itself vanishes,
as may be seen from Eq. (11) and a table of angular-
rnomentum Clebsch-Gordan coefficients. Ke follow the
procedure of R2, first diagonalizing the S-S potential.
The eignestate of internal symmetry a and spin j is
denoted by iP, and the eigenvalue by U js. The D
state connected by the S Dpotential to P; is -denoted
by q;~, and is computed from the formula

gaj P F' ajPa22Pjs/Uaj,
ps

(17)

where pp;, is the D state of total angular momentum j
formed by coupling the internal symmetry and spin
state pp, with orbital angular momentum 2. The U„1D
is the S-D matrix element in the representation of the
P j and 22 jD, and is given by U jD= (Pp, U;,p, ')'".

The octet amplitudes all result from the G3 terms
of T in Eq. (8). Thus, T is a projection operator for
these states. It follows from the theorems of Sec. IV A
of R2 that the U have the three following simple prop-
erties: (i) All S-S eigenvalues U js are of the same sign
(positive, corresponding to attraction); (ii) the q, cor-
responding to orthogonal S eigenstates f, are orthog-

6= (5/9) "'(VV)"+(4/9) '"(VVi) 2,

A=(V&) j,
6= (5/12) '"(I'-P)"+(2) '"(I'&1)+(5/36) '"(VV)2'

+ (1/9) '"(VV1)2.

The symbols E, I'&, V, and V& denote pseudoscalar octet
and singlet and vector octet and singlet, the subscripts
of the P and (VV) are the total intrinsic spin. values,
and d and f denote d- and f-type octet-octet-octet inter-
actions of SU(3).The I,= V=0 members of these multi-
plets are all of particle-antiparticle conjugation parity
C equal to +1.The corresponding equations for X(1)'
are

onal; and (iii) the U, s and U, D are given in terms of
one parameter X,. by the equations

U-,'= l(1+~-,), I U-, I
'= (2/9)

X(1+-',X.j—-',j.,2). (18)

The four octet eigenstates of the S-S potential are
the f; of Eqs. (14) and (16). One may show by using
Eqs. (11), (12a), (13a), (13b), and (15) that all four X

parameters are zero. The D-state vectors corresponding
to the/; are

(j2 = (1/5)'"lp2 —(9/20)'"p21—(7/20)'"y22,

+ D —
( ) 1 j21pll+( )1/22212

go = Po~&
D

v(—)i = ~(—)»,

(19)

where y;, is the D state of total angular momentum i
formed from the spin and internal symmetry state Pj.

The SU(3) singlet potentials correspond to the SU(3)
SU(2) w multiplet (1,3w) of the SU(6)s represen-
tation 35 and the (1,1 s ) multiplet of the representation
1. The equations corresponding to Eqs. (13a) through
(16) are

X(1)'=42',

X(0)'= (2)"V2'+(2)"9o',
X(1)'=0(—)1'

(20a)

(20b)

(20c)

U, s U2s 2U( ),s 2U(8) s (22)

where U(8) s is the common value for the octet states.
The equations for y~ differ from the octet equations
LEq. (19)]only in that there is no plD(for C=+1) and
no q~~. The magnitudes of the S-D potentials associated
with the y~o, p~2, and &p02 terms are each twice the cor-
responding octet magnitudes.

The predicted set of even-parity mesons is almost the
same as that predicted in the quark model. Nonets of

6= (8/9)'"(VV)+(1/9) '"(ViVl)

A= (2/3) '"(I'&)+(1/12) '"(I'1&i)+(2/9) '"(VV)

+ (1/36) 'j2(V1Vi), (21)

li (—)1= (8/9) '"(I'V)+ (1/9)'"(&2Vl)

The SU(3) indices are suppressed. There are two main
features of the singlet case that differ from the corre-
sponding octet features. First, there is no j=1 state of
positive C parity, as is seen. from Eq. (20a). Second,
the potential T corresponding to X(0)' depends on the
constant Gl' of Eq. (8), and is thus twice the other
SU(6) w potentials. These features combine so that the
6=4 terms vanish here also.

Because of the SU(6) w singlet term, the SU(3) singlet
part of T is not a projection operator; however, the
potential U is fairly simple. The eigenvalues of the
S-S potentials corresponding to the singlet states $2,
f2, and f(—)1 are given by



EVEN —PARITY M ESON RESONANCES 1903

j~=0+, 2+, and 1 are predicted. However, for j~=1+,
only an octet is predicted. (In the quark model, a
jc=1+ singlet exists, but cannot decay into MM states. )

IV. COMPARISON WITH EXPERIMENT

A. B-Meson Decay

We make the usual assumptions that the 1208-MeV
8 meson is of even parity, with j~ quantum numbers

equal to 1 . This particle is identi6ed with the isovector
member of the 1 octet predicted here. The predicted
n. p/nm branching ratio E depends not only on the co—q

mixing angle, but also on the coupling constant ratio
G, ,q,/G, , „„de6ned in Sec. II. This follows from the fact
that the 1 states are associated with an SU(6)g po-
tential corresponding to W, =O PEqs. (15) and (20c)j,
together with the fact that the l/t/', =0 state of the V
singlet is the SU(6) w singlet.

The predicted branching ratio R may be written in
the form

R= p tan'(8 —P), P= tan '(G. ..„/4G, ,~„), (23)

where p is the phase-space ratio and 0 is the or —y
mixing angle. ' If the phase-space factors are propor-
tional to the decay momenta, as is expected if the S-
wave decay modes dominate, then p=0.37. Experi-
mentally, the branching ratio is quite small, i.e., R
&0.015.' Thus, we assume that (8—P) =0. It is usually
assumed that 8= tan ' (2 '"), since this value is ob-
tained from the quark model, and is nearly consistent
with the V mass spectrum and the assumption that the
Gell-Mann —Okubo mass formula is valid. ' If we accept
this value of 8, then Eq. (23) and the condition (8—P)
=0 imply G, ,z,/G, ,«——(s)'". This is the ratio of Eq.
(5). Thus, 8 decay provides supporting evidence for
our choice of the arbitrary constant of Sec. II.

The small ~&p/n. s& decay ratio also provides evidence
in support of the present model over that of a previous
treatment, in which only odd-parity meson (M) ex-

change forces were included. ' It can be shown that in
the M-exchange model, a predicted zero value of R oc-
curs only if the central force may be neglected in com-
parison with the tensor force. In the present model, the
result is independent of the relative importance of the
central (6=0) and tensor (6=2) terms.

B. Branching Ratios

It has been pointed out previously that experimental
candidates exist for most of the even-parity meson
states of the j =2+, 1+, 0+, and 1—octets and singlets. "

One may derive Eq. (23) by extending the technique used in
Sec. III 8 of R. H. Capps, Phys. Rev. 144, 1182 (1966).

~K. I. Hess, Lawrence Radiation Laboratory Report No.
UCRL-16832 (unpublished); see also Ref. 11.

8 F. Giirsey, T. D. Lee, and M. Nauenberg, Phys. Rev. 135,
3467 (1964).

R. H. Capps, Phys. Rev. Letters, 16, 1066 (1966).' See for example, R, H. Dalitz, in Proceedings of the Thirteenth
Annual International Conference on High-Energy Physics, Berkeley,

These candidates are listed below":

2+: A2(1306), Ev(1411), f(1254), f'(1514),
1+: Ag(1079), K.(1215), D(1285),

0": ~v(1003), K v(1080)l g v(1050),

1:B(1208), Eg(1320), H(975).

(24)

For each multiplet, the first particle is the isovector
meson, the second is the strangeness (&1) meson, and

the others are isoscalar mesons. These assignments are

tentative, since spin-parity measurements have not been

made for many of these particles.
The relative partial widths for S-wave MM decays,

and the relative widths for D-wave MM decays, may
be predicted from the results of Sec.III, provided phase-

space factors are assumed and the eGects of symmetry
breaking on the coupling constants are neglected. The
phase-space factors are taken to be k and k'/M' for the
S and D decays, where k is the decay momentum and

M is the mass of the decaying particle. For those decays
that involve isoscalar particles (either in the resonance
or M multiplets) the singlet-octet mixing angles are also

needed. These angles canot be predicted theoretically,
since they depend sensitively on the masses, and no
accurate theory of the mass-splitting exists. However,
for the I' and V multiplets and the j~=2+ resonance

multiplet, all the nonet members have been identified,

so that the assumption of the Gell-Mann —Okubo for-
mula for the squares of the masses allows one to calcu-
late the magnitude of the angle. The mixing angle I is
defined by the relations

Z,= (cos8)Z~—(sm8)Z8)

Zg= (sln8)Zy+(cos8)Zs,
(25)

where the Z„Z~ pair is either the (~,y), (X,g), or (ff)
pair. The calculation yields

~
8(V)

~

=40' for the a&
—p

mixing angle; since this is close to the quark-model
prediction, we choose the magnitude and sign as given

by the quark model ' i.e., 8(V) = tan ' (2 '").The cal-
culation yields, for the other two angles,

~
8(P)

~
=10.5'

and ~8(2+)
~

=32.5 .Both signs of 8(P) are considered,
while the sign of 8(2+) is chosen so as to lead to the
smaller of the two possible f' —& em partial widths.

In Table I the predicted (MM) partial widths are
compared with experiment for all particles of the E
supermultiplet (except the gv) for which approximate
partial widths are listed in Ref. 11. The g~ is not in-

cluded, because there are insuflicient data for an esti-
mate of the mixing angle for the j =0+ multiplet. The
S and D decay modes are distinguished with subscripts,

California, &66 (University of California Press, Berkeley; Calif. ,
1967), p. 219. This paper contains a review of the quark model.
The list of Eq. (24) above is an updated version of Dalitz s list.

"Except where otherwise noted, the symbols and experimental
data concerning the resonances are taken from the compilation
of A. H. Rosenfeld, A. Barbaro-Galtieri, W. J. Podolsky, L. R.
Price, P. Soding, C. G. Wohl, M. Roos, and W. J. Willis, Rev.
Mod. Phys. 39, 1 (1967).
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TAar. R l. Calculated and experimental partial widths {in MeV} of the even-parity meson resonances.
The experimental numbers are taken from Ref. 10.

Particle

j~=2+ particles

a&(1306)

Ev{1411)

f,(1254)

fp'{1514)

j~=1 particles

a(1208)

E&{1320)

j&=1+ particle

a, (1079)

j~=0+ particle

v(1003)

Mode

plr
EE
sir
Xx
E*~
Ep
E7r
Eg

EE

{EE*+E*g)

EZ
nn

(~~)s
(sum~)
(E*~)s
(E*w)~
(Ep)s
(Ep)~
(Eo))s
(Ecu) ~

(p~)s
(p~) ~

(E+Eo)s
(~g)s

S- or D-State
probability

3/10
1/20

0.018(0.051)
0.082(0.041)

9/80
9/80
3/40

0.019(0.002)
0.15
0.058

0.004{0.013)
0.32
0.0004
0.092

0.059(0.027)

1/6
1/6
1/8
1/8
1/8
1/8
1/24
1/24

2/3
1/6

1/4
0.09(0.26)

Calculated
partial width

39
7.1

7.5(22)
1.4(0.7)

95
2,8

48(input)
3.4(0.3)

155
5.5

&1
4
0.5
32

13(6)

44
10
33
5.4
19
0.4
5

&0.1

127{input)
3

15
23(66)

Experimental
partial width

75
~3

&2
33
8
48

&5
110~3

Unseen
&34
&12
)52
Unseen

&119(s+n)

&80(E*
+Ep, S+D)

&8(s+a)

130(S+D)

&70

except in the case of the 2+ particles, where no S-wave
decays are allowed. The Kv(1411)-+Kn and Aq-+ p7r

are taken as the input D and S modes. The 6rst pre-
dicted width listed for modes involving the
or X corresponds to 8(P) = 10.5, while the numbers in
partentheses correspond to (—10.5'). For all cases ex-

cept the f and f' decays, the theoretical probability is
the square of the appropriate coeKcient in the nor-
malized S- or D-state vector; the product of this prob-
ability and the phase-space factor is proportional to the
predicted partial width. The f and f' probabilities differ
only in that account has been taken of the fact that the
SU(3) singlet (PP) amplitudes are larger by VX than
the corresponding octet amplitudes. (This follows from
the results of Sec. III that certain of the singlet po-
tentials, which are quadratic in the coupling constants,
are twice the corresponding octet potentials. )

There are no accurate data concerning S-wave decays,
so the S-wave input is tentative. However, the predic-
tion that the A~ —+ px mode is the largest of all S-wave
modes is in accord with the present limited data.

The successful prediction of a small f' —+ 7m partial
width is striking, because the phase-space factor for this
mode is the largest of all the D-state factors, and is
much larger than most. A successful prediction of this
effect has been made previously, on the basis of the A&

and Kr(1411) data, SU(3) symmetry, and the assump-
tion 0(2+) =30'."

Recently, Elitzur et at. have published a model in
which even-parity mesons corresponding to the SU(3)
representations 27, 8, and I resonate and are mixed. "
The f—& n~ and K r(1411)—+ sK partial widths are both
6t in this model as well as in the present model, while
the A2 —& EK width is predicted to be 7 MeV in the
present paper and zero in Ref. 13. The experimental
data on the A2 decay do not favor either model over
the other. Of course, if even-parity mesons correspond-
ing to the SU(3) representation 2'7 are discovered in
this mass region, the present model would have to be
discarded.

The over-all agreement between the predictions and
data in Table I is satisfactory. However, most of the
data concerns the 2+ mesons, and for these the only pre-
dictions that do not result entirely from SU(3) sym-
metry and the assumed mixing angles are the over-all
PP/PV ratio and the details of the f and f' partial
widths. More accurate data concerning the decays of the
1+, 0+, and 1 multiplets are needed. More data con-

"S.L. Glashow and R, H. Socolow, Phys. Rev. Letters 15,
329 {1965).

"M. Elitzur, H. R. Rubinstein, H. Stern, and H. J. Lipkin,
Phys. Rev. Letters 17, 420 {1966).
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cerning all p decay modes are also needed, since there
is little direct evidence concerning the actual magnitude
of the g—X mixing angle.

C. Mass Spectrum

In R2 is was shown that the diRerences in the average
masses of the SU(3)SSU(2) multiplets of the (70,3)
baryon resonance supermultiplet are given approxi-
mately by a three-parameter formula, the three param-
eters being X )see Eq. (18)g and the root mean squares
of the meson and baryon masses in the composite S-
state wave functions. We now carry out a similar anal-
ysis for the E supermultiplet.

In the meson case, there is no mass-splitting of the
X type. It is pointed out in Sec. III that X is zero for
the four octets, and the j~=1 singlet. The eigenvalues
U of the S-state potentials of the 0+ and, 2+ singlets
are greater than the octet eignevalues, but the experi-
mentally observed approximate degeneracy of the 2+
singlet and octet indicates that the S masses do not
depend appreciably on this potential diRerence. This
fact, like the approximate p—co degeneracy, is some-
what surprising in the SU(6) w-symmetry bootstrap
model.

Because of the approximate singlet-octet degeneracy
and the lack of data on the singlets, we consider only
the average square masses of the four octets, and at-
tempt to explain the diRerences in these masses in
terms of the root-mean-square masses of the mesons
in the S-state wave functions. Ke list below the S-
state, P-meson probability 6' corresponding to each of
the four octets.

Since the average E mass is small, Eq. (26) implies
that the 0+ octet should be the lightest, and that the
0+, 1+, 1, 2+ spacing should be nearly uniform. It
is seen from Eq. (24) that this agrees very well with
experiment. A simple possible explanation of the equal-
spacing rule exists in the quark model as well, i.e., the
rule could result from a spin-orbit term in the Hamilto-
nian. ' In the present model, one would expect the aver-
age 1+ mass to be slightly lower than that given by
the above rule, since the S-state wave function for this
particle contains no P singlet terms, and the P singlet

is heavier than the P octet. The data are not suKciently
accurate to determine whether or not such an eGect
exists.

This mechanism, i.e., the eRect of the lack of de-
generacy of the M mesons in the S-state wave functions,
should be responsibe for the splitting within the E
octets also. The observed splitting within the P and V
octets and all the X octets is such that the isovector
member is lightest. It has been shown previously that
with this mechanism, the f-type interaction would lead
to a light isovector member of the composite octet,
while the d-type octet-octet-octet interaction would lead
to a heavy isovector composite. '4 However, it can be
shown that if the d-type interaction is of the "nonet
type,

" i.e., the singlet terms are as mixed. as in the d-

type terms of Eqs. (14) and (16), and if the co—p and

p —X mixing amplitudes are equal to the quark-model
values, the d-type interaction also leads to light iso-
vector composites. Furthermore, the strength of the
effect for such an interaction is the same as for an f-type
interaction. Thus the sign of the E*-isovector meson
mass-splitting terms of Eq. (24) Gts the model. One
would. expect the octet mass-splitting (in terms of mass
squared) to be smallest in the 0+ multiplet, because the
probability of the (PP)" states is high in this case, and
the g—X mixing amplitude probably is not close to the
quark-model value. If the identilications of the s.v(1003)
and Ev(1080) in Eq. (24) are correct, then this effect
exists.

In conclusion, the predictions concerning the even-
parity mesons that result from the SU(6) w-symmetric
bootstrap model are similar to the baryon-resonance pre-
dictions of R2 in two respects. First, the predictions are
similar in many ways to those of the quark model, and
second, the agreement with experiment is good. How-
ever, there are very few accurate data on the meson-
resonance decay partial widths at present; these data
are needed to test the model. Many of the predictions
are similar to those of Ref. 9, in which only odd-parity
meson exchanges were considered. However, the results
of Ref. 9 depend sensitively on the assumption that
the tensor (6=2) potentials dominate the central
(6=0) potentials, while the results of this paper do not
depend on such an assumption.

"R.H. Capps, Phys. Rev. 134, 8460 (1964).


