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Pole Approximations in the N/D Equations~

MITCHEL J. SWEIG

DePortssterst of Physics, The Ohio State University, Cotgsssbsss, Ohio

(Received 14 September 1967)

We propose the use of Pads approximants (which are essentially a prescription for constructing pole
approximations) to make the kernels of the N/D integral equations separable. H certain conditions on the
function being approximated are satisfied, it can be shown that the sequence of approximate solutions which
one obtains will converge to the exact solution. The method is applied to the netural pseudoscalar-pseudo-
scalar-scalar bootstrap, and the known result is easily reproduced.

I. INTRODUCTION

S INCE their introduction by Chew and Mandelstam'
the X/D equations have received an enormous

amount of attention as a method for constructing
unitary scattering amplitudes and for de6ning self-
consistent (bootstrapped) systems of particles. ' It has
recently been proven' that the X/D representation
exists even for the coupled-channel problem, and we

may now say that the principle of the method is on
6rm ground. In practice, however, it has not been
possible to obtain exact solutions in closed form, and
a variety of approximation techniques have been
proposed. 4 '

The coupled-integral equations for the E and D
functions (matrices in the multichannel case) which
one obtains from unitarity and analyticity may be
solved by brute force via matrix inversion, but the
amount of computation time involved for even the
simplest cases forces one to seek alternatives. Unfortu-
nately, all of the approximation schemes that have
been proposed suGer from one or more of the following
defects: (1) the solutions depend on an arbitrary sub-
traction point; (2) a symmetric driving force does not
produce a symmetric solution, thereby violating time
reversal invariance; (3) ambiguities are introduced
through the necessity of cutting o6 various integrals
that arise; (4) it is not known whether the sequence
of approximate solutions converges (in the mathemati-
cal sense) to the exact solution. It is to this last point
that we address our attention in this paper, in the
context of the methods of Martin' and Pagels, ' which
are in a sense compIementary.

We propose to replace the kernels of certain integral
equations which we shall encounter by Pade approxi-

*Research supported by the U. S. Atomic Energy Commission.
~ G. F. Chew and S. Mandelstam, Phys. Rev. ljt9, 467 (1960).
It is, of course, impossible to cite even a small fraction of the

work that has been done on these topics. Practically any current
journal issue can serve, as a starting point for a search of the
literature.' R. L. Warnock, Nuovo Cimento 50, 894 (1967);J. B. Hartle
"and J. R. Taylor, J. Math. Phys. 8, 651 (1967).

4 M. Baker, Ann. Phys. (N. Y.) 4, 271 (1958); T. Fulton, in
Elementary Particle Physics and Field Theory, 1962 Brandeis
Lectures (W. A. Benjamin, Inc. , New York, 1963); G. L. Shaw,
Phys. Rev. Letters 12, 345 (1964); J. S. Ball, Phys. Rev. 137,
.B1573 (1965),

~ A. W. Martin, Phys. Rev. 135, B967 (1964).
6 H. Pagels, Phys. Rev. 140, B1599 (1965).

mants. ~ Various useful theorems on the convergence
of Pade approximants are known, and in the Appendix
we present a theorem on the convergence of solutions
of approximate-integral equations to the exact solution
of the equation being approximated. Since the Pade
approximation is essentially a prescription for the con-
struction of a pole approximation to the function in
question, it follows that the sequence of approximate
solutions obtained by using pole approximations in
the S and D equations converges to the exact solution,
provided that the pole parameters are chosen to be
those given by the Pade approximants.

In Sec. II we present the X/D equations and discuss
Martin's and Pagels's approximations to them. Section
III is devoted to a discussion of Pade approximants and
series of Stieltjes. Although this material might well
have been relegated to an appendix, the remainder of
the paper is not very readable without some familiarity
with these concepts. Our presentation is necessarily
quite sketchy; we have restricted ourselves to de6ning
the terminology and quoting a selection of relevant
theorems. The interested reader should consult Wall'
and the excellent review article by Bakerv for more
details. In Sec. IV we present the parameters of the
Pade approximants for some simple examples, and we
give some numerical results for the neutral pseudo-
scalar-pseudoscalar-scalar bootstrap. Finally, Sec. V
contains a discussion and summary of our results.

II. N/D EQUATIONS: MARTIN'S AND
PAGELS'S METHOD

We assume that each partial-wave amplitude 2'(s)
is analytic in the complex s plane except fox the uni-
tarity cuts E. and the dynamical cuts L, satisfies
elastic unitarity DmT '(s+se)= —p(s) on Rj, and
behaves suKciently well at ~s ~oo to enable us to
write an unsubtracted dispersion relation. We will
discuss the single-channel problem, but all of our
equations apply to the multichannel case if appropriate
matrix notation is used. Furthermore, the modi6ca-
tions of the formalism needed to incorporate inelasticity
are straightforward.

7 H. S. Wall, Analytic Theory of Continued Fractions (D. Van
Nostrand, Inc. , Princeton, ¹ J., 1948). G. A. Baker, Jr., in
Advances in Theoretical Physics, edited by K. A. Brueckner (Aca-
demic Press Inc., New York, 1965).
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With these assumptions we have(except for poles)

1 p(s')
T(s) =B(s)+ —ds'

j
T(s') j',

g s —s

where
p(s') s—so

E'(s,s') = B(s') — B(s)
s —s- S —Sp

where
1 ImT(s')

B(s)=— ds'—
s —s

i.e., ImB(s) = ImT(s) on L.

and approximating 8 by a sum of poles. The kernel
then becomes separable, and the problem may be
solved by algebra.

Pagels, on the other hand, substitutes (5) into (4)
j or equivalently into (6)j to obtain

The function B(s), the contribution of the dynamical
singularities, is assumed to be regular on R, and p(s) is
a known kinematical factor. In practice B(s) is assumed
to be given by some simple mechanism such as single-
particle exchange. This is about the best we can do as
long as the problem of fully incorporating crossing
symmetry into the partial-wave formalism remains
unsolved.

We now write
T(s) =N(s)/D(s), (3)

s—sp p (s')N (s')
ds' , (4)

(s'—sp) (s'—s)

1 ImN(s') 1 ImB(s')D(s')
N (s) =— ds' =— ds', (5)

s.—s vr s —s

with the normalization D(sp)=1. Equation (4) is, of
course, equivalent to an unsubtracted dispersion rela-
tion for D(s)/(s sp):

D(s) 1 1 ds' ImD(s')

s—sp s—sp K g s —s s —sp

1 1 ds' p (s')N (s')
(6)

s—sp x' g s —s S —Sp

We prefer this form, since the inhomogeneous term is
now square integrable on E.

Martin's method consists of substituting (4) into
(5), which leads to

N(s) =B(s)+ K(s,s')N(s')ds', —

8 I,. Castillejo, R. H. Dalitz, and I'. J. Dyson, Phys. Rev, Il)1,
453 t',1956).

where E has cuts on I.only and D has cuts on E. only.
As jsj~~ the function N is assumed to vanish and
D to be not worse than constant. We should remark. at
this point that we have nothing new to say about the
problem of Castillejo-Dalitz-Dyson (CDD) poles' and
we assume that they are absent.

With the decomposition (3), Eq. (1) for T becomes
a set of coupled linear equations

s—sp ImD (s')
D(s) = 1+ ds'

or gg (s'—sp) (s'—s)

D(s) 1 1
+— E(s,s', sp) (s'—so)

s—sp s—sp 7l

D(s')
X ImB(s') ds', (9)

s —sp
where

s1 (s) s'F (s')
K(s,s', so) = +

(s s ) (s sp) (s s) (s' —sp)

so&(so)+, (10)
sp —s sp s

p (s")ds"

(&it)p(siI s)

and then approximates 1"(s) or H(s) by a sum of poles.
The kernel again becomes separable, and the problem
again reduces to algebra. In both methods the result
for T= N/D is independent of sp.

We propose to use Pade approximants for the func-
tion B in (8) and for the function Ii in (10). This will
amount to a pole approximation in which the positions
of the poles and their residues are Axed once the order
of the approximation is specified. If the conditions of
the theorem of the Appendix are satisfied, one can be
conMent that the sequence of approximate solutions
converges to the exact solution.

It turns out that the variable s (or even s—s„where
s& is the start of the right-hand cut) is not convenient
to use in the construction of the approximants, since
it does not lead to a relatively uniformly convergent
sequence of approximate kernels in (7) or (9), and our
theorem cannot be applied. For example, if we have
a uniformly convergent sequence of approximations to
the function B in Eq. (8), i.e., jB(s)—B„(s)j &o for
N)np, then the residual kernel Q„=E Ksatis esfi—
jQ„(s,s')

j (op(s')/(s' —sp), and the convergence of Q„
to 0 is not relatively uniform since p(s')/(s' —sp)
=P(s,s') is certainly not square integrable on s,(s,
s'& ~. The same diKculty arises in attempting to
solve (9) with a uniformly convergent sequence of
approximations to the function B. One must either
examine the rate of convergence of the approximants
to 8 and EI as a function of their arguments, or 6nd a
better variable to use in the construction of the ap-
proximants. The second alternative is much easier in
most cases.
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u"d&p(u).

For our purposes this means that we must be able
to write

f(s) =Z f-( s)"=—
"dy(u)

1+us
(12)

with g(u) having the properties mentioned above. '
THEoREM: If p f„(—s)" is a series of Stieltjes, then

the poles of the [X,N+j ], j&—1, Pade approximants
are on the negative real axis, and all the residues are
positive. The roots of the numerator interlace those of
the denominator, and the poles of successive approxi-
mants interlace.

TmoREM: The [1',lV] and [S, E 1) sequences-
of approximants to a series of Stieltjes are, respectively,
the best upper and lower bounds obtainable with a
given number of coefficients, and use of additional
coefficients improves the bounds.

In fact, if f(s) =g f„( s)" in a series o—f Stieltjes
then for z real and non-negative we have

and
[1',$7&f(s)&[X,E 1]—

(13)

(—1)'+'([X+I, )V+I+j]—[Ai, E+j]}&0,
(—1)'+J([X,1V+j]—[X—1, E+j+1]}&0, j&—1.

THEoREM: Any sequence of [1V, X+j] approxi-
mants to a series of Stieltjes Q f„(—s)" converges to
an analytic function in the cut (—~ &s&0) complex

9 The integral is to be taken in the sense of Stieltjes, but we
shall encounter only Riemann integrals with finite limits.

III. PADS APPROXIMANTS AND SERIES
OF STIELTJES

In this section we define some mathematical concepts
which are somewhat unfamiliar in the context of high-
energy physics, and will state without proof several
theorems given by Baker~ which are relevant for our
purposes. We generally follow Baker's notation.

Definition: The [E,M] Pade approxirnant to a
function f(s) is the ratio of two polynomials, the
numerator P (s) being of degree M and the denominator
Q(s) being of degree X, such that the first M+X+1
terms in the power series for f and t 1V,M] are identical.

This implies

f(s)Q(s) —1'(s)-s '""+
and the coefficients in the polynomials P and Q may
be determined uniquely by equating the coeKcients of
s~, k&M+X, on the left of this equation to zero,
using the normalization Q(0) = 1.

Definition: A power series P f (—s)" is a series of
Stieltjes if and only if there is a bounded, nondecreasing
function p(u) taking on. infinitely many values in
0&I& ~ such that

plane. If the series converges with radius of convergence
R, then any [S, 1lt'+j] sequence converges in the cut
plane (—~ &s& —R) to the analytic function defined
by the series.

Baker also gives several theorems on the convergence
of Pade approximants and on the construction of series
of Stieltjes which are quite interesting, although not
directly relevant to the present work.

We shall use the following (quite trivial) theorem to
construct series of Stieltjes for functions which are
analytic except for cuts: If f(s) is analytic in the cut
(—~ &s& I) pl—ane, Imf(s+ic)&0 on the cut, and
f(~)=0, then f is a series of Stieltjes. The proof is
straightforward; we write a dispersion relation for f:

1 ~ Im f(x+ic)
f(s) = dx

and change variables to y= —I/x to get

1 '~~ Imf—( y'+—ie) dy
f(s) =-

7l p 3' 1+yz

which satisfies the definition if Imf&0 and f(~)=0.
This theorem can be easily modified to apply to func-
tions with cuts on z&0 or with asymptotic behavior
which requires subtractions; all that is necessary is
that fbe real analytic and Imf (s+ie) &0.Furthermore,
if Imf oscillates a finite number of times, we can
multiply f by a polynomial chosen in such a way that
the imaginary part of the resulting function does not
oscillate, and then perform a suitable number of sub-
tractions. It is clear that the class of functions which
can be related to a series of Stieltjes in this simple
fashion is quite large.

IV. EXAMPLES

We shall first consider the well-known neutral
pseudoscalar-pseudoscal. ar-scalar bootstrap. The scalar
particle is self-consistent if its coupling to the pseudo-
scalars is g'=5.3 and its mass (in units of the pseudo-
scalar's mass) is Ii'=3.S.'" The 0 -0 S-wave scattering
amplitude To(s) = sinb exp(i8)/p, p= [(s—4)/s]"', is an
analytic function of s and satisfies a dispersion relation.

The contribution of the single 0+ exchange term to
the 0 -0- S wave is

2g2 s—4 2g' ' dm
Bo(s)= ln 1+ = (14)

s—4 p' u', 1+(s—4)w/p'

which is a series of Stieltjes in s= (s—4)/Ii'. The Pade
approximants to Bp necessarily converge, but as we
have pointed out above this condition is not strong
enough to allow the theorem of the Appendix to be
applied. However, the function s ' ln(1+z) belongs to

' As quoted by Ball (Ref. 4) and by Pagels (Ref. 6).
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To this end we try the linear fractional transformation

(15)

2g 2
B.(~)= A(y),

p' 1+s
(16)

where5.52
3.51

6.69
3.43

5.31
3.53

1
ii/60

3

1/20

g2

p2

ai
a2
bi
b2

b3

8'v 1
(17)A(y) =

p 1+&1+py

is a series of Stieltjes in y. The Pade approximants to
A(y) necessarily converge, and the factor (1+s) ' in
(16) makes the residual kernel of (7) square integrable.
Our theorem can be applied directly, and the resulting
self-consistent values of g' and p,

' obtained with a few
low-order approximants to A (y) are shown in Table II.
The results obtained with a given order are not as
much better as it might seem, since an X-pole approxi-
mation to A (y) results in an (X+1)-pole approxima-
tion to Bp(s), but we have indeed avoided the necessity
of an a priori examination of the rate of convergence
of the approximants.

The transformation (15) is obviously not the only
way to construct a representation for Bo which has the
form square integrable function times series of Stieltjes.
Restricting ourselves to linear fractional transforma-
tions, the most general possibility we can use is"

a class which has been investigated by Luke, " and
from his work it follows that the Pade approximants
do converge sufficiently rapidly (as functions of s) for
large z. We can apply our theorem, but we are re-
stricted to pE+j, 1Vj, j)1, approximants if all the
integrals which arise are to remain finite. From Eq.
(13) it is clear that j= 1 is the best choice. The approxi-
mants cannot, of course, reproduce the behavior of
8 for s —+ ~, but we are primarily interested in the
region s&16.

Table I shows the self-consistent values we have
obtained for g' and p' using the [1,0], [2,1j, and [3,2j
approximants to (p'/2g')Bp(s), together with the pa-
rameters needed to form the approximants. One could,
of course, decompose the approximants by partial
fractions and uniquely determine an equivalent set
of poles and residues, but there is no particular ad-
vantage to be gained thereby. To illustrate the accuracy
of the approximants, we may mention that the [3,2j
is in error by less than 0.3% at s= 16 for p'=3.5.

Obviously good results may be obtained in this way
using only low-order approximants, but it would be
quite tedious to perform an analysis similar to Luke' s
for every case which might be encountered. Ke there-
fore seek a change of variable which will make the
residual kernel of (7) square integrable, while the
function to be approximated remains (or at least is
closely related to) a series of Stieltjes.

y= (n s)/(p+—ys),
which leads to

2g' P+vn
Bp(~)= A (y),

~' p+Vs
with

(2o)(&
w~u&~+-& P/v+n& -I+vyp

Now an approximation of A (y) will force us to have
a pole in Bp(s) at s= —p/y which will not be on the
cut unless tP/y ~

)1 and both have the same sign. On
the other hand, A(y) is n.ot a series of Stieltjes unless
either p/y(1 or they have opposite signs, assuming,
as will always be the case, that 1+n)0. (See below. )
We are therefore forced to take P=y, giving

TABLE I. The self-consistent values of g' and p2 obtained for
the neutral-scalar-meson bootstrap, using [N+1, N'j Pade ap-
proximants for the Born term. The approximants are given by
(p, /2g')B0(s) =p a~z"/g b~z", with b0='1 (normalization) and
o=(I"/ g') o( = )= and we get

TABLE II. The self-consistent values obtained for g' and p2

in the neutral-scalar-meson bootstrap, using a few low-order
I

N', N'j and fÃ+1,Ãj Pade approximants to the function A(y)
defined in the text.

2g 1+n
Bp(s) = A (y),

pP 1+s
(21)

I 0,0$
$1,0j
[1,1j
$2, 1]
$2,2j

7.95
5.75
5.46
5.32
5.27

3.46
3.48
3.52
3.53
3.53

A(y) = 3
p 1+nv I+gyp y(1+s)

(22)

The value of p has become irrelevant, since A(y)
depends only on &y= (n —s)/(1+s), which is indepen-
dent of y.

~ The coe%cient of z in the numerator must not vanish, since"Y.L. Luke, J. Math. and Phys. 37, 110 (1958); ibid. BS, 279 this would map z= ~ onto y=0 and the Taylor series for A (y)(1960). would not exist.
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We are thus left with only one parameter, n, which
specifies which value of z. is mapped into y=0. Since
any Pade approximant to A (y) will be exact at y=0,
we are able to insist that Bp(s) should be given correctly
at any one particular point, i.e., s=4+np'. It is con-
venient to have this freedom, but it does not seem to
be particularly important in the 0 0 -0+ bootstrap.

It is also possible to specify the value of Bp(s) at
any particular point in other ways. For example, where

1
H(s) = —— E(s),

4+s—4
(27)

vergence of the approximants to H is not sufhcient to
guarantee that the residual kernel of (9) is square
integrable. This function can be analyzed with manipu-
lations similar to those used on Bo(s) above. In par-
ticular, with s= —(s+4)/(s —4) we have

p,
2 A z
B,(s) = -+

2g' s+ A s+A o

' (1—Aw)dw
(23)

( 1+w 1—w dw
I(s)=

p 4 1—w (1+w)P 1+ws
(28)

will be exact at s=0 (s=4) for any Pade approximant
to the integral. (We must pick A = 1, since a pole will

be induced at z= —A and the integral will be a series
of Stieltjes only if A &1.) The transformation (18) may
now be performed, and the conditions of the theorem
of the Appendix will be satisfied. 80 will now be given
exactly at two points but, again, this freedom does
not seem to be important in practice.

Turning to a case where some preliminary manipula-
tion is necessary, we consider the P-wave projection
of the single-scalar-exchange amplitude. Such terms
would have to be investigated if one wanted to verify
that the scalar bootstrap did not produce bound states
or low-lying resonances in other angular momenta.
Except for a multiplicative constant we have Ls
= (s—4)/pP as above)

2 3+2
Bi(s)=— ln(1+s)

z z2

' dz' s'+2

oo z z z

' (2w —1)dw
(24)

o 1+ws

which is not a series of Stieltjes since ImBi(s)
= —pr(s+2)/s' changes sign at s= —2. However, C(s)
= (s+2)Bi(s)/s is such that ImC(s) does not change
sign, and has no new singularities since Bi(0)=0. Now
we have

ds' 1 s'+2) '
C(s)=- „s'—ss' s' /

' (2w —1)'dw

p 1+ws
, (25)

1 " p(s')ds'
H(s) =-

71 4 S S —S
(26)

which is a series of Stieltjes in (—s), as may be seen
by changing the integration variable to s"= 1/s'. (Note
that the function p is always positive. ) However, con-

so that Bi(s)= —s/(s+2) times a series of Stieltjes.
We can now approximate C(s) using exactly the same
techniques as were applied to Bp(s) in the first part of
this section.

Finally, we consider Pagels's function

is a series of Stieltjes in z. We are now free to approxi-
mate the integral (28), and the residual kernel of (9)
will be square integrable if ImB (s) is.

V. CONCLUSIONS

Ke have shown how to construct a sequence of what
are essentially pole approximations to the kernels of
the E/D equations in such a way that one can be sure
that the sequence of solutions to the approximate
equations converges to the solution of the exact equa-
tions. The amount of eGort required is not increased
thereby, since some preliminary computation is re™
quired to determine the parameters of any approxi-
mation. Probably less preliminary work is required in
our method, since it provides a systematic technique
for constructing many-pole approximations. The result-
ing kernels are separable, and the X/D equations may,
as in any pole approximation, be solved algebraically.

It was necessary to construct series of Stieltjes
related to the functions that we wished to approximate,
since the limits of the class of functions for which the
Pade approximants converge are not known. The class
of functions which may be related to series of Stieltjes
is, however, quite large, so that this is not a real
handicap. If the Pade conjecture' is valid. , some of the
preliminary manipulations may be dispensed with,
although they might still be a desirable way to im-
prove the rate of convergence.

When the Born term comes from the exchange of
particles with high spin, integrals arise which must be
cut o6 if they are to be finite. The Pade approximants
can serve as a kind of natural cutoff in these cases; at
least one has the advantage of working with a de-
numerable infinity of cutoff functions instead of the
continuum of cutoft parameters usually employed. One
can determine which order approximant to use with
physical arguments; elastic unitarity is, of course, in-
correct above the inelastic threshold, so that the func-
tion chosen should be a good approximation to the
Born term below this point and should. deviate toward
zero fairly rapidly above it. This appears to be a
reasonably restrictive criterion, leaving only a few
approximants to be considered.

Forming Pade approximarits in the coupling constant
is known to be a useful approach toward the solution
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I
G.(x,y) I «Z„(x,y) then the limit f(x) =lim „f (x) satisfies

+e'IXI R (x,s)R (s,y)ds+, (A11) f(*)=g(x)+l~ K-(*,y)f(y)dy, (A14)

and therefore G is also relatively uniformly convergent
to zero.

In the limit n —+ ~ the second and fourth terms of
(A9) vanish by (A2) and (A3), and we have

f(x) =g(x)+l~ K (x,y) f(y)dy . (A12)

If we define a sequence of functions {f„(x))which
satisfy

f„(x)=g(x)+h K„(x,y)f„(y)dy, (A13)

which is identical to (A12).
We have therefore proven the following theorem:

If {K ) is a relatively uniformly convergent sequence
of separable approximations to K, f= g+XKf and f„
=g+K„f„, then f=lim„„f„up to the possible addi-
tion of a solution of the homogeneous equation. "

When ) is not a characteristic value of E, the solu-
tion of (A9) may be written explicitly in terms of g,
G, and K„(Ref. 14, p. 45). One can tlien determine
the rate of convergence of {f„) to f once the rate of
convergence of {G„)is known.
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Even-Parity Meson Resonances*

RICHARD H. CAPPS)

Northwestern University, Evunston, Illinois
(Received 22 May 1967)

A recent model of the odd-parity baryon resonances is extended to include even-parity meson resonances.
The resonances are assumed coupled to S-wave and D-wave MM states (where M denotes a pseudoscalar
or vector meson) with interaction constants such that the resonance pole contributions to the collinear
MM ~ MM scattering amplitudes satisfy SU(6)~ symmetry. The relative coupling of the 3S-fold and
1-fold M representations is taken in accordance with a bootstrap model. The set of even-parity resonances
predicted in this model are octets of j~=0+, 1+, 2+, and 1, and 0+, 2+, and 1 singlets, where C is the
particle-antiparticle conjugation quantum number of the I,= F=O particles. The partial widths for MM
decays and the principal terms in the mass splitting are computed in the model. The agreement with the
present experimental data is good.

I. INTRODUCTION
' 'N a recent paper (referred to here as R1), an SU(6) s-
t - symmetric bootstrap model of MB and MM states
was developed. ' The B and M considered were the 56-
fold baryon supermultiplet, and 35-fold supermultiplet
of odd-parity mesons. The SU(6) s symmetry was ap-
plied to the forward and backward one-particle ex-
change amplitudes Tf and Tb. The linear combinations
Ty&T~ represent potentials in states of even and odd
orbital angular momentum, respectively. It was found
in R1 that the M and B can be bootstrapped success-
fully only if baryons of odd parity and mesons of even
parity exist. The simplest exact solution is one in which
these "o6-parity" baryons and mesons correspond to the
SU(6) iv representations 70 and 35 $1, respectively.

Two basic steps are necessary to determine the physi-

* Supported in part by the National Science Foundation.
f Present address: Purdue University, Lafayette, Indiana.' R. H. Capps, Phys. Rev. 161. 1538 (1967).Herein referred to

as R1.

cal consequences of the model. The first is that of R1,
the formulation and solution of the self-consistency
equations in terms of SU(6) s states. The second is the
interpretation of the SU(6) w states in terms of spin and
other physical quantum numbers. In a recent work, it
was shown that the odd-l MM and MB composites may
be associated with the basic M and B particles, and that
the even-l MB states correspond physically to the
representation (70,3) of SU(6) 80(3).' The pur-
pose of this paper is to make a similar analysis of the
even-parity meson states of the model, and to compare
the predicted properties of these mesons with experiment.

Attention was limited to M35M35 and M35836 states
in R1, where the subscript is the SU(6) s multiplicity.
(This did not imply the assumption that these are the
only important states coupled to the composites, be-
cause the bootstrap condition of R1 may be applied
separately to processes involving different external par-

2 R. H. Capps, Phys. Rev. 158. 1433 (1967).Herein referred to
as R2.


