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In this paper we study a solvable 2-dimensional field theory specified by a closed equal-time algebra
generated by commutation of the components of the electric current and the energy-momentum tensor
8„„.As in the Thirring model, from which this model is abstracted, the physical content of the theory turns
out to be trivial. The results are nevertheless of interest (a} because they allow one to readily understand
why the Thirring model is solvable and why it has trivial physical consequences and (b) because they pro-
vide an example of a case where the requirement of a positive energy spectrum places important, and ex-
plicit, constraints on a theory written in terms of currents. We emphasize that although the present model was
abstracted from the Thirring model we do not maintain that the resulting theory, or its solution as given
here, is the same as the Thirring model, if by this term one means the conventional field-theoretic model.

I. INTRODUCTION

E have recently been investigating the possibility
that the weak and electromagnetic hadron cur-

rents and the hadron energy-momentum tensor, when
interrelated through a set of equal-time commutation
relations whose structure has been speci6ed in one way
or another, might provide a complete formulation of
strong-interaction physics. '' A simple illustration of
these ideas is provided by a solvable 2-dimensional field
theory, abstracted from the Thirring model, ' which we
discuss in this paper.

Our discussion is not directed towards formal mathe-
matical questions regarding the model. The results are
of interest, instead, because they provide a tractable
model of a theory based on the currents and the energy-
momentum tensor, and because they allow one to see
very readily (a) why the Thirring model is solvable and

(b) why it has trivial physical consequences.
As will be clear from the following analysis, the

solvability of this model depends critically on the fact
that it is a 2-dimensional model. It is not likely that any
of the speci6c features of this model can be generalized
to more realistic cases, or that they will provide a useful
guide to the state of affairs in the real world.

II. SPECIFICATION OF THE MODEL

The Thirring model, which provides the starting point
from which we abstract the set of relations between the
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currents and the energy-momentum tensor which de6ne
the model to be discussed here, is a 6eld theory in 2-
dimensional space-time4 in which a massless Fermi field
interacts with itself through a current-current coupling.
Without loss of generality we may suppose that the
current involved is simply a conserved vector current. '
The Lagrangian density for this theory is thus

2(x) =fig Bp+gj j&

with the current given by j„(x)=P(x)y„P(x). The
resulting equation of motion for g is

iy 8$+2g'r gj "=0.

Finally, we can write an expression for the sym-
metric, conserved energy-momentum tensor in this
theory, which is

8$ 8$ 8$ 8$
8„„=~i gp„+Py, — y„f

~$~ ~&p ~Sv ~Sp

g"(&&& ~4+gi—.i ") (3)

It is a direct consequence of the equation of motion,
Eq. (2), that 8„, is traceless.

4 For extensive discussions of the Thirring model (Ref. 3) and
related two-dimensional field theories see A. S. Wightman,
in High Energy Electromagnetic Interactions and Field Theory, edited
by M. Levy (Gordon and Breach Science Publishers, Inc. , New
York, 1967), Vol. II; F. A. Berezin, The Method of Second Quantl;
sation (Academic Press Inc. , New York, 1966), Chap. IV.' Making the current out of a vector and an axial-vector piece
would, as in the case of neutrinos, simply result in the theory
breaking up into two independent pieces, one involving "left-
handed" fermions, the other "right-handed" fermions. Each piece
has the same structure as the theory which we actually discuss.

16$ 1883
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IIL CLOSED EQUAL-TIME ALGEBRA FOR
THE CURRENTS AND 8„„

In this section we shall write down the equal-time
commutation relations satisfied by 0„„(x)and j„(x).

First, it is easy to conclude that in a relativistically
invariant world having one space dimension, the
tracelessness of 0„,implies that the algebra generated by
commuting the various components of e„„among them-
selves is closed. As we shall see, it is really precisely this
circumstance which accounts for the solvability of this
model, and which does not readily generalize to more
realistic situations.

We shall show that the e„„algebra is closed by calcu-
lating explicitly the desired commutators. For this
purpose it is useful first to eliminate all time derivatives
of the fields appearing in Kq. (3), using the equations of
motion for P and f This p. rocedure gives the following

expressions for the components of 8„„:

8$ BP
0pp(x, t) =0ii(x, t) = pi fbi ~gP

8$ 8$

—V.(*,t)j"(x,t), (4)

8$ g
0pi(x, t) =0ip(x t) = pi gyp ~p4'

8$ Bs

ab initio, without reference to the underlying field-
theory model. The relations (6), incorporating the as-
sumption that 0„„is traceless, are the simplest choice
that guarantee that f0pp(x, t)dx and J'0pi(x, t)dx are the
generators of time and space translations. Equation (7)
likewise guarantees that j„(x,t) is a conserved current
which transforms like a vector. The simplest choice for
the commutator [j„(x,t),j.(y, t)j would be to suppose
that it vanishes, for each choice of p and u. However,
this choice will not work, as is of course to be expected
on the basis of the work of Schwinger, ' Johnson, " and
others. But it is not necessary to refer to the underlying
field theory to find this out. If one ignores the Schwinger
term on the right side of Eq. (8b), one is simply unable
to find a representation of the current algebra which
leads to a positive energy spectrum. So the next
simplest choice for the current algebra, Eq. (8), is what
we assume.

IV. EQUATIONS OF MOTION AND
THEIR SOLUTION

The above algebra leads to trivially solvable equa-
tions of motion for both the current j„(x,t) and the
energy-momentum tensor 0„,(x,t). To derive these
equations, we simply note that the time dependence of
any operator 6(x,t) is given by

Vsing these expressions, and the anticommutation
relations (P (x,t),/st(y, t)) =B,pB(x y), we find— with

88(x,t)/Bt=i[P„e(x, t)j,

[jo(x,t),j (y t)j=0
[j,(x,t)j, (y, t)j=ZCB[0(x—y) j/8$,

(8a)

(8b)

(8c)

where c is a dimensionless number.
The above algebra is very simple. It is so simple, in

fact, that one could almost have guessed its structure

[Bpp(x, t),0pp(y, t)j
=i (8/Bx 8/By) (0(x—y)0pi—(x,t) ) (6a)

[0pi(x, t),0pi(y, t)j
= i(8/8$ —8/By) (0(x y) 0p, (x,t) )—, (6b)

[0pp(x, t),0oi(y t)j
=i(8/Bx —8/By) (5(x—y)0pp(x, t)). (6c)

Next, commuting 0„„(x) with the conserved vector
current j„(x)=p»p, we obtain

[0pp(x, t),jp(y, t)j= —i 8 (ji(x,t)B($—y) )/By, (7a)

[0„(x,t),ji(y, t)j= iB(j p(x, t—)0(x y))/By, —(7b)

[0„(x,t),j,(y, t)j= iB(j,(x,t—)5(x y))/By, —(7c)

[Bpi(x,t),ji(y, t)j= iB(j,(x,t)—B(x y))/By —(7d).
Finally, we need the commutation relations between

the components of the vector current. We shall suppose
these have the form

&p= 0pp(x)&x,

the energy operator.
From Eqs. (6a) and (6c) we find

0pp(x, t) = 80pi(x, t)/Bx,

0pi(x, t) = 80pp(x, t)/Bx,

which together imply

(8'/BP 8'/Bx') 0pp(x, t) =0, —

(8'/BP 8'/8$')0 p, (—x,t) =0,
while Eqs. (7a) and (7b) give

8jp(x, t)/Bt = 8j,(x,t)/Bx,

Bj,(x,t)/Bt = Bj,(x,t)/Bx,

with the result

(9)

(«)

(11)

(12)

(13)

(14)

' J. Schwinger, Phys. Rev. Letters 3, 296 (1959).
'I K. Johnson, Nucl. Phys. 25, 431 (1961).

(8'/BP 8'/Bx') jp(x, t) =0, — (15)

(8'/Bt' 8'/Bx') ji(x,t) =—0.(16)

We see that each component of the current and the
energy-momentum tensor satisfies a homogeneous wave
equation, i.e., a "free-field" equation. The consequence
of this is that this model has essentially trivial physical
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consequences. For example, it is clear from the well-
known properties of the solutions of such wave equa-
tions that a moving energy packet will simply undergo
translation at the speed of light, remaining completely
unchanged in other respects. Likewise, two such energy
packets, heading towards one another, will simply pass
through each other without change.

It is evident that such a situation must be described
by a trivial 5 matrix, i.e., one which is energy-inde-
pendent and of modulus 1. This result follows directly
from the observation that the form of Eqs. (9)—(16) is
the same for the "free" theory Lg=0 in Eqs. (1)—(3)]
and the "interacting" theory. Any theory for which this
is the case must have a trivial S matrix, essentially by
definition. '

We can also see this from another point of view. The
only place in Eqs. (6)—(16) where a parameter appears
whose variation could reflect a transition from a free to
an interacting theory' is on the right side of the com-
mutator of jo(x,t) and ji(x,t), Eq. (Sb). But this
dimensionless number c does not enter at all into the
equations of motion, (9)—(16).

The variation of the parameter t,. does, however, ac-
count for the only discernible effect of the interaction.

A change in the value of c must result in a scale
change in the current j„(because c is dimensionless).
This in turn must appear as a change in scale of the
total charge Q= J' jo(x)dx, which can be interpreted as
a charge renormalization. Such a charge renormalization
is not inconsistent with current conservation, because
the particles in this theory are massless.

V. ENERGY SPECTRUM

In this section we show that the energy spectrum in
this model is positive, and identical to that of a system
of free, massless scalar mesons. For this purpose, we
need a representation of the algebra deGned by Eqs.
(6)-(8).

This representation is easily found. First, we can
write 8„,as an explicit function of the current j„in such
a way that Eqs. (6)—(8) are all satisfied, provided that
the components of the current commute as in Eq. (8).
The appropriate expression is

8„„=(1/2c)[j „j„+j„j„g„„(jj )]. (17—)
It is interesting that the above expression bears no

immediately evident relationship to the form of e„„as
given in terms of the fermion field g, Eq. (3).It was not

The S matrix need not be identically equal to unity, however.
It can have an energy-independent phase. But, in contrast to the
3-dimensional case, there is in j. dimension no natural way to fix
the phase of the S matrix. In 1 dimension, such a phase factor
represents a convention as to the phase of the in-fields. Since this
has no physical eGect, clearly we cannot determine it by following
the motion of lumps of charge and energy.

~If one evaluates the commutator (8b) starting from the
underlying field theory, one finds that c is a function of g, the
coupling constant appearing in Kq. (1). See, e.g., Wightman,
Ref. 4.

obtained by starting from Eq. (3) for e„„and then re-
expressing things in terms of the current, but simply by
guessing a form for O„„which turned out to satisfy the
required equations. It is worth emphasizing that this
form for e„„does not work if one tries to disregard the
Schwinger term in the commutation of jo and j&, Eq.
(Sb). For example, using Eq. (17) and Eq. (Sb) without
the Schwinger term does not give the current-con-
servation equation correctly.

To complete the analysis, one needs a representation
of the current algebra, Eq. (8). The current algebra is
solved by writing

c—'"jo(x) = II(x),
c '"j—i(x) =Op(x)/B,x

(18)

(19)

and requiring y(x) and II(x) to commutelikea canonical
scalar field, I p(x, t),II(y, t)]=i8(x y), —or, equivalently,
by supposing that c '"j„(x) is the gradient of a scalar
field p(x).M With this representation for the current,
O„„as given in Eq. (17), takes the form

That is, it is the energy-momentum tensor of a free,
massless scalar field. At this point, one could introduce
the Fock representation for the scalar Geld, annihilation
and creation operators, etc. , and verify in detail that the
energy and momentum operators have the expected
properties, but there is little to be gained by going over
these well-known details.

' The observation that in the Thirring model the current can be
written as the gradient of a scalar field is trivial and well known.
See Wightman, Ref. 4.

VI. SUMMARY AND CONCLUSIONS

Having solved the commutation relations connecting
0„„(x,t) and j„(x,t), let us see how the present results 6t
into the pattern developed in papers I and II. In this
regard, there are two points that should be discussed.

In papers I and II, we constructed complete dy-
namical theories but were, of course, unable to solve
them. Here we have solved the dynamics but, as it
turns out, we may not have completely speciGed the
theory, at least in so far as we deGne "the theory" to
be the conventional field-theoretic Thirring model. The
reason for this may be seen as follows. We note that both
of the quantities Q= J'j'(x, t)dx and Q'= J'j'( 1)dxx
commute with all of our basic coordinates j'( t)x,j '(x, t), P'(x, t), and 0"(x,t). Thus both Q and Q' would
have to be constants in any irreducible representation
of the algebra which means either (a) that both Q and
Q' lead to superselection rules or (b) that we must work
with reducible representations of the algebra. Now the
electric charge Q certainly leads to a superselection rule,
but one would rather not have to suppose that Q' does
also. Therefore, it seems that one must accept alterna-
tive (b) and consequently we do not, in the language
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of papers I and II, have a complete set of coordinates.
Fortunately, none of our arguments concerning the

dynamical triviality of the theory is affected by this
dif5culty. In particular, the expression (17) for 0"" in
terms of the current remains valid. Moreover, if we
choose to think of our model as just a mode], and not the

Thirring model, the above comments are, of course, not
germane.

The second point has to do with the Schwinger term.
In papers I and II we were never forced to introduce
such a term into the current algebra. It may well be
that this was due to the fact that we never really tried to
solve the dynamics. Recall that in the present model the
Schwinger term was forced upon us when we found that
without it the energy would not be positive. Ke have
already stressed the point that the requirements of
Lorentz invariance impose severe, and useful, con-

straints on the commutation relations between the
various operators. Here we see that the requirement of

positivity of the energy spectrum likewise imposes
important constraints.

One should not jump to the conclusion, however, that
the present results nullify the content of papers I and II
where Schwinger terms were ignored. As long as we were
talking about simple models such as nonrelativistic
quantum mechanics or relativistic free fields, our previ-
ous results are formally correct. In the case of inter-
acting relativistic theories, one might have to modify
the assumed commutation relations in order to obtain a
positive energy spectrum. However, it is not obvious
how one is to know whether or not this is necessary until
at least a partial solution of the dynamics is available.

In conclusion, it seems reasonable to say that,
basically, we have learned two things: (i) why the
Thirring model is solvable (essentially because the
components of e„, form a closed algebra) and (ii) that
positivity of the energy spectrum places important and,
in the present case, explicit restrictions on a theory
written in terms of currents.
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Poles and resonances are used to find y' fits to the data up to several hundred MeV above threshold for
the processes m +p —+ n+y and 7+p ~ p+g. Below center-of-mass energy W=1700 MeV, a consistent
picture of these reactions is achieved with the following ingredients: a nucleon pole and PI~ (1400), SII (1570),
and D»(1512) resonances for production by pions; a nucleon pole, a vector meson pole, and S»(1570) and
D13(1512) resonances for photoproduction. Some P»(1688) also improves the fits. The value of the q-nucleon
coupling constant, g„'/47t is &0.002 in both processes. Implications of these results for quark models and
SU(3) symmetry are discussed. Above W =1700, possible additional resonances are considered in p pro-
duction by pions.

I. INTRODUCTION

1
~ROSS—SECTION data are available on the process~ m. +p ~ rt+e up to several hundred MeV above

threshold (pion laboratory kinetic energy T =562
MeV). Bulos et a/. ,' who presented results at nine

energies up to T =1151 MeV (center-of-mass energy
W=1822 MeV), found that the total cross section for
the process ~ +p~ rt+e (q-+2y) rises rapidly to a
peak of 1 mb at T =650 MeV and then begins a sharp
but somewhat more moderate decline, going below 0.5
mb at T =1151 MeV. Bulos et a/. ' find little evidence

* Supported in part by the National Science Foundation.
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for anisotropy in the angular distribution of the pro-
duced q's below T =1003 MeV, but above this energy
a term at least linear in the cosine of the production
angle is needed.

Richards et al. ,' who studied the same reaction as
Bulos et al.' at seven energies up to T =1300 MeV,
confirmed the structure and magnitude of the total
cross section for q production but with improved sta-
tistics found evidence for anisotropy in the angular
distribution beginning at T =655 MeV.

Additional data on q production from the process
~ +p ~ rt+e (q ~ all neutrals) are available from the
experiments of Jones et al. ' (T &589 MeV) and of

~ W. Bruce Richards, Charles B. Chiu, R. D. Eandi, A. Carl
Helmholz, R. W. Kenney, B.J. Moyer, J. A. Poirier, R. J. Cence,
V. Z. Peterson, N. K. Sehgal, and V. J.Stenger, Ph&s. Rev. Letters
16, 1221 (1966).
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