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In this paper we continue the investigation of the preceding paper into the possibility that complete,
dynamical theories can be formulated in terms of current densities and related operators. Here, these ideas
are illustrated by showing how a model of self-interacting charged scalar mesons can be formulated in con-
formity with them. Because of the relative simplicity of this model as compared to other, more realistic,
relativistic models, it is possible to take up in some detail topics like the irreducibility of the coordinates,
the Heisenberg equations of motion for the current densities, the determination of the energy-momentum
tensor by its equal-time commutation relations, and the use of functional representations of current algebras.
It is also shown. how electromagnetism can be incorporated into strong-interaction theories based on cur-
rents. The results of these two papers are reviewed and an attempt is made to abstract from them a tentative
set of working hypotheses.

I. INTRODUCTION

ERE and in an accompanying paper' we explore
~- - ~ the idea that a complete and possibly useful

formulation of strong-interaction physics can be given
in terms of the weak and electromagnetic hadron cur-
rent densities, the hadron stress —energy-momentum
tensor 8„,(x), and the algebraic relations between these
quantities generated by their commutation at equal
times.

In I we have tried to bring out some of the essential
physical points involved by considering a number of
different models from this point of view, concentrating
on the quark model. Here, we treat a relativistic model
of charged scalar mesons using similar methods. While
such a model is primarily of academic interest, it still
repays study because its simpler spin structure as com-
pared to more realistic models allows us to give a more
systematic and detailed discussion of some of the points
brought up in I, and to take up other points relating to
dynamics not pursued there.

In order to make the present paper self-contained. we
wish, before plunging into detail on the charged scalar
model, to review and expand on some of the ideas which
might motivate an approach to hadron physics in terms
of currents and related quantities. One of the leading
questions behind this is the following: What is an
appropriate set of "coordinates" or "building blocks" in
terms of which to describe hadronsP

While one can not look directly to the Bohr corre-
spondence principle for guidance on this question, as one
to some extent could in seeking an answer to the
analogous question in the case of atomic structure, one
can hope to make at least a plausible guess as to the
answer by asking what strong-interaction physics itself
tells us about coordinates. The following points seem
clear at the moment.

First, it seems reasonable, at the present stage of
development, to try to choose the building blocks from

* Supported in part by U. S. Atomic Energy Commission under
Contract AT {30-1)-2171.' R. P. Dashen and D. H. Sharp, preceding paper, Phys. Rev.
165, 1857 {1968),henceforth referred to as I.

among quantities which are closely related to experi-
ment. There are at least two reasons for this: (a) When
one looks at other theories of matter (solid state, liquid
helium, theory of nuclear matter), and. indeed at recent
work in strong-interaction physics, one sees that to
make practical progress it is usually vital to be able to
use phenomenology or intuition directly to arrive at a
good starting point for approximate calculations. This is
most easily done if the formulation of the theory is close
to experiment. (b) One has the feeling that quantities
whose matrix elements are directly measurable ought to
make some sort of mathematical sense, while this need
not be true of any posited "underlying" field.

Secondly, judging from the complexity of the experi-
mental hadron spectrum on the one hand, and from the
insights into hadron dynamics furnished by the boot-
strap program of S-matrix theory on the other, it is
difficult to believe that any one of the observed hadron
states is more "elementary" than another, or that the
particle states themselves are simple.

This state of affairs suggests that if one is going to
base the theory on observables it is necessary either to
include all the hadron states from the beginning, or none.
There are many perfectly cogent reasons for trying to
exploit the first possibility, as is done in S-matrix
theory. However, it does not seem likely that a relatively
simple theory of particle structure, as opposed to a
theory of particle reactions, will result if we choose
"particle" coordinates, i.e., if we formulate the theory in
such a way that there is an essentially 1-to-1 corre-
spondence between physical particle states and the
basic quantities in the theory. ' ' As an alternative we
aim, here and in I, towards a theory of hadrons formu-
lated in terms of local observables, in which it is not

'This would be the case, for example, if we were to try to
describe hadrons either in terms of local 6elds of a type whose
quanta are directly related to the physical particle states, or in
terms of S-matrix elements.

~ To draw on a widely used analogy, the hydrogen atom is
"simple. "However, the simplicity of the hydrogen atom does not
reside directly in the rather complicated properties of its energy
spectrum, but in the fact that the spectrum can be obtained from
the Heisenberg equations of motion for the three position coordi-
nates of the electron, or from the Schrodinger equation.
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necessary to specify at the outset what the particle
states are. This is done without prejudice to the question
of whether or not a complete S-matrix theory also
exists, or even of whether a theory of hadrons based on
an underlying field (presumably a fundamental quark
Geld) exists.

Which local observables should one pick 2 We do not
know, but the following fact has emerged: The hypothe-
sis that the equal-time commutation relations between
the weak and electromagnetic hadron currents have a
simple algebraic structure has proven very useful in
strong-interaction physics4 (in contrast to the sterility
that has marked attempts to exploit canonical com-
mutation relations directly). We shall be guided by this
fact, and suppose that the hadron currents will con-
tinue to be useful as coordinates in a dynamical theory
of hadronic matter.

The electromagnetic and weak hadron current densi-
ties are local observables in that all their matrix ele-
ments can presumably be measured through their
coupling to external photons and lepton pairs. '

Beside the currents, one can hardly avoid introducing
the hadron stress —energy-momentum tensor 8„„(x) be-
cause we know (a) that the structure of its equal-time
commutation relations is intimately connected with
ensuring the Lorentz invariance of the theory, ' (b) it
contains the dynamics, and (c) it is on a symmetrical
footing with the currents as far as measurement is con-
cerned; the components of 8„„(x)[in particular 80o(x),
the energy density] being measurable in principle
through their coupling to external gravitons.

We shall pick our coordinates, then, from among these
local observables. The next question which must be
answered is: Which of these form a complete or irre-
ducible set of coordinates at a given time 2 We find that
it is always possible, in the models we have studied, to
pick a complete set of local operators which form a
closed Lie algebra under commutation at equal times.
The particular set of operators involved depends on the
theory, but always includes the hadron currents them-
selves and never the energy density 8oo(x).

As a result of the completeness of these operators, one
knows that 8„„(x), and in particular 8oo(x), can in.

' This is not the place for an extensive review of the literature on
this subject. As is well known, the application of current algebra
to strong interaction physics was initiated by M. Gell-Mann
fPhys. Rev. 125, 1067 (1962)j in connection with the formulation
of strong-interaction symmetries. The next phase was introduced
by S. L. Adler LPhys. Rev. Letters 14, 1051 (1965)j and W.
Weisberger Libid. 14, 1047 (1965)j, who showed how to derive
useful sum rules starting with current commutators. For reviews
of the subject see R. F. Dashen, in Proceedings of the Thirteenth
Annual International Conference on IIigh-Energy Physics, Berkeley,
1066 (Vniversity of California Press, Berkeley, 1967), and the
forthcoming book by S. L. Adler and R. F. Dashen, Current
Algebras (W. A. Benjamin, Inc. , New York, to be published).

~ Our statement that the hadron currents are directly observable
assumes that the electromagnetic, weak, and gravitational
couplings of the currents and e„„can be treated in first-order
perturbation theory.

J. Schwinger, in Theoretical Physics (International Atomic
Energy Agency, Vienna, 1963), pp. 89—134; Phys. Rev. 130, 406
(1963); 130, 800 (1963).

principle be expressed in terms of them. A closed
dynamical theory will then result, in which the dynamics
is expressed either in the form of Heisenberg equations
of motion for the current operators, or by the Heisenberg
algebra generated by commuting the components 8„„(x)
of the energy-momentum tensor with the currents and
themselves.

In illustrating these ideas, our order of presentation
is as follows. In Sec. II we discuss in detail a model of
self-interacting charged scalar mesons. We 6rst obtain
the closed equal-time algebra defining the observable
coordinates, abstracting from an "underlying" 6eld
theory. We give an argument (the details of which are
included in Appendix A) to show that the elements of
this algebra form an irreducible set. The energy-mo-
mentum tensor is next expressed in terms of these, and
the Heisenberg equations of motion for the "coordi-
nates" are derived.

As an alternative formulation of the dynamics, we
next show how 8„„(x)can be introduced directly into the
theory, dining it not by giving a formula for 8„„in
terms of the currents, but rather by specifying its equal-
time commutation relations. The resulting system of
algebraic relations contains suKcient information to
determine the dynamics and can replace the Heisenberg
equations of motion, as discussed in Appendix B.

Next, a functional representation of the current
algebra is introduced, mainly to illustrate one way in
which one might go about solving a theory expressed
entirely in terms of currents from scratch, in the event
that one had no idea whether or not it came from an
underlying theory. In the final part of this section, we
brieQy discuss renormalization.

In Sec. III, we show that electromagnetic interactions
can be incorporated into strong-interaction theories
based on local currents in a natural way, by adding as a
further set of observable quantities the electromagnetic
field strengths F„„(x).The resulting electrodynamics is
gauge-invariant and path-independent. In Sec. IV, the
conclusions of this paper are summarized.

In a very important sense, the formulation of strong-
interaction physics discussed here is not new. The
operators we use are, of course, local fields in the sense
of abstract field theory. Moreover, even the detailed
point of view under discussion is implied by the formula-
tion of field theory in terms of rings of local observables. ~

We simply make specific choices for these local ob-
servables, concentrating on ending a complete set at a
fixed time. While we can in this way go further in the
direction of seeing what the explicit structure of theories
of this kind might be, we stress that no claim to mathe-
matical rigor can be made for the methods or results
which follow.

7 One of the basic papers in this field is R. Haag and D. Kastler,
J. Math. Phys. 5, 848 (1964). For a good review of the subject,
and further references to the literature, see the lectures by D. W.
Robinson, in Particle Symmetries and Axiomatic Field Theory,
edited by M. Chretien and S. Deser (Gordon and Breach Science
Publishers, Inc., New York, 1966), Vol. I, p. 389.
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II. MODEL OF SELF-INTERACTING
CHARGED SCALAR MESONS

A. Introduction

In the present section we will illustrate some of the
ideas outlined in Sec. I by showing how a theory of self-
interacting scalar mesons can be formulated in con-
formity with them. While we know, of course, that such
a theory can not describe the real world, the study of
this model is instructive because most of the essential
points come up here, yet without all the complexities
present in more realistic models.

We start with the canonical form of a theory of
charged scalar mesons. This is specified by giving the
Lagrangian density:

~..( x) = ~.~*( x)~.v (x)+~.~*(x)~.v (x) g—"~( x) (2 &)

So defined, the above Heisenberg operators are all
Hermitian. For simplicity, we have not normal-ordered
these operators.

The quantity eo appearing in Eq. (2.6) is the bare
electric charge. Since we assume in what follows that one
can work to first order in. the electric coupling, ' eo can be
taken to coincide with the physical charge e. We shall
henceforth pick co= 1, which procedure can be regarded
either as the effect of a choice of units in which eo= 1, or
as the result of introducing a current j„'=j„/so from
which the electric coupling has been removed.

Z(x) = —
p,'q*q;

8$„8x"
(2.1)

defining momenta conjugate to the complex fields q (x)
and y*(x) by

bz bz
ir(x) =—= j*(x); x*(x)= = j (x), (2.2)

8j

and supposing that the coordinates and their conjugate
momenta commute at equal times as follows:

Ly(x, i), (y,&)]=ib(x—y) = [y*(,i), (y,~)7, (2.3)

with the equal-time commutators of all other pairs of
coordinates and momenta vanishing.

In addition, one specifies a Hamiltonian density

Lp(x),p(y)7 =o, (2.8a)

8
Lp(x), jq(y)7=2i LS(x)8(x—y)7, (2.8b)

8$y

Lj.(x),ji(y)7= o, (2.8c)

B. Equal-Time Current Algebra

We now want to formulate this model in terms of the
local observables j„(x) and 8„„(x),instead of the fields

v (x), y~(x), ir(x), and x*(x).
The natural place to start is with the equal-time

commutation relations between the components of the
electromagnetic current j„(x). From the definition of
the current, Eq. (2.6), and the equal-time commutation
relations for the fields, Eq. (2.3), one finds'

(2.8d)S(x)= v'*(x) v'(x)
from which one finds the Heisenberg equations of motion
for the fields q and y* to be and we have written p(x) = jo(x). We see that the equal-

time algebra does not yet close, so that one must add at
least one more operator, S(x), to the algebra. Its
commutation relations are simply

([ I+p')y(x) =0,
(&+p') v*(x)=0 (2.5)

K(x)=x*(x)n.(x)+Vq ~(x).Vq(x)+p'y*(x)(p(x), (2.4) where

We shall deal with self-interacting scalar mesons.
When we find it necessary to specify the form of the
interaction, we shall suppose Zr(x) = —isX(y*y)', where
X is a coupling constant.

The quantities of fundamental importance to us in the
following are the conserved electromagnetic current
operator j„(x) and the symmetric, conserved energy-
momentum tensor' e„„(x).These can be expressed in
terms of the fields &p*(x) and q(x) as

j„(x)=ieofq*(x)B„q (x) B„y*(x)—q (x)7 (2.6)

The symmetric, conserved energy-momentum tensor 8„,(x)
need not coincide with the "canonical" energy-momentum tensor
T„,(x). In particular, the energy density 800(x) is not necessarily
equal to the Hamiltonian density K(x), although the expressions
for the energy, f800(x)d'x and J'X(x)d'x, always agree. It is the
components of 8„„(x)which have a direct physical signincance. In
the present case, 8„„(x)and T„„(x)are the same. For a discussion
of these points, see G. Wentzel, Quantum Theory of Fields (Inter-
science Publishers, New York, 1949). Appendix I.

LS(x),S(y)7= LS(x),p(y)7= LS(x),ji(y)7=0. (2.8e)

The equal-time algebra now closes. However, if we
refer to the underlying field theory, we can see that at
this point we still need to add one more operator to the
algebra. The reason for this is the following. From
Eqs. (2.6) and. (2.8d), it is clear that ji(x) and S(x) are
both specified by giving two numbers per space-time
point, namely, q*(x) and p(x). The set of coordinates
p(x), S(x), and j&(x) therefore represent three dy-
namical degrees of freedom per space-time point, where-
as the charged scalar theory itself has four, namely,
q (x), q *(x), ~(x), and or*(x).

' In writing equal-time commutators, we will not indicate ex-
plicitly the time dependence of the operators. For example, we
write p(x) =p(x, t) =p(x) when it appears in an equal-time com-
mutator. All commutators in the paper are equal-time commu-
tators unless the contrary is explicitly stated,
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As our last operator, it is natural to pick S(x),
defined by the equation

iLPO, S(x)]=8(x). (2.9)

Here Po= J'Ooo(y)d'y is the energy operator, which
generates time displacements.

The commutation relations of 8(x) with the other
coordinates turn out to be

t 8(x),8(y) j=LS(x),p(y) j=o,
LS(x),S(y) j=ziS(x)8(x—y),

t j.(x),8(y) j=»j~(x)~(x—y).

(Z.loa)

(2.10b)

(2.10c)

The equal-time algebra, specified by Eqs. (2.8) and
(2.10), thus closes and is a formal I.ie algebra.

The current j„(x) is the electromagnetic current and
is measurable in principle through its coupling to
external photons. The operator S(x) may be regarded
as defined by Eq. (2.8b); its matrix elements can be
given a direct physical meaning at least to the extent
that the commutator of the components of the electric
current itself describes physical processes. "

The matrix elements of S(x) are related to those of
S(x) by Eq. (2.9). In a representation in which Po is
diagonal, the matrix elements of 8(x) are just those of
S(x) times a power of the energy, so they can be given
a physical meaning whenever the corresponding matrix
elements of S(x) can.

All of the above commutators have been computed in
a formal algebraic way from Eqs. (2.3) and (2.6). There
arises the question of "Schwinger terms. ""This ex-
pression seems to be used in two distinct ways. On the
one hand, one can refer to any term on the right side of a
commutation relation which involves the gradient of a
8 function as a Schwinger term. In this sense, Eq. (2.8b)
contains a Schwinger term. Alternatively, one can mean

by this expression speci6cally those terms which arise
when the commutators are calculated starting with a
definition of the currents as limits of some nonlocal
product of operators, but which are not present other-
wise. Schwinger terms which might arise in this way
have not been included here. In the following paper, "
we see an example of how these extra terms may be
necessary to insure properties like positivity of the
energy spectrum. In the present model, however, there
is no obvious necessity to include such terms.

Our point of view on Schwinger terms is, then, the
following. We write a current algebra and insist that any
solution of it, together with the equations of motion,
satisfy the conditions of Lorentz invariance and posi-
tivity of the energy spectrum. If it does, we are satisfied.
If it does not, one must modify the commutation rela-
tions until one does get a theory consistent with the

"In the present case, S(x) also appears as a piece of the energy
density.

» J. Schwinger, Phys. Rev. Letters 3, 296 (1959)."C. G. Callan, R. F. Dashen, and D. H. Sharp, following paper,
Phys. Rev. 165, 1883 (1968).

above constraints. In either case, it may turn out that
the currents and other operators can not be expressed as
products of canonical fields in a simple or even mean-
ingful way. We would not find this disturbing. Instead,
we insist that the currents and other local observables
have physically reasonable properties, and base the
theory on these quantities, being content to let the chips
fall where they may as regards the possible existence of
an underlying theory.

tx,xj=Lp, ph=o,
(x,pj= i. (2.11)

(If it did, one would have proved that there could be no
spin in the world. ) One must add an additional hypothe-
sis, one form of which is to suppose that the spectrum of
x is "simple, "i.e., each eigenvalue of x occurs only once.

Evidently, one must make comparable assumptions
when discussing irreducibility in the present case. What
we shall assume for this purpose is that the fields p(x),
p*(x), w(x), and ~*(x) form an irreducible set at a
given time, that the operators j„(x),S(x), and 8(x) are
defined in terms of the fields by Eqs. (2.6), (2.8d), and
(2.9), and that they satisfy the equal-time current
algebra, Eqs. (2.8) and (2.10).

In Appendix A we show, on the basis of these as-
sumptions, that the elements of the equal-time current
algebra are irreducible in any sector of the charged
scalar theory having 6xed total charge. The argument,
for which no claim to mathematical rigor is made,
proceeds by assuming that there is an operator A(x)
which commutes at equal times with each of the
operators j„(x),S(x), and 8(x), and then showing that
any such operator must be a function of the total
charge operator. But the charge operator is a constant
multiple of the identity acting on the states in a given
charge sector, so the above result means that the
elements of the equal-time current algebra are irre-
ducible, in the usual sense, in any particular charge
sector of the theory.

C. Irreducibility of the Equal-Time Current Algebra

At this point we would like to discuss briefly the
question of whether the operators j„(x),S(x), and S(x)
form a complete or irreducible set at a given time. This
subject is taken up in more detail in Appendix A and in
I;here we shall make one or two introductory comments.

The question of irreducibility is partly one of physics
and partly one of mathematics and is not a question
that can be settled on the basis of the equal-time current
algebra alone.

As an. example, recall the situation in nonrelativistic
quantum mechanics in one dimension. Here one proves
that x and p are irreducible or complete in the sense that
any operator that commutes with both of them is a
constant multiple of the identity. This result does not
follow, however, just from the equal-time algebra:
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Completely aside from mathematical arguments, the
above result is very plausible on physical grounds. It
will turn out that the energy-momentum tensor for this
theory can be written explicitly in terms of the above
operators. Since these quantities, or functions of them,
are the only local quantities that one can think of that
one can measure, they ought to be irreducible acting on
the states which they can create.

8 &p*8"y= —g tS ipi" (2.13)

Thus we may rewrite 8„„(x),Kq. (2.7), in the form

1 1
8"(*)=-'8'-8.+-.8 '-8.

S S
1—g „4g t—g —p'5 ——',XS' (2.14)
S

where for definiteness we have picked an interaction of
the form Zr(x) = ——',X(y*p)'. In particular, the energy
density is

1 1
8pp(x) =—'gpt —gp+-'gpt —gp+ti'5+ —,XS'. (2.15)

S S

Note that it is formally Hermitian in spite of the ap-
pearance of non-Hermitian factors like g„(x).

Finally, the dynamical laws can be expressed through
the Heisenberg equations of motion for the currents.
These are calculated, of course, using the fact that the
space integral of 8pp(x) is the generator of time
translations,

i[ 8pp(y)dPy, o(x,t)]=0(x,t), (2.16)

and they turn out to be

p(x)+V j(x)=0, (2.17)

5(x)+2p'5(x)+2XS'(x) =apl„t(x)S—'(x)pi&(x), (2.18)

8jp (x)/8t= —,'i j[gpt(x)5
—'(x)gp(x)]

—[gpt (x)5—'(x)

pip�

(x)]t}+Bp(x)/8x p, (2.19)

with S(x) given by Eq. (2.9).

D. H eisenb erg Equations of Motion for Currents

As a result of the completeness of the operators j„(x),
S(x), and S(x), we know that it should be possible to
express any other quantity in the theory in terms of
them. The most important of these is the energy-
momentum tensor 8„„(x),and we will now show how it
can be written in terms of the above operators.

From Kqs. (2.6) and (2.8d), we have

pi„(x) =—8„5(x) ij„—(x) = 2 y*(x)8„q (x),
(2.12)

g„t(x)= 8„5(x)+ij„(x)=28„q *(x)q (x) .

Recalling the formal identity 5—'= (q *p)—'=
pp

—"pp*—'
we see that

Introducing the definitions of j„(x),S(x), and S(x) in
terms of the fields, we see that the held equations, Kqs.
(2.5), can be recovered from Kqs. (2.17) and (2.18),
while Eqs. (2.19) and (2.9), only two of which are
independent in the underlying theory, provide the
definitions of the field momenta pr(x) and m.*(x).

Looking at the above Heisenberg equations of motion,
we see that they involve products of operators at a
point, not to mention an inverse operator. Although we
take a fairly relaxed view of this fact, the presence of
such expressions does not inspire confidence in the idea
that any of the mathematical difliculties besetting
ordinary Geld theories have been overcome here. For
this reason, we will not pause at this point to analyze
these equations further, but will instead proceed in the
next two sections to rewrite the equations in such a way
that the above difhculties, if not eliminated, are at least
not present in so glaring a form.

E. Energy-Momentum Tensor De6ned by its
Equal- Time Commutation Relations

We have heretofore considered the energy-momentum
tensor 8„„(x) as a secondary quantity in the theory,
defining it in terms of the basic operators j„(x),S(x),
and S(x), Eq. (2.14). From many points of view, how-

ever, it is natural to consider 8„„(x) as on the same
footing as the currents. In this section, and in Appendix
8, we discuss how 8„„(x)may be introduced directly into
the theory, defining it not by Eq. (2.14), but rather by
its equal-time commutation relations with the currents
and with itself. The resulting system of algebraic rela-
tions contains sufhcient information to determine the
dynamics, in principle, and can replace the Heisenberg
equations of motion, Eqs. (2.17)—(2.19) and (2.9).

The full set of equal-time commutation relations in-
volving 8„„(x)is written in Appendix B.Here we wish to
surrimarize a number of important general features of
this system of equations.

(i) Referring to Eqs. (81)—(84), one will note that
no inverse operators appear.

(ii) The only product of operators which appears
comes in as a result of the interaction term XS'. This
remaining product may be formally eliminated by
introducing Xo(x) =AS'(x) in these equations and de-
fining O(x) by its equal-time commutation relations
with a complete set of operators, namely,

[O(x),p(y)]= [O(x),j.(y)]= [O(x),5(y)]=0,
[0(x),S(y)]=4io (x)8 (x—y) .

(2.20)

(iii) The requirement that the theory be Lorentz
invariant is essentially contained in the statement that
the equal-time commutation relations between the
components of H„„have a particular form. For example,
the form of Eqs. (84a) and (84b) is to a large extent
determined by the requirement that the space integrals
of 8pp(x) and 8pp(x) be the generators of infinitesimal
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displacements in space and time, together with a con-
dition of "least singularity. ""Schwinger, for example,
shows' how one is led to the form of the commutator of
the energy density with itself from the requirement of
energy-momentum conservation.

(iv) New terms (Bj/N and eoi), which we can not
express as linear combinations of elements in the
algebra, are introduced in Eqs. (816) and (84c). The
algebra generated by successive commutation of 8„,
with itself and with the currents is therefore not a closed
I.ie algebra, in general. '4

In spite of this fact, it is possible to show that a finite
number of commutation relations contain enough infor-
mation to determine the dynamics, " in the following
sense.

We first show (in. Appendix 8) that, given any
representation of the equal-time current algebra, the
finite set of commutators listed in Eqs. (81)—(84)
uniquely determine the functional dependence" of
8„„(x)upon j„(x),S(x), and S(x). For this purpose we
argue that the completeness of the operators j„,5, and 8
means that an expression for e„„asa function of these
operators exists. We then suppose that there are two
expressions for O„„as a function of the currents which
are compatible with its equal-time commutation rela-
tions, and show that Eqs. (81)—(84) imply that the two
expressions can differ only by a multiple of the identity.
Finally, w'e note that the same commutation relations
which in their "homogeneous" form" imply the unique-
ness of the solution must in their "inhomogeneous" form
actually determine the solution.

Supposing that we have 0„„(x) as a function of the
currents, the dynamics of the theory is determined in
the usual way by first diagonalizing I'0. The time de-
velopment of any Heisenberg operator is then de-
termined by the equation

O(x, f) =e' "O(x,0)e ' ", (2.21)
with

I'o= coo(x)d'x.

"In this connection, see Ref. 1.
'4 It is interesting to note that in certain very special cases, such

as the model which we study in Ref. 12, it can happen that the
whole algebra, including the commutation relations of 0„„, is
closed. It is also worth noting that the question of the closure of
the algebra of the currents and H„„seems to be one of the kine-
matics rather than dynamics; in the case of the 2-dimensional
model of Ref. 12, the algebra closes whether or not a Fermi
interaction is included, while in the present case the algebra does
not close, whether or not a kP interaction is included."The point that Lorentz invariance, plus a sufBcient amount of
information at equal times, constitutes a complete specification of
the dynamics of a system was made long ago by E. P. signer,
Ann. Math. 40, 149 {2939).

"There is no guarantee, of course, that if one employs an
arbitrary representation of the current algebra the resulting ex-
pression for the energy will turn out to be positive.

"By the "homogeneous" form of the commutation relations,
we simply mean the set of commutation relations satisfied by the
diftexence between two proposed solutions for 8„„,corresponding to
a single, specific choice for the currents. The "inhomogeneous"

In this sense, the dynamics is contained in those equal-
time commutation relations which fix 8„„(x) once a
representation of the equal-time algebra of j„(x),S(x),
and S(x) is specified. "

F. Functional Representations of Current Algebras

By a functional representation of a current algebra,
we mean the following. One introduces a basis in Hilbert
space consisting of the complete set of eigenvectors as-
sociated with a maximal commuting set of current
operators. An arbitrary state ~%') is then represented by
giving its components along each of the basis vectors;
that is by a wave functional. ' When the states are
represented in this way, the effect of applying any cur-
rent operator to a state ~%') can be represented, either as
multiplication of the associated wave functional by a
c-number function, or by c-number functional di6er-
entiation applied to the wave functional. With the
current operators realized in this way, the current
algebra is automatically satisGed' and the dynamics of
the problem is contained. in the solutions to a functional
Schrodinger equation.

In the present section we shall write some functional
representations of the current algebra specified by Kqs.
(2.8) and (2.10). To what purposely First, one gains
some idea of how one might go about trying to solve a
theory based just on currents from scratch, i.e., if one
had no idea as to whether or not it came from some
underlying theory. This does not imply that introducing

form of the commutation relations is just the set written in
Appendix B.' Another way of looking at the problem, which in some ways is
closer to the spirit of this section than what we have just described,
is to try to work with the full set of commutation relations directly,
extending to Geld theory the algebraic methods originally em-
ployed in nonrelativistic quantum mechanics by Born, Heisenberg
and Jordan. (M. Born and P.Jordan, Elementare Quantenmechanik,
Berlin, 2930.) One could try to do this numerically, putting all the
commutation relations on a grid, or by searching for some analytic
techniques. This has the advantage that one does not have to
express H„„as a function of other operators at any stage; on the
other hand, this approach has never been well adapted to deal with
continuum states, and looks very cumbersome.

'9 This is the analog of introducing a wave function in non-
relativistic quantum mechanics. There one represents an abstract
state ~+) by giving its components along a basis defined, for ex-
ample, by the complete set of eigenvectors ~x) of the operator x.
Thus a position wave function is defined by +(x) =(x%). The
operators x and p are then represented by

*I+)~x+(x); Pl+) ~-.—+(x).2 d
$ ds

In this representation, the equal-time algebra fx,xj=g,pl=0;
Pg,pj=i, is automatically satisfied. Such representations are also
well known in quantum statistical mechanics and quantum field
theory. Extensive discussion of these topics is contained in the
following representative list of books and review articles: K. O.
Friedrichs, 3IIathematical Aspects of the Quantum Theory of Fields
(Interscience Publishers, Inc. , New York, 1953); W. T. Martin
and I. Segal, Analysis in Function Space (MIT Press, Cambridge,
Mass. , 2964}; R. P. Feynman and A. R. Hibbs, Quantum Me-
chanics and Path Integrals (McGraw-Hill Book Co., Inc. , New
York, 2965); F. A. Berezin, The Method of Second Quantization
(Academic Press Inc. , New York, 2966); I.M. Gel'Fand and A. M.
Yaglom, J. Math. Phys. 1, 48 (2960); S. G. Brush, Rev. Mod.
Phys. Bs, 79 (2962).
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the functional representations will necessarily make this
task any easier, or circumvent any problems, but just
that it does provide a way to work directly with a theory
formulated in terms of currents. Secondly, some people
believe that there may be certain technical mathe-
matical advantages to working with functional repre-
sentations. 20 A list of some of these possible advantages
can be found in the preface of Berezin. "

Now let us discuss some of these functional repre-
sentations. Since p(x) and S(x) form one maximal
commuting set of operators" at a given time, we may
consider a complete set of states" which are simultane-
ous eigenstates of p and S;

P(x) I p(x) s(x))=p(x) I p(x) s(x)),
s(x) l, (x),s(x))=s(x) l, (x),s(x)).

(2.22)

We next introduce the associated wave functiona1s as
fo11ows ' 9

1 8 1
BS(x)/Bt +-+ S(x)— +— S(x),

i bs(x) i bs(x)

j&(x) ~ 2S(x)ib "/b "p(x);

(2.26)

one can easily verify that the current algebra, Kqs. (2.8)
and (2.10), is satisfied. "

Since S(x) and jq(x) also commute at a given time,
one expects that a functional representation also exists
in which S(x) and ji(x) act as multiplication on wave
functionals. A representation of this kind is obtained if
one represents the current operators in the following

way:

operators, acting on wave functionals%'(p, s},as follows:

S(x) &-+ S(x),

P(x) ~p(x),

@{p,s) =(p(x),S(x) I+). (2.23)

Evidently, the action of the operators p(x) and S(x)
on the state I%') can be represented as multiplication of
the wave functional 4'{p,s) by the eigenvalues of p(x)
and S(x), the fun. ctions p(x) and S(x), respectively.

Finally, we define functional derivatives" b/bs(x),
b/bp(x), and b "/b~p(x) by the equations

S(x) ++ f(x),

ji(x) ++ 2f(x)Bg(x)/B x,i

1 8 1
BS(x)/R ~ f(x)— +— f(x),

i bf (x) i bf(x)

P(x) ~ (1/i)b/bg(x),

(2.27)

Lp(x),p(y) j=O,

Lp(x), (1/i)b/bp(y)7=ib(x —y),

8
G (x), (1/i)b'ib"p(y) j=i b(x-y),

(2.25)

be{p(x)}
y(x)d'x=lime 'Le{p(x)+ ey(x))

bp(x)

—+{p(x))j,
(2.24)

b "@{p(x))
y(x)d'x=lime 'I %{p(x)—eBqy(x))

b kp (x) aM

e{p(x))j
etc. , and note that, applied to wave functionals 4'{p,s),
one has

in which f(x), b/b f(x), g(x), and b/bg(x) commute like
two independent coordinates and momenta in the
functional representation

I
see Kq. (2.25)], and we label

the wave functional by 0'{f,g).
The energy spectrum and stationary states of the

system are determined by the equation

Pole)=PQI @), (2.28)

where as usual Po =fH p p (x)d'x, and Po=fe(x)d'x is the
associated energy eigenvalue. This equation can be
converted into a concrete functional differential equa-
tion by making use of Kq. (2.14) which expresses H„„as
a function of the currents, together with a specilc
functional representation of the current algebra. For
example, if we employ the representation (2.27), we can
write H00(x) as

1 8 8 8 1
and similarlyfor S(x). Now, if we represent our current Hoo(x) ~ f(x) + f(x)+i

4 bf(x) Bf(x) bg(x) f(x)
20 This is probably a good place to reiterate, however, that we

have no reason to believe that the results of this or the preceding
section have contributed anything to the problem of Gnding a
mathematically consistent formulation of an interacting Geld
theory.

2' In this section will distinguish operators from their eigenvalues
by putting a caret over the operators. For typographical reasons,
we will write the operator for 8(y) as BS(y)/Bt in this section.
When we write 8S(y)/Bt in an equal-time commutator, this means

[0(x,i), as(y, i')/ai'g, ;.
"We stress that these eigenstates are labelled by giving the

values of the functions p(x) and S(x) over the whole spacelike
$-gurfagg t =cogstanf.

X f(x) + f(x)—i
bf(x) bf(x) bg(x)

1 1+- L(B.f(x))'+4f'(x) (B.g(x) )'j
4 f(x)

+p'f(x)+2hf'(x). (2.29)

"Note that Eq. (2.8b) can be written

t u( ),j (y)j=—2'S(y)~&( —y)/~y .
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The first term in the above expression simplifies
somewhat, and we can write Eq. (2.28) in the form

1 1
2f(x) —8&'& (0) 2f(x) -+8&'& (0)

4 f(x) bf(x) 8f(x)

1 1
2ib&" (0) +

4 f(x) 8g(x) b'g(x)

1
+—

L (8«f(x) )'+4f'(x) (8«g (x))']+y'f (x)
4 f(x)

where A is a normalization factor. This expression
satisfies Eq. (2.33) for any value of «(x) and 1/Vr, .

We can get a check on the reasonability of this solu-
tion, and at the same time learn something about «'(x),
by requiring that the charge operator Q have integral
eigenvalues (units e=1) applied to a wave functional.
Using Eq. (2.27) for the charge density operator, we
require

V'{fg) = —. ,
d'&' x{f)C'(g)

v i bg(x')
=&x{f)C'{g} (2 35)

where E is an integer.
+&"f (") +(f&g) (")+(f~g) ' ( ) If C(g) is given Eq. (2.34), we must therefore have

We shall not go on here to discuss Eq. (2.30) in any
detail except for one point; the presence of 5&@(0) as a
coeflicient of b/bg( )xSuch t. erms are common in func-
tional diGerential equations, being analogs of factor-
ordering terms present in operator expressions, and do
not necessarily reQect themselves as ill-behaved solu-
tions. For example, '4 the well-behaved functional

L«(x') —(1/V~)]d'*' C'(g) =&C'(g) (2 3&)

This equation, which must hold for any finite volume

V, can be satisfied by picking «(x) = (1/Vr, )+f(x), and
then suitably choosing f(x). One choice for f(x) would
be

1
F( q) = exp —— q'(x)d'x

2

satisfies the singular looking equation

(2 31) with
f(x)= ei8&'& (x—ai)+ +e 5~'& (x—a~), (2.37)

g n, =X

L~'/~'~(x) —~'(x)]F{~}= —~'"(0)F{v) (2 32)

We do not know that this is the kind of situation
which occurs in Eq. (2.30), but we can explore the
matter a little further in one special case. Suppose we

drop the terms involving B&f(x) and B&g(x) from Eq.
(2.30) completely, as might be reasonable if we had a
dense, essentially uniform distribution of "matter. "The
resulting equation separates upon introducing 4'(f,g)
=X(f)C(g). We shall only consider the equation for

C(g), which is

+ (2i/Vi)
-~'g (x) &g (x)

+«'(x) —(1/Vr, )' C {g)= 0. (2.33)

Here we have temporarily replaced 6&3& (0) by 1/Vr. , the
finite number to which it corresponds if we introduce a
space lattice in which the volume of an individual
lattice cell is Vl, . Also, we have chosen the separation
constant to be «'(x) —(1/Vr, )'. We shall 6rst solve the
equation for fixed, finite VL, and later find that all

physical results are independent of VL,. One solution of
this equation is

C(g) =A exp i L«(x') —(1/Vl. )]g(x')d'x', (2.34)

~ This example has recently been mentioned by H. I.eutwyler,
Phys. Rev. 134, 81155 (1964).

This choice for «(x) also determines the spectrum of
p(x), according to the equation

1
p(x)~(g) =-. ~(g) =L (x)—(1/V )]C'{g) (2.3g)

i bg(x)

If f(x) is given by Eq. (2.37), we see that p(x) applied
to C (g} is —~, 0, +~ at a point x= a; where there is
located a "charge, " according as n; is +, 0, or —.The
interpretation of the spectrum of p(x) when it is
smeared over some volume of space is also clear.

The expression for C {g) corresponding to the above
choice for «(x) is

C'(g) =A exp(i P; m, g(a~)) . (2.39)

It is interesting to note that C, p(x), and Q are all

independent of VI,, which can now be set equal to zero.
It appears, therefore, that Eq. (2.33) has well-behaved
solutions [for a suitable choice of separation parameter
«'(x)] in spite of the singular way in which it was
written. It remains to be seen, of course, whether the
equation for X{f) also has reasonable solutions with this
choice of separation parameter.

One can write a number of other functional repre-
sentations for the current algebra, besides those given
above, including the one which comes from a functional
representation of an underlying field theory. The ques-
tion of the relationship of all these representations to
each other, and in particular the question of whether
any or all of them are equivalent to an underlying field
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theory, remains to be investigated, as does the problem
of finding solutions to such equations.

Lj,(x),i(y)7 = 2V, (x)~(x—y), (2.10c)

we see that S(x') -+ X'5(x), since 5&@(x'—y') ~
X'6'" (x—y) and, with an appropriate choice for the units
of the speed of light, times scale as lengths. This choice
automatically satisfies the remaining commutation rela-
tions, and one also finds that the energy density scales
as X4.

Finally, we wish to stress the following point: The
possibility that a theory of matter formulated in terms
of currents does not need to be renormalized in the usual
sense does not necessarily mean that the theory is free of

"Once the units in which one measured the electric charge are
6Ked,

G. Renormalization

In this section we speculate that strong-interaction
theories, when formulated as a set of relationships be-
tween currents and other observable quantities, do not
require renormalization in the usual sense. We think the
situation is something like the following.

First, recall that we are working to first order in the
electric charge. The charge is not renormalized, to this
order, and so the electric current receives no renormal-
ization from this source.

Further renormalizations are usually introduced be-
cause one is comparing a physical theory to a "bare"
theory. This is the origin of wave-function renormaliza-
tion as well as mass- and coupling-constant renormaliza-
tion. However, no such comparison is made here. The
theory written in terms of currents is, directly, the
physical theory. There is no reason why the parameters
p' and 'A, carryovers from the underlying theory, should
be interpreted as the "bare mass" or "bare coupling" of
anything. That identification presupposes the existence
and employment of a representation of the algebra that
permits the existence of an underlying "field" of the
usual variety. Instead, we can regard p' simply as a
parameter fixing a scale of length in the theory, while X

is a parameter determining the strength of interaction.
The masses and effective couplings of particles must be
determined as part of the problem of finding the particle
states in the theory, which are determined by the
spectrum of the energy operator. Thus the usual reasons
for renormalization are lacking.

Another point is that the equal-time algebra deter-
mines the scale of all operators, except for a change of
scale arising from changing the scale of length. "This
can be seen as follows. Ke require that the integral of
p(x) over any finite volume equal the charge in that
volume. This condition requires p(x) to scale as X~ when
x scales as 1/X.

From current conservation (or relativity) we must
also have j&(x') ~ X'j&(x). Next, from the commutator

divergences. The possible existence and the character of
such divergences are points which remain to be
investigated.

III. CHARGED SCALAR THEORY.
ELECTRODYNAMICS

A. Introduction

In this section, we brieQy indicate how the con-
siderations of Sec. II can be extended to include the
interaction of charged scalar mesons with a quantized
electromagnetic field. The fundamental quantities ap-
pearing here are, beside the currents and. energy mo-
mentum tensor 8„„(x),the electromagnetic field strengths
F„„(x).The latter, according to the analysis of Bohr and
Rosenfeld, " are supposed to be quantities which are
measurable in principle, at least when averaged over a
small space-time volume. The resulting formulation of
the electrodynamics of scalar mesons is gauge-invariant
and path-independent.

(3 1)

with the electromagnetic field strengths F„„given in
terms of the 4-vector potential by

F„„=aA„/ax„- aA „/ax„. (3.2)

The theory is quantized by imposing suitable equal-
time commutation relations between the fields q, p*,
and A„(x). The commutation relations for the matter
fields ip and q

* are as before, Eq. (2.3), except that the
canonical momenta are now given by

x=tiZ/bj =j* ieoAoy*—,
x*=fiZ/f'ii*=i+ieaAov

(3 3)

Thus we now have, for example,

[e(x) x(y)7=5~(x), e*(y)
—~«Ao(y) v*(y)7=~~(x—y) (34)

The form of the equal-time commutation relations
imposed on the vector potential depends on the gauge.

26
¹ Bohr and L. Rosenfeld, Kgl. Danske Videnskab. Selskab,

Mat. -Fys. Medd. 12, No. 8 (1933);Phys. Rev. 78, 794 (1950).
"See, for example, G. Wentzel, Ref. 8, or J. Bjorken and S.

Drell, Relativistic Quantum Fields (McGraw-Hill Book Co., Inc. ,
New York, j.965).

28 We have not included strong interactions here. These can, of
course, be included if desired withing changing any~basic results.

B. Conventional Formulation

Our starting point is the conventional formulation'~
of charged scalar electrodynamics, in which the
Lagrangian density is taken to be"
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In the Lorentz gauge one requires'~"

LA. (x),A.(y)]= [A.(x),A. (y)7= 0,
[A „(x),A „(y)]=iB„„B(x y—) .

and

8(x)= [y*(x)(Bpp(x)/Bx„+iepA, (x) pp(x) )
(3 &) + (Bp*(x)/Bx„i—e A„(x)p*(x))p(x)7, (3.9)

while, as before, 5(x) = pp*(x) y(x).
The equal-time algebra involving j„(x), S(x), and

g(x), Kqs.r (2.8) and (2.10), is, however, unchanged, as
can be verified by explicit computation. '~" We must
add to this algebra the equal-time commutation rela-
tions of the components of the electromagnetic field with
themselves, and with the currents. These are

Finally, the dynamics is contained in the equations of
motion

[(B/Bx„+iepA„)'+p'7q =0,
[(B/Bx„—iepA „)'+p'] p*=0,

(3.6)

together with a set of equations of motion for the vector
potential A„(x). Since the latter are gauge-dependent,
and 'will later be replaced by the gauge-invariant
Maxwell equations, we will not write them out here. The
full set of equations of motion can be obtained, one way
or another, from the symmetric, conserved energy-
momentum tensor'2 "
B„„=[(Bq "/Bx„iepA„—q *)(Bq/Bx„+iepA „q)

+(P~ ~) p(F-"F-"+—F."F" ) g"&7. (3—7)

j„(x)=iep[&p*(x) (Bp(x)/Bx„+iepA~(x)rp(x))
—(Bp*/Bx„—iepA „(x)y*(x))pp(x)] (3.8)

"The fields A „and A„are not really a canonically conjugate set
and, as is well known, the following set of commutators, Kq. (3.5),
have some paradoxical implications if taken literally. For this
reason, it should be mentioned that all the results of this section
remain unchanged if, instead of proceding as here with the
Lorentz gauge, we (a) introduce the radiation gauge and then
carry out the calculation, or (b) 6rst write the Geld theory in a
gauge-invariant but path-dependent way Lfollowing Mandelstam
(Ref. 30)j, obtaining the commutation relations using the Peierls
method (Ref. 31), and then introduce the currents and their
commutation relations."S. Mandelstam, Ann. Phys. (N. Y.) 19, 1 (1962).

3' R. Peierls, Proc. Roy. Soc. (London) 213, 143 (1952).
"G.Wentzel (Ref. 8).
"This- is- a case where the Hamiltonian density X(x), if used,

does not coincide with 000(x). However, it remains true that
~W (x}d'x=J'e«(x)d3x.

'4 In this equation, e0 is the bare electric charge. It occurs in two
places; once as a multiple of the 4-vector potential A„(x), and
again as an over-all factor in the expression for the current. In the
latter case, we will replace it by unity, as before (see Sec. IIA).
%e will, however, continue to display e0 whenever it appears in its
dyn. amical role as a coeKcient of A„(x).

C. Gauge- and Path-Indeyendent Electrodynamics

To pass from the conventional formalism to a gauge-
independent formulation of electrodynamics is a ques-
tion of introducing a set of gauge- and path-independent
variables describing the matter, the quantities F„„(x)
describing the electromagnetic field, of course, already
being gauge- and path-independent.

It turns out that the same quantities used to describe
the matter in terms of currents are also suitable for our
present purpose, so that we may now deal with the
coordinates j„(x),S(x), 8(x), and F„„(x).

The definition of the currents in terms of the under-

lying fields is different in that the gauge-invariant
currents are obtained by replacing B/Bx„by [B/Bx„
+iepA„(x)]. Thus we have~

(3.10a)LF' (x) F.~(y)7=[Fp'(x) Fp (y)7=0,

[Fp'(x)A'p(y)]= i(~', B/—Byp

—B pB/By )B(x y)—, (3.10b)
and

[~( ) F' ( )]=[~(*)F' ( )]=[p( ) F' (y)]
=[jp(x) F' (y)7=o, (31»)

P(x) Fo'(y)]= [~(x) Fo'(y)]
= [p(x) Fp'(y)7 =0, (3 11b)

[j p(x),Fp;(y) 7= —2ieg(x)B p;B(x—y) . (3.11c)

We have retained ep in the right side of Kq. (3.11c) to
remind ourselves that this term would not be present if
there were no interaction with the electromagnetic field.

The energy-momentum tensor can be expressed in
terms of the "coordinates" introduced above, as before,
by introducing

g„(x)= BP—ij„
= 2pp*(x) (Bp(x)/Bx„+iepA „(x)q (x))

and

8.'(x) = BP+ij.
= 2 (Bp*(x)/Bx„iepA „(—x) q *(x))y (x) .

Then we find

(3.12)

It is amusing to note that 8„„looks, formally, like the
sum of an energy-momentum tensor for a free charged
scalar field plus that for a free electromagnetic field.
That e„„above does not involve the interaction is,
however, illusory. The effect of the interaction comes in
when one solves the equal-time current algebra, in
particular through the commutator of jp(x) and Fp;(x)
which is zero if there is no interaction and is given by
Kq. (3.11c) if there is an electromagnetic interaction.

One way to see this is to try to introduce a functional
representation which solves the current algebra, as in
Sec. IIF. This is easily done, but it is clear that in order

1
Bp& (x) 4 09' pi&+ 4 @9& pill 2 [FgaF p +FpaFll ]

5 S

1—a" B-'-8-—s'~—V' PF' (3 13)
5
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to satisfy Eq. (3.11c), jz(x) and Fp;(x) must have some
pieces, at least, which are composed of a common set of
canonically commuting variables. Otherwise they would
commute. When 8„„(x) is written out in terms of a
functional representation having this property, the
interaction term reappears in an explicit form.

To conclude, we may brieQy discuss the equations of
motion. The equations obtained by commuting p, S, and
S with 8pp(x) remain unchanged in form, while that
obtained by commuting j&(x) with 8pp(x) Picks uP an
additional term from the commutator of jp(x) with
F0;P". It becomes

ap(x)
+ —2epS(x)Fpp(x) . (3.14)

It remains only to write the equations governing the
electromagnetic 6eld. The Maxwell equations divide
into two groups: a group of six equations involving the
time derivatives Eo; and FI,&, and two equations in-
volving just space derivatives, V I and V S.

It is not difFicult to verify that the six equations of
motion follow directly by commutation of FD; and F»
with 8pp(x), as given by Eq. (3.13). On the other hand,
the remaining two Maxwell equations are obtained by
commuting Iia; and Ii;, with 00I,. The resulting set of
eight equations may be summarized as usual in the form

paplvvBFlvv/Bxp =0
v

BF""/Bx„=epj".
(3.15)

It should be emphasized that the above theory is on a
different footing from that described in Sec. II insofar as
the matter and the radiation 6eld are treated differently;
we permit ourselves to describe the radiation by a
quantized field, but the matter is described by currents.
We do not see that there is necessarily any incon-
sistency in this procedure. It does, however, complicate
the problem with respect to renormalization. What
quantities are to be renormalized, and how, is now a
more subtle question, the key to which lies in the
relationship of the bare charge e0, introduced above, to
the physical charge. We have not yet resolved this point.

IV. SUMMARY AND CONCLUSION

We would like to comment here on some of the
foregoing results.

(1) We have now seen how a relativistic model of
bosons can be formulated as a set of relations between
hadron currents and the energy-momentum tensor,
supplementing what we learned about the quark model
in I. Evidently, one could generalize what we have done
in a straightforward way to include other kinds of
theories, if desired.

(2) It has again turned out that 8„„(x)can be defined

by its equal-time commutators. Here we have found
(Sec. IIE and Appendix 8) that 8„„(x) is completely
determined if the particular form of all its equal-time
commutation relations is speci6ed. In I, we saw in the
quark model that 8„„(x) was determined up to a
manifestly covariant Lorentz scalar (an "interaction"
term) by just those properties of its equal-time
commutators which express relativistic invariance
requirements.

(3) The introduction of functional representations
brings theories formulated in terms of currents closer to
a concrete, numerical form. Similar functional repre-
sentations can presumably also be employed in other
cases, such as the quark model treated in I, where the
resulting equations are, of course, of much greater
potential interest.

(4) We suspect that most of the conclusions we have
formed on the basis of the charged scalar model will turn
out to hold quite generally for theories formulated in
terms of currents. However, the model undoubtedly
represents an oversimplihcation of the real state of
affairs in that it has been so easy to maintain manifest
covariance here, for example, in the expression for O„„as
a function of the currents. This is a consequence of the
simple spin structure of the theory, which results
in correspondingly simple relativistic transformation
properties.

(5) We have seen that electromagnetism can be
incorporated into strong interaction theories of this
type, by adding as additional "coordinates" the electro-
magnetic field F„„(x).We see no logical inconsistency in
this procedure in the electromagnetic case.

But suppose the strong interactions are mediated by a
basic Yukawa interaction of some kinds'Our treatment
of electromagnetism indicates how such an interaction
could be included in the theory, but in this case the
logic involved appears more questionable. An eBective
Yukawa interaction could, however, emerge in a theory
which involves just the currents. Here one would think
of using the partially conserved axial-vector current
hypothesis (PCAC) to define a field with the quantum
numbers of the pion as the divergence of an axial-
vector current.

At this juncture, let us see if we can abstract from the
models studied in these papers a tentative set of
working hypotheses. It would appear that we can
suppose:

(i) that the weak and electromagnetic hadron cur-
rents, the hadron energy-momentum tensor 8„.(x), and
operators de6ned in terms of these by equal-time
commutation are quantities which are measurable in
principle;

(ii) that the above operators include a complete set
of observables for the hadrons; and
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(iii) that a representation of the equal-time algebra of
the currents and 9„„,which satisfies the conditions of
I.orentz invariance and positivity of the energy spec-
trum, determines all the matrix elements of these
operators, including their time dependence.

Some strong points of this approach have been men-
tioned in I. Here, we wish to add the following:

(a) As commented in Sec. I, it is desirable in any
theory dealing with complicated systems to have a
formulation which incorporates as much as possible that
is true at the outset. This approach seems admirable
from this point of view in that strong-interaction
symmetries and sum rules are expressed rather directly
through the equal-time current algebra, which is the
starting point of this formulation. Also, theories built on
currents are consistent with the idea of having no
elementary strongly interacting particles.

(b) In the present formulation, simple fundamental
interactions, for example, those of the current x current
form, can be introduced in a simple way. This is not
always the case with theories based on observables. For
example, the S-matrix theory shares property (a) with
theories based on currents, but not (b).

(c) In discussing the quark model in terms of cur-
rents, one comes fairly close to writing a theory of
strong interactions that is based on observables, which
one could imagine as being complete, and that is
described by definite dynamical laws. " It is probably
worthwhile to be able to look at strong interactions
within such a concrete dynamical framework, even if one
does not entertain great hopes of making it mathe-
matically consistent, let alone solving the dynamics,
overnight.

To counterbalance such optimism, one can well ask:
Is it likely that this formulation actually circumvents
any of the really central difIiculties which confront one
in strong-interaction dynamics? Hardly. It has not been
our experience that any of the many reformulations of
the problem of strong-interaction dynamics have "swept
all before them. " However, the different approaches
have sometimes led to new insights which have proven
of value. Perhaps one can hope as much for the ap-
proach discussed in these papers.

ACKNOWLEDGMENTS

It is a pleasure for the author to thank Professor R.
F. Dashen for many stimulating and clarifying con-
versations on the subject of this paper. He would also
like to thank Professor S. I.. Adler, Professor R. F.
Dashen, and Professor A. M. Jaffe for numerous helpful
comments on the manuscript. Finally, he would like to
acknowledge several lively and interesting conversations

"Aside from Lagrangian Geld theories, this is the only way we
know of to write, in explicit form, a complete dynamical theory.

on these topics with Professor R. P. Feynman and
Professor M. Gell-Mann.

APPENDIX A: IRREDUCIBILITY OF THE
EQUAL-TIME CURRENT ALGEBRA

Suppose there is an operator" 2 (x), which commutes
at a given time with j„(x),S(x), and BS(x)/Bt;

LA(x),S(y)]=0, (A1a)

LA (x),BS(y)/Bt]=0, (A1b)

C~(x),f(y)]=0, (Alc)

L~( ),j.(y)]=0, (A1d)

but which is otherwise unspecified. Here we shall sketch
a heuristic argument to show that 2 (x) is a function
only of the total charge, Q= 1'P(x)d'x. Since the charge
operator is a multiple of the identity acting on any given
charge sector, this result means that j„(x), S(x), and
BS(x)/Bt form an irreducible set of operators, at a given
time, when acting on a space of states all having the
same total charge.

For our present purposes, we will assume that the
fields j(x), j*(x), ir(x), and ir*(x) are irreducible at a
given time; that the operators j„(x),S(x), and 85(x)/8/
are defined in terms of the fields by Eqs. (2.6), (2.8d),
and (2.9); and that they satisfy the equal-time current
algebra, Eqs. (2.8) and (2.10).

The plan of the argument is as follows. "Each state
which is a simultaneous eigenstate of P(x) and j*(x) is
also an eigenstate of S(x). (Not conversely. ) We first
find the set of eigenstates of j(x) and cp*(x) corre-
sponding to a fixed eigenvalue" S(x) of S(x).These span
a certain subspace Kq of the space of eigenstates of
&p(x) and j*(x). Since A(x) commutes with S(x), by
hypothesis, it maps Xs into itself. The operator A(x)
may then be represented, in general, by giving its
matrix elements first with respect to each pair of inde-

pendent vectors in Kq corresponding to a fixed eigen-
value S(x), and then taking the direct integral over each
distinct eigenvalue S(x) of S(x). LNaturally the matrix
elements of A(x) with respect to the independent
eigenvectors in Xs will depend on S(x).] With A (x)
represented in this form, the effect of the restrictions
imposed by Eqs. (A1b)—(A1d) can be seen rather
directly, and it is found that A. is a function only of the
charge operator Q.

We first use the fact that S(x), j(x), and P*(x)
commute among themselves at equal times. This im-

plies, first, that P(x) and P*(x) may be simultaneously
diagonalized, and secondly, that their eigenvalues are
complex conjugates of one another. Moreover, each

3~This argument follows the same logical pattern as that
employed in the preceding paper. We are simply trying to Gll in
here some of the details which were passed over in Ref. 1."It may be helpful at this point to refer to the material on
functional representations in Sec. IIF, or to the books on this
subject listed in Ref. 19.
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with

LP(x) P(y)]= —v"'(y)P(x

LP(~), q (y)]= —~(y)q (y),

P(l).)= li(x)P(x)d'x.

(A3)

(A4)

Here X is an arbitrary real function of x. From Eqs.
(A4) and (AS) it follows that

emLiP(l~)]q (y) e&L—iP(l )]=expl:—i~(y)]q (y) (A6)

'Applied to an eigenstate of q) (x), the relationship (A.6)
gives

q(x) expl —i l (y)P(y)d'y II q q*&

=.~ '""t (*) ~m(
—) &(v)ib')~'x)

l
t ~')

The state expl —iJ X(y)P(y)d'y]l q), q )» therefo«
also an eigenstate of iP(x) with the eigenvalue changed
at each point x by expL —il) (x)].

The set of states expL —iP(X)] I q), q *), associated with
a Axed set of eigenvalues p, q ~, clearly span the space
Ks of eigenstates of S(x) having a fixed eigenvalue S(x).
That is, an arbitrary eigenstate of S(x), corresponding
to the above eigenvalue S(x), can be written as a linear
superposition of eigenstates

I ip, q)*) of q)(x) and j*(x)
with arbitrary coeflicients g(X, q, q*) as follows:

IS&= e~l:—ip(l )]I q, q*&

Xg(&(y), q (y), q*(y) )»(y) (Ag)

where nlrb(y) represents a functional integral over li(y).
The operator A(x) commutes with S(x), and it

therefore carries KB into itself. It can be specified by

eigenstate of q (x) and q~(x) is an eigenstate of S(x)
with eigenvalue q *(x)q (x).

Next, we characterize all those eigenstates of q) (x) and

q *(x) corresponding to a fixed eigenvalue S(x) of S(x).
We have, at each point x, and for Axed eigenstates
lq, q*&ofiq(x) q"*(x)

q" (x) I q, q*)= q (x) I q, q*&, (A»)

q*(x)
I q, q*)= q*(x)

I q, q*),
and

S(x)I q, q*&=q*(x)q(x)l q q*&

Hence, what we need are all eigenstates of q)(x) whose
eigenvalues have a fixed value for their square modulus;
that is, all eigenstates of q (x) whose eigenvalues differ

by a (generally space-dependent) phase factor of
modulus unity.

These cari be generated as follows. From the commu-
tation relation

giving for each S(x) its matrix elements between every
pair of eigenstates belonging to a set which spans Xq.
Therefore, we can write

~(x)= emL —ip(&)] I q (x), q *(x)&&q (x),q*(x)
I

Xexp(ip(V)]F(X, V, q), q)*)nhnX'nq)nq)*, (A9)

where Sy and Sp* represent integrals over the
eigenfunctions q)(x) and q ~(x).

The above representation is de6cient in that one can
not integrate over all q (x) and q)~(x) without counting
some states more than once. We therefore label states
by I q)(S),q)*(S)&; corresponding to a fixed S(x) we
choose &p(x) and q *(x) to be some definite function of S.
(The choice is, of course, not unique, but it is only
necessary to be able to do it in some way. ) All the other
states that go with this value of S(x) are generated by
the oper ation

expL-iP(l )]l q(S),q*(S)&.

With this modification we can then integrate over all
S(x) in Eq. (A9). Thus we can write

~(x)= mL —iP(l)]1q(S),q*(S)&(q(S),q*(S)I

XexpLiPP ')y'P. ,X', q (S),q*(S))n~nVnS

nlinX' expL —iP (li) ]A (g,g', q) (x),q)*(x))
XexpLyiP(V)7, (A12)

where &(li, l)', q)(x), q)*(x)) depends on the functions
X(y) and V(y) and the operators q)(x), q ~(x).

To further restricts(x), we must use the fact that it
commutes with P, BS/Bi, and ji. Since

I q)(x)~P(y)]= q'(x)P(x y) (A13a)

Lq (x) ~S(y)/Pi]=iq (x)P(x—y) (A1~b)

Lq'(x), P(y)]= —q)*(x)P(x-y), (A13c)

I:q"*(x),~S(y)/~&]=iq *(x)P(x—y), (A13d)

it follows that
PA (q (x))

L~ (4(x)),P(y)7= q (y)
hq (y)

Consequently, commuting A(x) with ciS(y)/il/+ip(y)
and BS(y)/8$ iP (y), we f—ind that Eqs. (A1b) and (A1c)
imply

PA (l~,X', q)(x), q)*(x))
nl). nY expL —iP(l).)]q (y)

Pq (y)

Xe~l iP(Z')]=0 (A14a)
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and

8A (h, X', y(x), y*(x))
X)znV expf —ipse, )jy*(y)

8y*(y)

)& exp fip(X')g= 0, (A14b)

since p(X) commutes with p(y) and 85(y)/Bt.
To analyze this equation we take its matrix element

between eigenstates of p(x), finding:

SASH' exp —i X y p y d'y

8A (Z, X', y(x), y*(x))
Xy( )

8y x

&(exp i X' z p z d's =0, A15a

with a similar result for Eq. (A14b). Since these inte-

grals must now vanish for arbitrary p(y), it is probably
safe to conclude that the integrands themselves must
vanish. Thus we must have

y(x)~A (y, y*)/~y(x) =0 (A15b)

y*(x)8A (y, y*)/by*(x) =0. (AISc)

The precise character of the solutions of such equa-

tions is a rather subtle matter. Roughly, they imply that
A (y, y*) is functionally independent of y and y* except
for functionals that are discontinuous at a zero eigen-

value of y(x) or y*(x). For the time being, we shall

disregard the latter possibility. s' Then we have

A(x) = nay'A (~,X') exp fiP(X' —X)]

npX)vA (p, v) expfip(ir) j, (A16)

with I.=X—X' and .=&+X'.

88 A similar situation arises if one studies the following problem
in nonrelativistic quantum mechanics in one dimension. Suppose
an operator A satisfies LA,x $=„0, LA. , xp+pxj=0, with Lx,xj
=Lp,pj=0; t x,pg=i. What is A, supposing x and p complete?
Although one might think that A. must be a linear combination of
just the identity and parity (P) operators, this is not, as a matter
of fact correct, as pointed out to me by Professor V. Bargmann. In
fact, A can also depend on 0., de6ned by

g+=o (x)e; cr(x) =+1, x)0
0, x=0

x&0

and on oE. In one way of solving this problem, the possibility of
0- and o-I' as solutions arises precisely from the nonuniqueness of
solutions of equations of the same form as those in the text. What
this means is that x' and xp+px are irreducible on a 6xed parity
subspace of Hilbert space, 0 being an operator that takes one from
one parity subspace to another.

In the neutral scalar theory, the operator corresponding:to ~ is

b(p{x))—the "field amplitude parity. "One might expect that the

blineiar operators S= q' and 85j81=~++~q appropriate to the
neutral theory would bq irreducible olily on a fixed amplItude

It remains to impose Eq. (Ald). From Eqs. (2.8b)
and (AS) it is clear that

fP(~),j.(y)j=—»f8~(y)l8y. hs(y) (A17)

Since p(x) and S(x) commute, it is also clear that

fexp(ip(p)), j s(y)$=2f8p(y)/By )sS(y). (A18)

Therefore the hypotheses that A commutes with js(y),
Eq. (A1d), implies that

8~(y) .
2 dpdvA(ir, v) S(y)=0.

~yI,

Since this equation holds for each point y, it can in
general be satisfied only if Bp(y)/Bys=0. Equation
(A16) then states that A=F(Q) Actin. g on a set of
states all having some fixed total charge, Q is a multiple
of the identity; hence the operators j„(a), 5(x), and
8S(x)//8i are irreducible at a fixed time in a given charge
sector of the charged scalar theory.

(AIV)

( ) 'f8oo( ),p(y) j=8fj (y)&( —y) 1/&y„
if8ao(x), i(y) j=f8'(y)/8&g&(x-y),

if8ss(x), S(y)j=S(y)8(x—y),
if8oo(x) S(y))= f2~'S(x) —8,"(x)j8(x—y)

+8f8sS(y)~(x —y) j/8y. , (B1d)

(Bla)
(B1b)

(Blc)

parity subspace of Hilbert space. This is r'cally no restriction in this
case, however, because in a world with just self-interacting spinless
bosons there is a superselection rule saying that only pairs of
bosons can be produced. Hence one cannot distinguish between
scalar and pseudoscalar mesons, which is what d(q (x})allows one
to do. So in fact one can forget that b(q) is a solution of the
algebraic problem, if one imposes the superselection rule, and
regard g(xl and 8S/Bt as irreducible on the whole Hilbert space.

In the charged scalar theory, the corresponding "ambiguity" has
to do with the phase of a field at a point /namely, the point where
the (complex} field amplitude has a zero eigenvaluej instead of
just the sign of the field. However, in a self-interacting charged
scalar theory one can not determine the absolute phase of a field,
so that the question of irreducibility should not be eGected by this.

The author would like to take this opportunity to thank Pro-
fessor V. Bargmann for a very instructive discussion of this
problem, as well as Professor G. Tiktopoulos and O. Svetlichney
for many helpful comments.

APPENDIX B: EQUAL-TIME COMMUTATION
RELATIONS OF THE ENERGY-

MOMENTUM TENSOR

In this Appendix we 6rst list the equal-time commu-
tation relations between the components of 8„„(x),and
between 8„„(x)and the operators j„(a),S(x), and 8(x).
In the second part of the Appendix, we suppose that
there are two expressions for 8„,(x) which are both
compatible with this set of commutation relations, and
show that the two expressions can diBer only by a
multiple of the identity. The relevance of this result to
the question of how the equal-time commutation rela-
tions of 8„„(x)carry dynamical information is discussed
rn Sec. IIE.

The commutation relations between 8„„(x) and the
currents are
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( ) i[H.l(»),p(y)]= H[jo(y)~(» —y)]/H3 i

+H[ji(y)H(» —y)]/Hy.

-H. [Hoo(*),.(y)], (82 )

(82b)i[Ho~(») j(y)]=Ho~i[Hop(») j(y)]

i[H„(x),$(y)]= H„ i[H«(x), $(y)]

i[Hog(x),S(y)]= &o~i[Hoo(»), 8(y)]+2[&oooo(»)

-H. ( )+H. »'( )]H( -y)
—2[HP6'(y)H(»- y)]/Hyo

(82c)

+H[HoS(y)H(x —y)]/Hy&], (82d)

(c) i[Hoo(x),p(y)]= p(—»)HH(» y)—/&x. , (83a)

i[H &(x),j&(y)]= [Hj~(»)/»o]&(» —y)

—H[j&(x)H(x—y)]/»&, (83b)

i[Ho (x) $(y)]= [HS(»)/»o]H(» —y)

i[H»(x), S(y)]= 8(»—)&&(» y)/—»o

(83c)

(83d)

8
i[Hop(»), Hoo(y)]= —Ho~(») H(» —y)

Bx'i

Next, we list the commutation relations between the
various components of H„„(x).We find"

8
'[Hoo( ) Hoo(y)]= —[Ho ( )+Ho (y)] H( —y) (84 )

8$y

means that a solution to Eqs. (81)—(84) for H„„(x) in
terms of j„(x),S(x), and S(x) exists. "The question is
then whether this solution is unique. To answer this we
suppose that, corresponding to a single, specific choice
for j„(x), S(x), and 8(x), there are two energy-mo-
mentum tensors H„„'(x) and H„,o(x) satisfying the equal-
time algebra, Eqs. (31)—(84). We then form their
difference h„„(x)=H„„'(x)—H„„o(x) and consider its com-
mutation relations with j„(x),S(x), and 8(x).

First consider Apo(x). From Eqs. (83) it is clear that
Apo(x) commutes with each of the operators j„(x),$(x),
and 8(x) at equal times. We see from Sec. IIC and
Appendix A, therefore, that Dpo(x) must be a multiple
of the identity on a fixed charge sector of the theory. "

The situation for ho~(x), k/l, is also simple. From
Eqs. (82a)—(82c) we see that it commutes with S(x),
p(x), and jo(x), and it is therefore a function only of
S(x). Its commutator with 8(x) is

[ho&(x),8(y)]=2iho&(x)b(x —y), k&l. (85)

Since ho~(x) must be made up out of S(x), it must
involve terms like bl, ~ times a Lorentz scalar formed from
$(x), or some symmetric space derivatives of S(x),
again times a I.orentz scalar made out of S(x). The
former possibility is ruled out because kll, while terms
of the latter type can not satisfy Eq. (85). Hence
6&& ( /kl) must also be a multiple of the identity.

The situation for hpp(x) and ho ~(x) (k = l) is somewhat
more involved, because the commutator of Hpp(x) with
jo(x) is not known, 4' but is rather the new operator
Bj (x)/Hl. We therefore reason as follows.

First, it is clear that App(x) and d, »(x) (no summation
on k here) both commute with S(x) and p(x), s'o we have

8
+ [Hoo(»)HoiH(» —y)], (84b)

Bxi

S„(x)=~„(S,p),
A„„(x)= moo(S, p) .

(86)

8
i[Hoo(») H (y)]=Hoi(»)&(» —y) — [Ho. (»)H(» —y)]

Bxi

a
[Hol(x)H(» —y)], (84c)

8$ls

8
i[Ho (),»t(Ho)]y=Hpo(y) H(» —y)

By&

8
Hp[(x) 8(x y) . . (34d)

8$y

Now Iet us see how the above commutation relations
determine H„„(x).First, note that since j„(x),$(x), and

8(x) are supposed to form a complete set, any operator
can be written in terms of them. We assume that this

39 The commutators Leoa(x), Hl, l(y)g and I 8&&(x) Psi(y) j have
been omitted from this list because they are complicated and not
very instructive. However, like the commutators listed, they in-
volve no inverse operators and no operator products other than in
the interaction term XS'.

H ogApp(Sp) =moo(Sp)+F oo($) . (88)

The commutators of Apo(x) and Ao&(x) with 8(x) are

[hop(x), S(y)7= ih„&(x)H (x y), — (89)

I ~„,(x),S(y)]=i[H»~„ (x)—»„„~„(»)
+26 (x)]H(x—y), (BIO)

40 The basic fact' that we use here and below is that an operator
is determined if its commutator with each of a complete set of
operators is known."Of course, we do know the commutator L000(z),j (y) $ in terms
of j„(x), S(x) and S{x);it is essentially given in Eq. (2.19}.
However, we have found no way to express it in terms of 8„„(x)
and the currents in a linear fashion, so we must give up this
information if we pursue the viewpoint of Sec. IIE.

Next we look at the commutator:

[Aoo(x),j(y)]=Hoo[hop(x), j(y)] (k not summed) (87)

obtained from Eq. (32b). We see from Eq. (87) that the
difference between Aoo(x) and Hoodoo(x) commutes with
S(x), p(x), and j (x), so it can only be a function of S(x).
Thus
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(sum over p in the above equations). Using Eq. (38),
these equations take the form

L~»(x)+F»(x),5{y)j
=

if~op(x)+Fop�(x) —8oo~(x)j8(x y) (811)

L&-(x) 5(y)j
=iLhgo(x) —Fg, g, (x)—good(x)$8(x —y), (312)

A(x) =Q AII(x).

where P is a c number.
Next, return to Eq. (88) and sum over k to 6nd

3&oo(x) =Q o &o~+g p &»
=P(1P)f{t)+4~5 (313)

We have now essentially exhausted the commutation

relations of 8pp(x) and 8o p with the currents. To further

restrict hop (x) and d, Io(x), we must make use of Lorentz

invariance.
A simple way to do this is to argue as follows. Since

t4p(x) is the (0,0) component of a Lorentz tensor„and

p(x) is the time component of a Lorentz 4-vector, one

must III fact llavc 111 Eq. (815) that f(p) ~ p +'rgpp RIld

+~goo. Thus Eqs. (315) and (314) must have the form

1
&(x)=p'—p'+v'goo —o~'gooS,

S S
(814')

1
3&oo(x) =t3' t '+v'goo +—4~'goP—

S S
(813')

This, however, is impossible. The quantity h„(x)
=capp(x) —6(x) must be a Lorentz scalar, while from

Kqs. (3.14') and (3.15') it is clear that each term in

hpo(x), h(x) and in their difference transforms like the

{0,0) component of a Lorentz tensor. Hence we must

llavc Q =p ='r =0, wlllcll llllpllcs tllat Bop(x) Rlld 6(x)
must either vanish or be multiples of the identity.

This leaves us with Aoo, which from Eq. (38) and. the
above results must have the form App(x) = n~iS(x)—

Subtracting Kq. (812) from Eq. (811), we find

t Eoo(x),8(y) j=2iF»(x)8(x y)—Si.nce F» depends

only on 5(x), the solution of this equation is Foi, (5)
=nooS(x), where the three coefficients aI, I. must be c
numbers. Using this result, and summing Kq. (812)
over k, we And

Lg(x),8(y)g= —iL~S(x)+26(x)gb(x —y), (813)

with n=gono~. Solving this equation for 5 gives

Lrecall that ago ——aI, I,(S,p)1

However, the only way one can add a term proportional
to 5(x) to hqI(x) in such a way that A&I(x) maintains
its correct I orentz transformation properties is to have

0!pic propoitlonal to 5ISIc. But we caIlnot choose Qlc@ 0 BIcIc&

for then p I, n», =n ~ II &0, in contradiction to what we

found above.
Alternatively, we may argue directly from Eqs. (34a)

and (34b). First, Eq. (84a), integrated over y, implies
that

8op(x)+8oo, ~(x) =0 (k summed) . (316)

Therefore the difference of two solutions t4p(x) =8po'(x)
—8ppo (x) satis6es

&oo(*)=0. (817)

For App(x) of the form (315), this equation implies

8 1 ) 85
oP —f(p) I+-4~—=0

Bt 5 1 Bt

Since we are considering the possibility of diBerent
solutions 8„,'(x), 8„P(x) corresponding to an arbitrary
but fixed choice of j„(x),5(x), and 8(x), we are not free

to adjust these operators so as to satisfy the above
equation. Thus we must have n=i9=0, as before.
Finally, we use Kq. (84b), recalling that we already
kIlow that Boo(x) 6&I(kPl) RIld Dpp(x) either vanish or
are multiples of the identity. We can then write

8
L~oo( ),~ (y)j= ' ~ ( ) 8( —y)

8x'

Integrating over x, we find

0 = iaa„I(—y)/ay, ,

which implies that each coefficient e~~ ——0, using the
facts that B,I, I, (x) =n»5(x) and d II(k/l) is a multiple
of the identity.

We have shown, therefore, that A„„(x)must be zero
or a multiple of the identity. Thus, the commutation
relations (81)—{84)suffice to determine 8„„(x)uniquely

(up to inessential phase factors), once a representation
of the equal-time current algebra is speci&ed.

In the above, we have supposed that the interaction
tclIII had tllc spcclflc folIII X8(x)= PS (x). Tllls WRS

clearly inessential; all that is needed is that the com-
mutators of the interaction term with the complete set
of operators j„(x), S(x), and 8(x) be known and
specified, as in Eq. (2.20).


