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around the respective rectangles for each of the two
integrands will vanish so that (C2) may be written as

The above terms can now be combined into the form
which is Eq. (42),
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A conceptually simple and easily applied approximation is made for the Van Hove distribution function
G(R,t) of a classical liquid. This approximation gives a less rapid temporal decay of G(R,t) than is found in
the Vineyard convolution approximation. In addition, by requiring that the sum rules be satis6ed, we 6nd
that for I, smaller than about 0.5)&10 '3 sec the "correlations" in a liquid may be said to be increasing.
Comparisons are made with recent neutron scattering experiments. There is fair agreement between the
theoretical and experimental results.

I. INTRODUCTION
' 'N j.954, in a study of neutron-diBraction phenomena,
~ ~ Van Hove introduced the time-dependent general-
ization of the equilibrium radial distribution function. '
This function, denoted G(R, t), represents the ensemble
averaged time evolution of the spatial distribution of
pairs of molecules in a liquid. G(R, t), and its space and
time transform S(x,co), contain a wealth of information
concerning the properties of a liquid. For example, by
use of the first Born approximation S(x,co) may be
shown to be proportional to the probability of creating
an excitation of momentum hx and energy 4u in a
scattering experiment. ' ' As expected, then, S(x,ra) ap-
pears in the theoretical expressions for the scattering
of light' ' and neutrons" by a liquid.

There have been two approaches to the computation
of S(x,cu). In one, the hydrodynamic equations have

* U. S. Public Health Service Predoctoral Fellow.' L. Van Hove, Phys. Rev. 95, 249 (1954}.
'- C. Kittel, Quan@am Theory of Solids (John 0'iley R Sons, Inc.,

New York, 1963), Chap. 19.
' L. I. Komarov and I. Z. Fisher, Zh. Eskperim i Teor. Viz. 43,

1927 (1962) )English transl. : Soviet Phys. —JETP 16, 1358
(1963)j.

4 R. Pecora, J. Chem. Phys. 40, 1604 (1964).' A. Sjo*lander, in Thermal N'eutron Scattering, edited by P. A.
Egelstaff (Academic Press Inc. , London, 1965). This article is an
excellent theoretical review of neutron scattering by liquids.

been solved to And the time-dependent distribution
functions. As might be expected, such analyses lead to
quite good agreement between theory and observation
in the hydrodynamic regime, ' and even to agreement
in the case of the long-time behavior probed by neutron-
scattering experiments. ' ' However, since a hydro-
dynamic theory avoids study of the microscopic dy-
namics of the liquid and uses only the coarse-grained
hydrodynamic equations of motion, such an analysis is
not capable of predicting the behavior of the liquid for
short times.

In the other approach, attempts have been made to
determine G(R, t) by examining the microscopic be-
havior of the system. ~'~ Because of the complicated

6 R. D. Mountain, Rev. Mod. Phys. 38, 205 (1966}.' R. K. Osborn and A. Z. Akcasu (unpublished).
8 J. H. Ferziger and D. L. Feinstein, Phys. Rev. 158, 97 (1967}.

G. H. Vineyard, Phys. Rev. 110, 999 (1958).' P. A. EgelstaB, in Inelastic Scattering of Neutrons in Solids
and Liquids (International Atomic Energy Agency, Vienna, 1961),
p. 25."P. A. Egelsta8, in InelasIic Scattering of Neulrons in Solids
and Liquids (International Atomic Energy Agency, Vienna, 1963),
Vol. I, p. 65.

"A. Rahman, Phys. Rev. 136, 405 (1964).
~ K. S. Singwi, Phys. Rev. 136, 969 (1964); Physica 31, 1257

(1965).' R. J. Nossal, Phys. Rev. 143, 74 (1966)."R. C. Desai and M. Nelkin, Phys. Rev. Letters 16, 839
(1966).
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coupling that exists between the motions of particles in
the liquid, it is dBBcult to carry through this analysis
despite the simple physical meaning attached to the
function G(R,t). Shortly after the appearance of Van
Hove's pioneering paper, Vineyard9 proposed an ap-
proximation designed to factor the many-body problem
and to give G(R, t) as a function of a single-particle time-
dependent distribution function and the equilibrium
radial distribution function. As we will show, the
Vineyard convolution approximation is only accurate
for long times. Indeed, this approximation fails to
satisfy the sum rules for the lower moments of S(x,co),
which depend only on the limiting behavior of S(|c,cu)

as t —+ 0.5 In addition, because the convolution approxi-
mation is a poor representation of the behavior of
S(x,co) for short times, propagation of coherent ex-
citations is impossible. Thus, the convolution approxi-
mation fails to predict the Srillouin-Mandelstam
components of the light scattered from density Quc-
tuations in a liquid, ' "or the coherent peaks observed
in neutron scattering from simple liquids. "

Recent attempts to improve the convolution approxi-
mation have met with some success. Kgelstafr' has pro-
posed an expression designed to satisfy the sum rules. ""
Rahman, observing that the convolution approximation
leads to a decay of initial correlations which is too rapid,
has proposed a time-delayed form of the convolution
approximation which is in better agreement with the
results of his computer experiments. "Desai and Nelkin
have used this latter approximation to study neutron
scattering from argon. " Singwi and Nossal have at-
tempted to include the many-body dynamics by adding
terms neglected in the convolution approximation. ""
Singwi finds good agreement with experiment.

In this paper we adopt a diGerent approach to the
computation of S(x,co). In Sec. II we present elementary
considerations which show that the Vineyard con-
volution approximation fails to accurately represent the
behavior of the liquid for short times. We propose an
interpolation formula which represents the motion of a
particle properly for both long and short times. The
sum rules for S(x,a&) are presented in Sec. III. These
are then used in Sec. IV to establish an approximate
form for the interpolation function. In Sec. V we com-
pute the incoherent scattering function by employing
a velocity autocorrelation function recently introduced
by Berne, Boon, and Rice." We use these results to
compute in Sec. VI the neutron-scattering cross sections
for argon at 85'K, and compare our results to recent
experimental work. '8 '0 We find the predicted scattering

' P. G. DeGennes, in Inelastic Scattering of neutrons in Solids
and liqlids {International Atomic Energy Agency, Vienna, 1961),
p.239."K. S. Singwi and A. Sjolander, Phys. Letters 9, 120 (1964)."S.H. Chen, O. J. Elder, P. A. EgelstafF, B. C. G. Haywood,
and F. J. Webb, Phys. Letters 19, 269 (1965).

'9 B. J. Berne, J. P. Boon, and S. A. Rice, J. Chem. Phys. 45,
1086 (1966).

~ B. A. Dasannacharya and K.. R. Rao, Phys. Rev. 137, A417
(1965).

cross sections to be in reasonable (but by no means
exact) agreement with experimental data.

II. A NEW APPROXIMATION

Given that there is a particle at the origin of the
coordinate system at time zero, the probability density
for finding the same particle at the point R at time t,
(R,t), is G, (R,t). The probability density that a different
particle is at (R', t) given the same initial conditions is

Gd(R, t). Finally, the conditional probability that a
different particle is at (R,t) if the first, which had been
at R=0 at t=0, is at (R,t) is P(R', t

~
R,t). In order that

P (R',t
~
R,t) be properly normalized we must have

O'R' P(R', t~ R,t) =X 1—
It is also necessary that the boundary conditions

lim P(R', t~ R,t) =g(R'),

lim P(R', t
~
R, t) =g(R' —R) (2b)

)where g(R) is the equilibrium pair correlation function]
be satisfied. The connection between P(R', t

~
R,t) and

the functions G, (R', t) and G~(R, t) is established by the
definition

d'R P(R', t
i R,t)G, (R,t) =G.(R', t) .

This yields the equations

d'R g(R' —R)G, (R,t) = d'R g(R)G, (R'—R, t)

G~c(R', t), (5)

where Gqc(R', t) is the convolution approximation to
G&(R', t), and the equivalence of both expressions on the
left-hand side of (5) may be demonstrated by use of a
change of variable. Vineyard presented the second
expression and pointed out that the behavior of the
system for short times is not properly represented.

If we examine the behavior of P(R', ti R, t) as a func-
tion of time, we can clearly see where the problem lies.
In the short-time limit the dominant term of P(R', t

~
R, t)

should be simply g(R'), not g(R' —R) as in the con-
volution approximation. In the long-time limit, the
convolution approximation is valid. Clearly, we should

P(R', t
~
R, t) is not known for a Quid. We may, however,

approximate it in terms of known functions making sure
that Eqs. (1) and (2) are satisfied. It is then possible to
use Eq. (5) to generate an approximate Gz(R', t). The
Vineyard convolution approximation' is equivalent to
setting

P(R', t~ R,t) =g(R' —R).
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choose a form for P(R', t~R, t) which has the proper
behavior for both long and short times. Here we choose

P(R', t
~
R,t) =f(t)g(R')+L1 —f(t)jg(R' —R), (6)

where f(t) is a function of time. This form for P(R', t~

R, t) guarantees that the normalization condition of
Eq. (1) will be satisfied. If in addition we require that

lim f(t)=1,

lim f(t)=0,

III. SUM RULES

There are a number of conditions which it is necessary
that the function Ge(R, t) satisfy in order that it be
considered physically correct. Perhaps the most useful
of these conditions gives the theoretical values of the
moments of the space-time transformed distribution
function. Let

G(R, t) =G, (R,t)+G, (R,t),

and dehne the space transforms, called the intermediate
scattering functions, of G, (R,t) and G(R, t) by

we ensure that the boundary conditions of Eq. (2) are
obeyed.

Equation (6) represents the new approximation
introduced in this paper. In Sec. IV we will discuss f(t)
in some detail. It is pertinent, however, to comment
briefiy on the structure of P(R', t~R, t) as represented
by Eq. (6). First, we must realize that Eq. (6) is an
interpolation formula. The behavior for intermediate
times is not explicitly defined by Eqs. (6) and (7), and
we must hope that a judicious choice of f(t) will approxi-
mate the true function for this time regime. In addition,
for a hard-sphere Quid, P(R', t~R, t) should be zero
whenever ~R' —R~ is smaller than the hard-core di-
ameter a. Of course, in the long-time limit and in the
short-time limit the volume exclusion which requires
that P(R', t~R, t)=0 for jR'—R~ (a is entirely con-
tained in g(R' —R) and g(R'), respectively. It is only
in the intermediate time domain, when the particle
originally at the origin has moved some distance, but
not enough to make (2b) valid, that Eq. (6) is in error.
A fully valid form of Eq. (6) is obtained if the right-
hand side is multiplied by the Heaviside function
O(~ R'—R~ —o). Use of this form introduces complica-
tions in the analysis, so we shall not in fact multiply
(6) by O~. A dimensional analysis of the integrals in-
volved suggests that the error we make is tolerably
small because the calculation of Ge(R', t) involves an
integration of P(R', t

~
R,t) over all R. In this integration

the volume for which IR' —Rt is greater than the
hard-core diameter is most important, and hence dis-
crepancies which exist in the intermediate time domain
when

~

R' —R~ is smaller than the hard-core diameter
will introduce only minor error.

By substituting Eq. (6) in Eq. (3), we obtain

PR g(R' —R)G, (R,t). (8a)

This may be rewritten, using Eq. (5), in the form

Ge(R', t) =f(t)g(R')+L1 —f(t))Gee(R', t). (8b)

We will return to this equation after we have established
t.he sum rules which are to be used in determining f(t).

F,(x,t) = de e" G, (R,t), (10)

F(~,t) = d'Jt. e""G(R,t),

and the space and time transforms of G, (R,t) and
G(R, t) by

1
S'™M(x,(u) =-

2m

e '~'F (x,t), (12)

1S" (x,&v) =— e '"'F(x,t).
2g

(13)

By inverting Eqs. (12) and (13) and differentiating
with respect to time, we may derive the well-known
relationships

inc=

=lim ( ia/Bt) —"F,(x,t), (14)

coh = da) (a "S-~(x,(u)

=lim ( i8/Bt) "F(v.,t)—. (15)

The values of the lowest moments of co are well-known
functions in both classical mechanics and quantum
mechanics. " ~ In fact, since the detailed balancing
condition requires that'4

S(x, —co) = e—e'S(L,(u) (16)

Lwhere P=—(k&T) 'j, it is possible, using the techniques
introduced by Kgelstaff, 'I to derive the eth quantum
mechanical moment to order h" if we know the low'est
2e classical mechanical moments. In this paper, we can
consider either the quantum mechanical or classical
mechanical moments without changing any of the con-
clusions reached in Sec. IV. However, since the expres-

~ P. G. DeGennes, Physica 25, 825 (1959).~ G. Placzek, Phys. Rev. 86, 377 {1952).
3 A. Rahman, K. S. Sinai, and A. Sjolander, Phys. Rev. 126,

986 (1962).
'4 P. Scho6eld, Phys. Rev. Letters 4, 239 (1960).
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sions we obtain are somewhat simpler in form for the
classical case, and the physical interpretation is more
transparent, we will couch our argument in classical
terms. First, we note that all moments of odd order
vanish. "Then, defining

y(x) = d'R e'" Rg(R),

we find"

(1),.h = 1+y(x),

CO inc= K

(-),.="/p,
f{:4 3 4m t'B' V

(co');„.= —+ dR Reg(R)~
Pm' P 3x' 0 (BR'

(18)

(19)

(20)

(21)

2av-
+—,(22)

E BE

In Eqs. (20), and those following, m is the mass of the
particle and V is the intermolecular potential. Equa-
tions (22) and (23) may be rewritten in various ways.
Using the small step diffusion approximation introduced
by Rice and Kirkwood"" we 6nd that the diffusion
coeKcient D is given by

1-4 m B'V 2 BV --&
D= dR R'g(R-) +— . (24)

p 3 0 BR' E BE

Substituting Eq. (24) in Eq. (22), we find

x4 t3 1
inc=

Pm'LP mP4DV)
(25)

Equation (23), which has been expanded for small e,
may be simply written in terms of the shear and bulk
moduli of the system for in6nite frequency, E„and
6„, respectively. Using the expressions presented by
Zwanzig and Mountain, ' and Schofield, "we 6nd

ft,
4

(26)

where p is the number density. Still another rewriting

'~ S.A. Rice and J. G. Kirkwood, J. Chem. Phys. 31, 901 (1959)."S.A. Rice, J. Chem. Phys. 33, 1376 (1960)."R.Zwanzig and R. D. Mountain, J. Chem. Phys. 43, 4464
(1965).

~ P. Scho6eld, Proc. Phys. Soc. (London) 88, 149 (1966).

a4 -3 2m t' B'V 2 BV
((v4)..h

—— —+— dR g(R)~ 3 +-
pm' p 15 0 5 BR' RBR

+O(e') . (23)

of Eq. (22) is possible. Although we do not use this last
form herein, we mention it briefly in the Appendix.

IV. THE INTERPOLATION FUNCTION

We shall now return to the problem of determining

f(t). First, since all the odd moments of the scattering
cross section vanish, f(t) must be an even function of
the time. A simple even function which satis6es the
boundary conditions displayed in Eq. (7) is the Gaus-
sian function

f(t) =e-""
Although this choice leads to a form of S(x,co) which
does not obey the fourth sum rule (see below), it is a
very good approximation to the proper function for
intermediate times. It is instructive to substitute Eq.
(27) in Eq. (8b). We obtain

Ge(R', t) =Gee(R', t)+e '"[g(—R') Gee(—R', t)j (28).

In his computer experiments Rahman found that a
major defect of the convolution approximation is that
it leads to a decay of g(R) which is too rapid. " From
Eq. (28) we see that the effect of our simple substitution
is to decrease the rate of decay of the convolution
approximation. It is, therefore, qualitatively correct.
In fact, by substituting the values found by Rahman
for Gee(R, t) and g(R) for argon at 94.4'K at the first
maximum of the distribution function (t=1.0X10-"
sec), we find a=1.5X10"sec '

In order to apply the sum rules, we shall work with
the intermediate scattering function. TakiDg the space
transform of Eq. (8) we find

Fe(x,t)=y(x){1—LF, (x,t) —11Lf(t)—1]), (29)

where Fd(x, t) is the space transform of Ge(R, t). We
write Eq. (29) in this way for two reasons. First, in this
form we see the similarities that exist between our
approximation and those proposed by Kgelstaff' "and
Singwi. "Secondly, the sum rules for coherent scattering
can be verified easily. Since we know that both F,(x,t)
and f(t) have power series expansions in time that
start as 1+0(t2), we immediately verify the two lowest
sum rules embodied in Eqs. (19) and (21). Equation
(21), which is not satisfied by the convolution approxi-
mation, is satis6ed here solely by properly representing
the boundary condition on f(t) for short times without
ma»~g further assumptions about its structure.

Now we must determine the second-order term in the
expansion of f(t) in powers of t. Let

f(t) = 1+a't'+O(t') . (30)

Substitution of (30) and the exact expansion of F,(x,t)
in powers of t in Eq. (29) leads to

Fe(x,t) =y(x)L1+(u'e't'/2Pm) jO(t') j. (31)

We require that our approximate form of S(x,co) have
the correct fourth moment. Therefore, we use the



190 L. GLASS AN D S. A. RI CE 165
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FIG. 1. f(t) as a function of time for short times using Eq. (34).
The values of c and n are as cited in the text.

appropriate sum rule to replace the left-hand side of Eq.
(31) and solve for a'. However, since we do not know
the left-hand side of Eq. (31) to all orders in ~, it is also
necessary to expand both sides in a power series in a.
From the theory of thermodynamic Quctuations we
know that

y(a) = (p/mPIt r) —1+p(2z)3 lim b(a)+O(K2), (32)

where E~ is the isothermal bulk modulus. For our
purposes we can neglect the delta function, since we
are examining the expressions only for ~ diGerent from
zero. Using (14), (15), (25), and (26) and taking the
fourth time derivative of (31), we have, letting t ~ 0,
equating powers of ~', and solving for a',

a'= ([I—(p/P~&r) ]12P're'D') ' (33)

Since I)p/rNPEz &0 for a liquid, we find that a' must
be positive, and therefore that f(t) must increase when
t is very small. This is contrary to the naive expectation
that f(t) is a monotonically decreasing function of time,
and that the correlations in the liquid decay mono-
tonically. On the contrary, for small t and small a

(large R), we see from Eq. (31) that the correlations
in the Quid increase.

L Note addedin proof Professor Egelsta. ff has suggested
to us that the argument defining the sign of a' mai be
invalid because the form of f(t) chosen may not be
adequate in the limit ~ —+ 0. See Sec. VII.]

This result is sufficiently unexpected that a few words
of explanation are necessary. VVe start by noting that. a
formal analysis of memory eGects in liquids by Boon
and Rice" leads to t,he same conclusion. These invest. i-
gators use the theory of irreversible processes, as de-
veloped by Prigogine and co-workers, ~" to derive the

"J.P. Boon and S. A. Rice, J. Chem. Phys. 47, 2480 (1967).'" I. Prigogine and P. Resibois, Physica 27, 629 (1961)."I. Prigogine, E'on-Equilibrium Statistical Mechanics (Inter-
science Publishers, Inc. , New York, 1962).

transport equation describing the time evolution of the
autocorrelation function of a phase function. It is then
shown that the memory function which enters the
master equation derived by Nakajima" and Zwanzig
can be formally expressed in terms of the collision
operator and the destruction operator which appear in
the master equation of Prigogine and Resibois. Cal-
culations based on a simple model show that the time
dependence of the destruction fragment is such that
the initial correlations propagate for a short time before
they are destroyed by molecular collisions. It may be
said, then, that in the short period of time for which
the particle motion is essentially free, correlations
increase. Only when molecular interactions come into
play do the correlations decrease as in the naive picture.
It is important to note that the time scale on which the
correlations grow and then decrease is a fraction of the
average time between collisions. Although Boon and
Rice deduce these consequences from a simple model,
they believe the results to be more general than the
analysis. Application of their model analysis to liquid
Ar leads to both an autocorrelation function of mo-
mentum and a power spectrum in reasonable agreement
v ith Rahman's computer experiment. "

In accord with the Boon-Rice analysis and Eq. (33)
we now introduce a form for f(t) which has two time
scales. The first time scale corresponds to the buildup
of correlations, and the second to the decay of the
correlations. In pictorial terms, we note that at ex-
tremely short times few' of the atoms have undergone
any collisions. In this domain of free particle motion,
the initial correlations propagate and tend to make the
Quid appear as if it were more ordered. As t increases,
collisions occur and act to destroy the order in the Quid.

An interpolation function which is consistent with
these considerations is

f(/) = (I+c'Pe '"')e ~'" (34)

where 8'-))a'. Equation (34) is adopted for f(t) in the
remainder of this paper. For t small we immediately
obtain from Eq. (33)

P
——1

c' rr'= —1— 12P'm'D'
PmKz

(35)

For intermediate time the second term in the brackets
in Eq. (34) approaches zero. In this regime we may
compare the P term with that obtained in Rahman's
delayed time convolution approximation, "and thereby
obtain a vah&e for e. We find

a=3/2r. (36)

For argon at 94.4'K, Rahman found that r = 1.0X10 "
sec. Although n is expected to be temperature-depen-

"S. Nakajima, Progr. Theoret. Phys. (Kyoto) 20, 948 (1958).~ R. Zwanzig, J. Chem. Phys. 33, 1338 (1960); in Lectures ~n
Theoretical Physics (Interscience Publishers, Inc. , New York,
1961).
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dent, we have not found a better way of computing it
than by comparison with the computer experiment,
and hence we will use a=1.5)(10" sec ' in Sec. VI.
From Eq. (35) and the values quoted in Cook" we now
find that c=3.16&(10"sec ' for a temperature of 85'K.
We could find 5 by appealing to the higher-order sum
rules. Unfortunately, the higher-order sum rules rapidly
become quite complicated in form. In the absence of
simple physical approximations to the functions in-
volved we choose to avoid this method of evaluating
b. Furthermore, the time scale on which the second
term in the brackets in Eq. (33) contributes is so short
that inclusion of the second term has practically no
effect on the neutron-scattering cross section and
merely serves to satisfy the sum rules. In Fig. 1 we
display f(t) for short times and several values of 8'. It
should be noticed that for $=2X10 '3 sec. Equation
(34) reduces to Eq. (27) for the values we have used
for the parameters. To carry out the computations in
Sec. VI, we choose 0 =3X10 sec . In Fig. 2 we plot
f(t) for this value of 8s.

V. INCOHERENT SCATTEMNG CROSS SECTION

Before considering the total neutron scattering cross
section we first must establish the cross section for
incoherent scattering. Although this constitutes a
formidable problem in itself, we will bypass many of
the deeper difEI.culties involved by adopting an approxi-
mate form. For argon at 94.4'K Rahman's computer
experiment indicates that the non-Gaussian behavior
of G.(R,t) is rather small. "Hence, we assume that

I.O

.5

t (IO sec)

I.O I.5

Fro. 2. f(t) as a function of time using Eq. (34). The values of
c and n are as cited in the text and 8=3.0X10'%ec'.

possibility of using a Gaussian autocorrelation function.
He showed that with the introduction of one parameter
both the asymptotic and short time behaviors of the
scattering function can be accurately reproduced. How-
ever, the Gaussian autocorrelation function does not
properly represent the behavior of the dense fluid. As
recent computer studies and theoretical analyses both
show, one of the major characteristics of the velocity
autocorrelation function of a liquid is the negative
region corresponding to backscattering from the first
coordination shell. "' In a recent paper, Berne, Boon,
and Rice have computed an autocorrelation function
which has a negative region and is supposed to include
the "memory" effects inherent in the molecular dy-
namics in the liquid. " Their correlation function has
two parameters. However, if we make the approxi-
mations represented by Eq. (24) and define

(37) w'e find
$ = 1/2DPm, (41)

(39)

where the velocity autocorrelation function f(t) is
defined by

(v(0) v(t))
(t) =

&")
(40)

By judiciously choosing the autocorrelation function,
we should be able to generate an accurate incoherent
scattering cross section. DeGennes" has considered the

't4Argoe, Helium and the Rare Gases edited by G. A. Cook
(Interscience Publishers, Inc., New York, 1961).

where p(t) is to be determined, should be a good ap-
proximation. By taking the space transform of (37)
we find that

P, (i~,t) = e-""&'&. (38)

Comparing (38) with the frequently used expansion
expressing F.(x,t) in terms of the autocorrelation func-
tion we find, for the classical case" "

p(t)=e &'"(cosv3)~t~+(1/v3) sinv3$~t~). (42)

In the Berne, Boon, and Rice analysis, the approxi-
mation represented by Eq. (24) is applicable to liquid
Ar at 94'K, and the two-parameter form which they
derive reduces to the one-parameter form of Eq. (42).
Substituting Eq. (42) in Eq. (39) and integrating, we
find

1 —
f t[ e-«'& sinv3&) t, [—

p(t) =———
Pm 2$

(43)

As a final test of internal consistency, we substitute
Eq. (43) in Eq. (38) and examine both the asymptotic
and short time behavior of the intermediate scattering
function. We find that for large t this form for the
intermediate scattering function is valid only if Eq.
(41) is correct. Further, by expanding the intermediate
scattering function for t small we find that the sum
rules presented in Eqs. (18) and (20) are satisfied.
Further, the fourth sum rule, Eq. (22), is satisfied only
if Eq. (24) is correct. Hence, we have an internally

"J.H. Dymond and B. J. Alder, J. Chem. Phys. 45, 2061
(1966).
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Fio. 3. ~«2DS'n'(g, ~) as a function of au/«D for «=2.0A
Computed for argon at 7=85.5'K using D=1.88X10 ' cm'/sec.
The Gaussian results obtained by Nijboer and Rahman, Ref. 36
( ) are compared with the results obtained as described in
the text (- ———), and the exact results (— —) from Ref. 36.

consistent one-parameter approximation which repre-
sents "memory" e6ects as well as the short and long
time behavior of the liquid. Substituting for the value
of D at 85.5'I, D=1. 88)&10 ' cm'/sec, we may now
compute the incoherent scattering cross section. In
Figs. 3—6 w'e compare our calculations and the results
obtained by Nijboer and Rahman in their computer
experiment for liquid argon at T=85.5'K."The solid
line represents the results found by Nijboer and
Rahman when they made the Gaussian approximation
for F,(»,t), PEq. (38)] and found p(t) using the root-
mean-square displacements derived from the computer
data. The dashed line is what we obtain by substituting
Eq. (43) in Eq. (38) and taking the transform. The
agreement is very good over a wide range of values of
x and cu. Only for small cu does there seem to be a sig-
nihcant difference between the two sets of results. This
is to be expected for Nijboer and Rahman 6nd the
asymptotic form p(t) = D~ t ~+C where C is a constant,
and here we have p(t)=D~t~. However, it should be
noted that for «=2.0A ' for which there is an exact

computation of S' '(»,(o) (dash-dot line in Fig. 3), our
results are in better agreement with the exact form than
with the form derived from the Gaussian approximation.

VI. NEUTRON SCATTERING CROSS SECTION

We can now proceed to compute the theoretical
neutron scattering cross sections, and compare our
results with recent experimental work. Defining hx and
her as the momentum and energy loss of the neutron,
respectively, and X; and X as the initial and final neutron
wavelengths, respectively, we may easily derive the
formulas" "

A, /+A. '—2A, ;P cos
K'= 4m'

where m„ is the neutron mass, and 8 is the angle between

l.50-

I.OO

~ 075
A

0,50

0.25

I I
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cd�/K D

FiG. 5. Same as Fig. 4 for «=6.0A '.

l.25-

IOO- i
3.

0.75
CfJ

Cl

~ 0.50

025

I.O 2.0 50 4.0
2

tL) /K 0

the incoming and scattered neutron. Since we are
calculating the distribution function using classical
mechanics it is necessary to correct the results for
quantum eBects in real systems. Several authors have
discussed how this may be done."""It may be shown
that

d'0

shan;

L~(p/)~/2) —(/)Accc/Scc) ]
dP dQ m„X4

X P~inc5'inc(» (O)+~coh5'coh(» OO)7 (46)

FiG. 4. ~«'DS' '(«,co) as a function of co/«'D for « =4.0 A ' com-
puted for argon at T=85.5'K using D= 1.88X10 ' cm'/sec. The
Gaussian results obtained by Nijboer and Rahman, Ref. 36
( ) are compared with the results obtained as Chscribed in
the text (———-).

36 B.R. A. Nijboer and A. Rahman, Physica 32, 415 (1966).

where 0-'"' and 0"" are the incoherent and coherent
scattering cross sections, respectively, and the total

"K.S. Singwi and A. Sjolander, Phys. Rev. 120, 1093 (1960)."R.Aamodt, K. M. Case, M. Rosenbaum, and P. F. Zweifel,
Phys. Rev. 126, 1165 (1962).
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scattering cross section is defined by

&ioc+0coh —&tot (47)

Examination of Eqs. (46) and (47) shows that by
specifying the ratio between any two of the quantities
in Eq. (47), we may calculate the neutron scattering to
within a multiplicative constant. Here, w'e choose
trcoh/trtot 0.675 (tr oh/trtot 0.66 in Ref. 20) found by
Henshaw for argon at 84'K."In addition, to compute
the absolute magnitude of the neutron-scattering cross
section we choose o' '=0.210 b, r""=0.436 b, corre-
sponding to a scattering cross section of 73 b for Ar~
and of 0.40 b for Ar~~.

In Figs. 7 and g we plot d'o/dQdX using our approxi-
mation and compare it with the results found using the
convolution approximation, delayed-time convolution
approximation, and the experimental data reported by
Chen et a/. for Ar at T=85'K. Several points should
noted. First, contrary to commonly held opinion, the
convolution approximation does predict the existence
of a subsidiary peak for this particular experiment. In
Chen's experiment x is not held constant and as one
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Fn. 7. Comparison of the neutron scattering results experi-
mental of Chen eI al. , Ref. 18 (points) for a scattering angle
8=60', with the present approximation ( ), the Vineyard
convolution approximation (- ———), and the delayed time con-
volution approximation (—~ —). The vertical scale of this
experimental curve is arbitrary.

simple diffusion to be a valid description at all times.
Although we find a slight flattening in our results for
&=2.0A—', we do not reproduce the extreme variation
in half-widths found by Dasannacharya and Rao.

FIG. 6. Same as Fig. 4 for «=8.0 A '.

scans through the energy x also varies. Thus, at the
mean peak in S(tt), i.e., for it= 2.0 A ', the form of the
convolution approximation leads to the prediction of a
maximum in d'tr/dQdX The predict. ions of the delayed-
time convolution approximation and our results are
seen to be very similar. The delayed-time approximation
does give a differential cross section in slightly better
agreement with the observed position of the peak arising
from coherent scattering. However, the location of this
peak is sensitive to the value of the pa, rameter o., and
by varying 0. we could achieve better agreement with
experiment. There is, unfortunately, a considerable
difference between the experimental and theoretical
intensities of the peaks. We cannot at present explain
this discrepancy. In Fig. 9 we plot the full half-width
of the theoretical scattering function d'tr/dQdco and com-
pare it with the experimental results of Dasannacharya
and lao,"and also with the full-half-width computed
using the convolution approximation and assuming
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"D, G. Henshaw, Phys. Rev. 105, 976 (1957). Pro. 8. Same as Fig. 7 for 8=75'.
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2.0— a challenge to experimentalists in view of the small

magnitudes involved.
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FIG. 9. Comparison of the full width at half-maximum in the
neutron scattering experiment of Dasannacharya and Rao, Ref.
20 (—. —), with those found in the text ( ) and those
expected for simple diffusion for D = 1.88X10 ' cm' jsec (———-).

VII. CONCLUSIONS

Our purpose in this paper has been to present a
conceptually simple and easily applied modification of
the Vineyard convolution approximation and to show
how it may be used to compute the neutron scattering
from a simple liquid. We believe that the application
of these results to other systems may prove to be
fruitful. Some modifications may, however, be neces-
sary. The hard-sphere volume exclusion factor which
was brieRy discussed in Sec. II could easily be included
at the expense of simplicity of the analytic expressions.
The extension of this work to the hydrodynamic regime
might be more difficult. Recent work based on solution
of the hydrodynamic equations of motion is of con-
siderable use here. ' ' In order to obtain the correct
hydrodynamic behavior we must include terms in Eq.
(6) such that if the velocity of the particle at the origin
at time zero were specified a positive correlation would
exist with the velocity of a particle 100A away 10 "
sec later. Such a correlation corresponds to the propa-
gation of an excitation with the speed of sound. Our
approximation does not include this correlation, and
therefore will not account for the Brillouin-Mandelstam
components observed in light scattering experiments.

As a result of examining a formalism which should be
accurate for short times, we have found that for t
smaller than about 0.5X10 " sec the "correlations"
may be said to be increasing. We consider this to be an
important result, the verification of which should prove

APPENDIX

Another relationship has often been employed in the
study of the function S(x,co) for liquids. The relation-

ship between the mean square velocity of an atom in

the classical and quantal representations is

(r')ci. = 3/Pm

Substituting Eq. (A1) in Eq. (24) we find

(A2)

((~')o.—(~')c~.) '"
2m Pm

(A3)

It is often assumed that, for certain purposes, a liquid
may be approximately represented as a solid with a
Debye temperature 8&.' ""The formula"

3 Og)) 2

!&")o.—&")c~.=
20Pm T /

(A4)

which is valid in a solid where T&)9~, is then intro-
duced. However, substituting (A4) in (A3), we find that

(A5)

Using the value of D at 85.5 K. for liquid argon, D= j..88
)&10 ~ cm~/sec, we find e~ ——93.4 K. For this value of
ez, Eq. (A4) is invalid. Finally, we note that substi-
tution of Eq. (A1) in Eq. (22) leads to

](4 3 4m'
-+ ((') .—&") .) (A6)

pm' p phd

7rpk' " (O'V
(s')o. = (&')ci.+ dR R'g(R)!

kaR2

2 BV
+——,(A1)

where


