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We investigate the possibility that complete, dynamical theories can be formulated in terms of current
densities and similar operators. Our approach to this problem is through the study of models like non-
relativistic quantum mechanics or the quark model. Generalizing what one learns from these models, it is
evident that such a program is, in principle, feasible. Whether or not such a program will prove useful re-
mains an open question. We do not attempt to maintain mathematical rigor. Rather, we try to isolate the
physics upon which a formulation of hadron dynamics in terms of currents would be based.

I. INTRODUCTION

N view of the remarkable success of current algebra
in correlating various properties of the hadrons,! it
is natural to ask how far the use of currents can be
pushed. Is it possible, for example, to write a complete
dynamical theory of hadrons in terms of the weak
and electromagnetic hadron currents and, perhaps, a
few additional operators? This is the question which
is studied in this and the following two papers.2—*

A possible motivation for writing a theory in terms
of currents may be found in the fact that among the
hundred-odd known hadrons there are presently no
candidates to play the role of an “elementary particle”
or “building block.” Since, traditionally, relativistic
theories have always been written in terms of canonical
fields whose quanta may be considered as the “building
blocks” of matter, one is rather at a loss, when pre-
sented with the hadron spectrum, even to know where
to start.’ This situation can be summarized by the
statement that we do not have a set of quantum-
mechanical “coordinates,” like the canonical fields of
the traditional theories, with which to describe hadronic
matter and in terms of which to write a Hamiltonian.
One might hope that the currents, which treat all
particles on an equal footing, could serve as coordinates
to define a theory in which no hadron plays a special
role.

We have found that it is, in fact, perfectly possible

* Supported in part by U. S. Atomic Energy Commission under
Contract No. AT (30-1)-2171.
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1 On leave from the California Institute of Technology, Pasa-
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1 For a review of this subject, see R. F. Dashen, in Proceedings
of the Thirteenth Annual International Conference on High-Energy
Physics, Berkeley, California, 1966 (University of California Press,
Berkeley, Calif., 1967).

2 D, H. Sharp, following paper, Phys. Rev. 165, 1867 (1968).

3 C. G. Callan, R. F. Dashen, and D. H. Sharp, second following
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4 The related question of using currents to reconstruct theory
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found.
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to write theories in terms of currents and similar
operators. We do not, however, have anything, except
for a few hints, on the question of whether an “ele-
mentary-particleless” theory like that discussed above
can be constructed. Thus, the ideas expressed in the
previous paragraph should be regarded largely as
motivation for further research along the lines in-
dicated here.

We have approached this problem mostly through
the study of models. For example, we take a model
like nonrelativistic quantum mechanics, rewrite it in
terms of currents, and see what it looks like. Proceeding
in this way, we have discovered what we suspect are
the essential aspects of the problem.

Although we have tried to avoid writing equations
that are pure mathematical fiction, we do not make
any pretense at rigor. Rather, our goal is to isolate the
basic physical questions. At the end of this paper there
are a few remarks concerning the connection between
our work and rigorous work on related problems.

This paper is organized as follows. In Sec. II we
study nonrelativistic systems of many identical par-
ticles. There are several reasons for this. First, one has
to get used to thinking in terms of currents rather than
canonical fields, and nonrelativistic models are a good
starting point. Secondly, these nonrelativistic theories
are well defined mathematically so that we may manipu-
late operators with a relative impunity. Finally, the
quark model is strikingly similar to these nonrela-
tivistic models. Section III is devoted to the quark
model. There, we first treat noninteracting quarks, in
which case we know that the theory exists. We then
turn to an interacting theory, and have to proceed
in a purely formal manner. The interacting quark
model gives one a rather good picture of how a theory
based on currents would work. In Sec. IV we summarize
our conclusions and point out a few more qualitative
aspects of the problem.

In the following paper by one of us (DHS), a model
based on a charged scalar meson theory is treated in
more detail. Because of the relative mathematical
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simplicity of this model, it provides an excellent
laboratory for the study of the problem at hand. In
particular, this theory can be reduced to a set of
c-number functional equations for the currents.

The third paper in this series deals with a solution
of a two-dimensional relativistic model, closely related
to the Thirring model, in terms of currents and the
energy momentum tensor.

Before proceeding to the models, we would like to
suggest that the reader keep in mind the following
point. Many of our formulas and equations will look
strange and often quite complicated. Basically, this
is due to the fact that we will be expressing quantum-
mechanical theories in terms of variables, or coordi-
nates, that are not canonical. Physical theories which are
written in terms of variables which are not canonical
sometimes lack a certain mathematical elegance pos-
sessed by canonical theories. However, physics, rather
than the elegance of canonical variables, is the final
test. If one thinks about it, out of the totality of classical
physics, only in a few cases are canonical variables the
most natural means of describing a system; some
theories, like hydrodynamics, have no simple canonical
form. It is worthwhile to keep open the possibility
that the natural description of hadrons may employ
coordinates which are not canonical.

II. NONRELATIVISTIC QUANTUM
MECHANICS

In this section, we show how nonrelativistic quantum
mechanics can be formulated in terms of currents and
charge densities. Many of the things which we will
point out here have been known for years in the theory
of liquid helium.® Others are, as far as we know, new.
In any case, our purpose here is not to suggest a new
approach to nonrelativistic problems, but rather to
look for ideas that might prove fruitful in strong-
interaction physics.

Throughout this and the subsequent sections we
will often refer to a set of ‘“quantum-mechanical
coordinates” for a system. What we mean by coordi-
nates is best seen through some simple examples.

(i) A single spinless particle is usually described by
its position vector r and momentum p, which satisfy

the algebra
[ripil=16i;. (2.1)

The manifold of all states available to the particle spans
a single irreducible representation of the algebra (2.1).
This is sufficient to guarantee that any operator can,
at least in principle, be expressed as a function of r
and p.” Thus, since any observable is a function of r

6 For a review of this subject, see I. M. Khalatnikov, An
Introduction to the Theory of Superfluidity (W. A. Benjamin,
Inc., New York, 1965). )

7On the level of mathematical rigor at which we are working,
irreducibility is the same as completeness. A precise statement
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and p, one can specify the entire quantum mechanics
of a particle in terms of these coordinates. In particular,
the Hamiltonian H can always be written as a function
of r and p.

(i) A spin-} object at a fixed point in space is

described by a spin S=%¢ which satisfies the algebra

[Si,Sj:|='L.E,'ijk. (22)
Again all possible states of the system form a single
irreducible representation of the algebra, and any
operator can be written as a function of the coordi-
nates® S.

We could continue in this way to discuss more
complicated systems such as particles with spin and
systems of particles, but this hardly seems worthwhile.
The above examples should serve to bring out the
essential property of a set of quantum mechanical
coordinates. In cases like those above where the co-
ordinates generate a relatively simple commutator
algebra, the set of all states of the system must span
a single irreducible representation of the algebra. The
necessity of this condition follows from the fact that
if the states span more than one irreducible representa-
tion of the algebra, then there will be operators which
cannot be expressed in terms of the coordinates and a
complete description of the system will not have been
achieved.

According to Schur’s lemma, the space of states will
span a single irreducible representation if and only if
every operator O which commutes with all the co-
ordinates is a multiple of the identity. This is the
criterion which we will use in what follows.

We now turn to the description of nonrelativistic
systems in terms of charges and currents.

Consider a system of IV identical spinless particles,
either bosons or fermions. We will show that one can
give a complete description of this system in terms of
a charge density p(x) and a current J(x). In the
usual second-quantized formalism, these operators are

given by

p(x) =y (x)¢(x), 2.3)
Ix)=1/2)[Y @V -V xyx)],

where the fields yf(x) and y(x) satisfy canonical
commutation or anticommutation relations. The phys-
ical interpretation of p(x) and J(x) is left open: If the
particles are charged, they could be the electric charge
and current densities, or they might simply represent
particle or mass density and flux. The algebra satisfied

of the relationship between irreducibility and completeness was
given by J. Von Neumann, Math. Ann. 104, 570 (1931).

8 This corresponds to the well-known fact that any 2)X2 matrix
is a linear combination of the unit matrix and components of S.
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by p(x) and J(x) is
Le(x),p(y)1=0, ,
Lo(®),J:(y)]= ~i@[5(X~ Ye(x)]1,

d
[J:(x),J;(y)]=— igx—jﬂs(x— y)J:(x)]

i}
[ G—NET. (24)
ay*

Our first task is to establish that p(x) and J(x) are a
satisfactory set of coordinates. To this end, we will
show that every operator © which commutes with p(x)
and J(x) is a multiple of the identity. The first step
is to observe that any operator is a function O(y,¢')
of the fields ¢¥(x) and ¢f(x).? Next we note that if ©
commutes with p(x), then it is invariant under the
unitary transformation

U\ =exp(i / AP (X)),

where A is an arbitrary function. Under the transforma-
tion U (M), the fields satisfy

UMY U (V) =™y (x)
UMY ) U (N =2y (x),

and it is not hard to convince oneself that if

UMW »U*(N)=0@"y)
for all A, then O can depend on y'(x) and ¥(x) only
through the combination ¢f(x)¢(x)=p(x). Thus, if ©
commutes with p(x), it is a function only of p(x) and
the vanishing of [J(x),0] gives

(2.5)

. i) 00 —o )
[Jk(x),(‘)]— —1p (X)::);;(g(;—)') =0, (2.6)

where 80/8p(x) denotes the functional derivative and
we have used (2.4). To complete the proof, we note that
the right side of (2.6) is equivalent to the statement
that © depends only on the total charge

0= / &% p(x)

and is therefore a ¢ number.

The above result tells us two things. First, all the
states of our system of IV identical particles span a single
irreducible representation of the algebra (2.4) and,
secondly, every operator is a function of p(x) and J(x).
Leaving aside, for the moment, the question of how
the proper irreducible representation is determined, let

9 This is a consequence of the fact that for the system under
consideration the canonical fields ¢t(x) and ¢ (x) are irreducible.

Thus we are proving that irreducibility of the fields implies
irreducibility of p(x) and J(x). .
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us see how a few operators look when expressed in terms
of p(x) and J(x). Aside from the currents and densities
themselves, one is usually interested only in the total
linear momentum P, the total angular momentum L,
and the Hamiltonian H. The first two are trivial;
one has

P= | J(x)d%,
/ 2.7
L=/xXJ(x)d3x.

The expression for the Hamiltonian is more complicated.
In terms of the fields ¢(x) and y'(x) it is given by

II=%[V¢T(X)-V¢(x)d3x

+ / VUV ([x—y W @) dady,  (2.8)

where we have set the mass equal to unity and assumed
that the particles interact through a central potential 10
To write H in terms of p(x) and J(x), we use the
identities

Vo (x)+24J (x) = 24" (x) Vi (x)
and

Vo (x)—24J (x) =2Vy! (x)¢ (x)

to obtain

1
H=} f [¥p(0)— 23 (%) T—[Vp ()4 20 (x) 1%
p(x)

+ f OV (|x—y | )p()dsddy. (2.9)

Having seen how to write operators in terms of p(x)
and J(x), we will now make a few qualitative remarks
about representations of the algebra (2.4). To con-
struct explicit representations, it is useful to repre-
sent the operators in terms of functions and functional
derivatives. This technique is amply illustrated in the
following paper and need not be discussed here. A
more basic question is how one selects the particular
representation that describes the system under con-
sideration. For one thing, Q= /fd% p(x) commutes
with both p(x) and J(x) and is thus a constant in each
irreducible representation. But Q is just the number of
particles so that Q=N picks out representations which
describe systems with IV particles. Next, representations
describing bosons and fermions must differ in some

10 Actually, the order of operators in the second term of Eq.
(2.8) should be ¢t )¢t (y)¢ (y)¢ (x). Thus the Hamiltonian given
by Eq. (2.8) differs from the usual one by a constant term
JV(0)p(x)d*x=QV (0). One may, of course, subtract this (pos-
sibly infinite) constant from Eq. (2.8) and all subsequent ex-
pressions for H.
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way. (Everything we have said up to this point works
equally well in either case.) To see how this is done, we
observe that if AV is some small volume containing
the point x, then the number of particles in AV is
AVp(x). Now for fermions this number can only be
zero or unity, and we have

[AVp(x) F—AVp(x)=0, (2.10)
which, in the continuum limit, is
p*(x)—8(0)p(x)=0. (2.11)

For bosons there is no constraint.

One may verify that Eq. (2.11) is consistent with
the commutation relations in the sense that if |®) is a
state satisfying [p?(x)—6(0)p(x)]|®)=0, then p(x) and
J(x) acting on |®) produce states which satisfy the
same constraint. We suspect that the requirement
Q=N, along with Eq. (2.11) in the case of fermions,
picks out a unique representation'"2 of the algebra (2.4).

We have seen how the quantum mechanics of N
identical spinless particles can be formulated in terms
of a charge and a current. If we have two species of
particles, 4 and B, we could try to specify the theory
in terms of two mutually commuting charges and cur-
rents p4,J4 and pp,d 3. This will be adequate, provided
that there is no observable operator which changes 4
into B. For example, we could satisfactorily describe
electrons and protons in terms of two independent
charges and currents. On the other hand, 4 and B
might refer to two spin states of the same particle. In
this case, a rotation takes A into B and the description
in terms of two charges and two currents is inadequate.
The description of particles with spin is studied below.

Consider a system of NV identical spin-3 particles,
either bosons or fermions. In the second-quantized
formalism, this system is described by two-component
fields ¢4’ (x) and ¥i(x), =1,2 which satisfy canonical
commutation or anticommutation relations. Alterna-
tively, one can formulate the theory in terms of oper-
ators p(x), J(x), and =(x) which are related to the

fields by

p(x)=¢' (X (x),

EZ(X)=3' oy (x),

J(x)= (1/20) [ (x) Vi (x) — V¢! (¥ (x) ].
The physical meaning of p(x) and J(x) is the same as

before, while X (x) is a spin density.! The commutators
of p(x) and J(x) are the same as those in Eq. (2.4);

(2.12)

1 By ‘“‘unique” we mean, of course, unique up to a unitary
transformation.

2 One can construct formal representations of the algebra (2.4)
in which Q is not an integer. We have no idea what such representa-
tions might be good for.

13 Experimentally X (x) could be a magnetic moment density
in, for example, a ferromagnet.
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the commutators involving X (x) are
[2:(x),Zi(y) J=teid (x—y)Zk(y)

[o(x),2:(y)1=0, (2.13)

0
[Z:(x),J:(y)]= —i(;—[&(x— y)Zi(x)].

In order to establish that p(x), J(x), and =(x) are an
adequate set of coordinates, we need, as before, to
show that any operator © which commutes with p(x),
J(x), and =(x) is a multiple of the identity. The proof
is almost identical with that given above. By consider-
ing the unitary transformations

U()\)=exp(i/)\(x)p(x)d3x)
U(l)=exp(i/l(x)-):(x)d3x) ,

we conclude that any operator which commutes with
both p(x) and X (x) is a function only of p(x). Equation
(2.6) then states that if © also commutes with J(x), it
is a function only of Q= _f"p(x)d?x and is therefore a ¢
number.

The analog of Eq. (2.11) which distinguishes bosons
from fermions is particularly interesting here. To find it,
we note that AVp(x) and AVE(x) are, respectively, the
total number of particles in AV and the total spin of
these particles. (The point x is, of course, supposed to
lie in AV.) Now if the particles are bosons, their spin
wave function must be completely symmetrical (since
they are all at the same space point) and [AVE(x)]?
must therefore equal $[AVp(x) P+3AVp(x).1* Thus,
we have, in the continuum limit

X2 (x)=1p*(x)+36(0)p(x)
For fermions, similar reasoning leads to
2 (x)=10"(x)+30(0)p(x), (fermions) (2.13)

which implies that the number of particles in AV is not
greater than two [since both X2(x) and p(x) are posi-
tive], and that the spin in AV is 0, 3, or 0 if the number
of particles is 0, 1, or 2, respectively. An alternative
derivation of Egs. (2.14) and (2.15) is obtained by
multiplying the identity

and

(bosons). (2.14)

Gap* Ccd= _5ab60d+26ad6bc (2'16)

by vo X)¥s(X)¢.f (x)¥a(x) and performing the com-
mutations or anticommutations required to bring the
right side of Eq. (2.16) into the form p(x) plus p(x).
Equations (2.14) and (2.15) are consistent with the
commutators of p(x), J(x), and =(x) in the same sense

1 This follows from the fact that the completely symmetrical

state of » spin-3 particles has a total spin Sz equal to 3n. Thus,
Sr®=in?+3n in the symmetrical state.
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that Eq. (2.11) is consistent with the commutators of
p(x) and J(x). Tt is expected that Eq. (2.14) or (2.15)
along with the condition Q=N completely specifies
the representation of p(x), J(x), and =(x) which
describes NV bosons or fermions.

As was the case for spinless particles, it is trivial
to write the total linear momentum and angular
momentum as functions of X(x), p(x), and J(x). To
obtain the Hamiltonian, however, requires a new
trick. Here we will only illustrate the method, treating
Yf(x) and ¢(x) as classical, commuting fields. The
reason for this is that keeping track of the order of
operators is a tricky and tedious task that tends to
obscure the basic idea. It will also be assumed that H
is given by (2.8) with a summation over the two com-
ponents of the field understood. We begin with the
identity

4V, Zi(x)VZ9(x)
= Vi[Ya' (X)aasis (X) JVi[¥ (X)ocaia(x)
= — Vil ()¢ (x) IV [¥' ()¢ (x)]
+2Vi{¥a" (X () IV (v (0], (2.17)
which follows directly from Eq. (2.16). Expanding the

gradients on the right side of Eq. (2.17) and treating
¥ (x) and ¢(x) as commuting fields, one finds

4VZi(X) V,29(x) ~4Vibs! (X) Vida () p (x)

Thus, H will have the form
V,’E’(X)V{EKX)‘*’J; (X)J{(X)
Hz\/l/ d3x
p(x)

2

+ / o(p()V (| x—y|)dsxdsy, (2.19)

where the ~ signs in Egs. (2.18) and (2.19) indicate
that the right sides must be suitably ordered when the
noncommutivity of operators is taken into account.’

We may summarize the result of this section with
the statement that all of nonrelativistic quantum
mechanics can be formulated in terms of charge
densities, currents, spin densities, and so on. As stated
above, we are not particularly interested in whether
or not such a formulation would be useful. From our
point of view, a more important question is how one
would guess the equations of this section if a different
form of the theory were not already at hand. First of
all, the physical interpretation of p(x), J(x), and =(x)
along with the correspondence principle would lead to
at least some of the commutation relations (2.4) and
(2.13). The conditions (2.14) and (2.15), which dis-
tinguish between bosons and, fermions, would appear
when one studied the irreducible representations of the

16 The general pattern of ordering is indicated by Eq. (2.9).
Note that Eq. (2.9) contains a term Wp(1/p)J—J(1/p)¥p which
would vanish if p and J commuted.
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algebra of p(x), J(x), and = (x). Finally, current con-
servation, p(x)=—V-J(x), is enough to tell us that H
has the form

H= %/]i(x)—l—h(x)d*"x—i—H’ , (2.20)
p(x)

where H' commutes with p(x) and is therefore a func-
tion only of p(x) and X(x). The remaining term H’
would have to be determined by other considerations.

III. THE QUARK MODEL

In Sec. II, we showed how nonrelativistic quantum
mechanics could be written in terms of charges and
currents. Turning now to relativistic problems, we
will see that the quark model can be treated in a similar
fashion.

First we study noninteracting quarks whose Lagrang-
ian density is

£(x)=—3G(—iv-0+m)q, (3.1)

where ¢(x) is the 12-component quark field. Our aim
is, of course, to find a set of operators, like the charges
and currents of Sec. II, which will serve as coordinates
for the free quark system. Clearly, a good place to
start is with the densities which can be formed by
placing various matrices M between the fields ¢'(x)
and g(x). We call them D(x,M), i.e.,

D(x,M)=¢"(x)Mq(x), (3.2)

where ¢(x) is the quark field in the Schrodinger picture
which is assumed to coincide with the Heisenberg
picture at /=0. The D’s satisfy the algebra

[O(x,00),D(y, M) ]=b(x—y)D(x,[M,M"]), (3.3)

where we have ignored Schwinger terms since for free
quarks they are (infinite) ¢ numbers and will have no
effect on what follows,

From Eq. (3.3), it is clear that D(x,1) commutes
with all the ©’s. Thus, the ©’s by themselves are not
an adequate set of coordinates and we must add a
further operator. From our experience with nonrela-
tivistic models, it is evident that the needed operator is

ZHx)= (1/29)[¢" (®) VEg(x) — V¥g' (x)g(x)].  (3.4)
It is straightforward to verify that the commutators
of Z* with a 9 and of Z* with itself are

a
[DxM),Z5(y)]=— iﬁD(X-— Y)D(x,M)]

i)
[Z¥(x),Z4(y)]= —iggfts(X*)’)Z’“(X)]
d
+i—8(x—y)Z!(x)]. (3.5)
ay*

Thus, Z* and the ©’s form a closed algebra. Further-
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more, using the techniques of Sec. II, it is simple to
show that every operator © which commutes with Z*
and the ’s is a function only of

/ D(x,1)d*= (baryon number)

and is effectively a ¢ number. The operators Z* and
D(x,M) may, then, be taken as a set of coordinates
which are sufficient to describe all the properties of a
system of quarks.

It is well to ask about the physical interpretation of
these coordinates. In the quark model, many of the
D(x,M)’s are either components of the weak and
electromagnetic currents or can be obtained from
commutators of the latter. For example, $D(x,\;) is
the time component of the isospin current,'® while
D(x,0) shows up in the commutator of two space
components of the weak current. Other ©’s which
correspond to S, P, and T densities in the quark model,
cannot be obtained from the weak and electromagnetic
currents. However, as we shall see below, such densities
show up as pieces of the energy density. To find the
physical significance of Z*, we note that the space-time
component of the energy momentum tensor 6% is

%= (1/24)[q" (x) V*q (x)— V¢! (x)g (x) ]
P
+3 ékzm:?;—qu (x)o™g(x)

Ie]
=Z*(X)+fetim—D(x,0™). (3.6)
Jxt

Thus, Z* is a piece of the momentum density.l” Phys-
ically, Z* is that part of 6% which gives rise to the
orbital angular momentum L; in the relation

J;'= /d% e;,-kxjﬁo’“(x)=/d3x eijkszk
+%/d3x 20(X,a")==L,~+S,-. (37)

Having found a set of operators which is suitable for
describing a system of quarks, we should inquire as to
which representations of the algebra (3.4) and (3.5)
are allowed. The situation is much the same as that
encountered in the nonrelativistic systems of the Sec.
II. First, the baryon number B= /" D(x,1)d3x commutes
with Z* and all the ©’s, so that each representation has
a definite baryon number. Evidently, baryon number
is the relativistic analog of particle number. To find

16 Here we use the notation M = (Dirac matrix)[.SU (3) matrix].
The Dirac matrices @, ¢, and B are f=9% a=+%, and
o=—7"vsY.

17 We could have taken ¢° rather than Z* as a basic operator:
however, the use of Z* simplifies the algebra.
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the analog of Eq. (2.15), one uses the identity

Z Mab(i)Mcd(i):‘ lzaadacb )
(4)

(3.8)

where the M’s are any set of 144, 12X12 matrices
satisfying M@t=M® and Tr(MPMD)=35;. Sand-
wiching Eq. (3.8) between quark fields then leads to

Z D(x,MDP2=—12[ (D(x,1))*— 13D (x,1)6(0)]. (3.9)

In interpreting Eq. (3.9) physically, one must take
account of the fact that the ©’s as defined in Eq. (3.2)
are not normal ordered. If one normal orders the 9’s
in Eq. (3.9), one finds among other things that
D(x,1)AV must lie between —6 and 6, which cor-
responds, of course, to the fact that no more than six
quarks or antiquarks can be inside the small volume
AV. Equation (3.9) is not, it turns out, sufficient to
specify a unique representation of the algebra (3.3)
and (3.5). There are more identities like (3.8) which
involve products of three, four, and more M’s.!8 These
lead to further equations which are similar to (3.9)
except that they involve higher powers of the D’s.
We will not have any use for these additional equations.
One may also use the identity (3.8) to find an ex-
plicit formula for the Hamiltonian. Actually, it is more
convenient to work with 6%(x), the time-time com-
ponent of the energy-momentum tensor whose space
intergral is H. For free quarks, §°(x) is given by

0°(x) = (1/24)[¢' (X) @ Vq(x) — V' (x) - ag(x)]
“+mg' (x)Bg(x).

The second term in 6%(x) is just mD(x,8). To obtain
the first term, one proceeds in essentially the same way
as we did for nonrelativistic particles with spin. For
simplicity, we will again treat the quark fields as
classical, commuting objects. The identity (3.8)
leads to

% {g" ()M Pq(x)ViLg" ()M Darq (x) ]

(3.10)

— Vilg" (M Dg(x) Jg" ()M Pairg (x)}

~12[¢" (x)axVig (x) = Vig' (X)g (x) Jg" (x)g (x)
+12[Vig" (x)g(x) — ' (X) Vg (x) Jg" (Deurg (x),  (3.11)

and we see that 6°°(x) will have the form

000 (X) "’[24’1:3)()(,1)]_1 Z [® (X;M(i))vlch(X,M(i)ak)
(i)

—ViDEMD)D(x,M Daz) ]
+[OEDITZF®) D(x,a1)+mD(x,8). (3.12)
The ~ signs in (3.11) and (3.12) indicate, as before,

18 For 12X 12 matrices there are 11 nontrivial identities in-
volving powers of M up to the twelfth.
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that the right sides should be suitably ordered. Since
we shall not make explicit use of Eq. (3.12), the precise
ordering prescription will not be needed.

Thus far, we have been discussing noninteracting
quarks. For these free quarks, everything which we
have done could, with suitable modifications, be made
mathematically respectable. When there are inter-
actions, this will no longer be the case. The best we
can do is to try to guess what sort of equations might
continue to make sense.

The simplest and most naive way to introduce an
interaction is to leave all our previous statements
intact except for the addition of an interaction Hamil-
tonian density 3¢7(x) on the right side of Eqs. (3.10) and
(3.12). The interaction density 3¢; should not contain
any derivatives of the quark fields, since we want the
currents and their commutation relations to remain
unchanged.’® Thus 3¢;(x) will be some explicit function
of the D(x,M)’s; any dependence on Z* or derivatives
of the ®’s would lead to dependence on derivatives of
the quark fields. Also, since 6% is left unchanged,
3C7(x) must be a Lorentz scalar; hence 3¢r(x) will
depend on the D’s only through manifestly Lorentz-
invariant combinations such as D(x,1)2—D(x,a)% As
an example of such a model, one could add a current-
current interaction 3¢;(x)=—g[ D(x,1)2— D(x,a)2] to
the right side of (3.11), leaving the commutation
relations and the equations like (3.9) which specify
the representation unchanged. This would, of course,
produce a model which, insofar as it makes any sense,
is completely equivalent to a normal quark field theory
with current-current interaction.

The simple-minded insertion of an interaction as
outlined above is almost certainly too naive. It is very
likely that in order to accommodate interactions with-
out running into mathematical catastrophes, one has
to make the formalism somewhat less rigid. Let us see
how this could be done. To begin with, the operators
D(x,M) and Z*(x), being closely related to observable
quantities, must make sense: The question of precisely
how these objects are to be interpreted as products of
quark fields is not relevant. The fact that the ©’s and
Z* are sensible objects does not, however, necessarily
mean that the (equal-time) commutators in Egs. (3.3)
and (3.5) continue to make sense. Nevertheless, it is
clear that our program will fail at the very start unless
the commutators are meaningful, and we will assume
that they are.2’ We will also assume that all the states
of the system continue to span one irreducible repre-
sentation of the algebra. It may not be necessary to
demand, however, that this representation is one for
which equations like (3.9) hold. If we give up (3.9),

19 Tn Lagarangian field theory, an interaction which contains
no derivatives does not change the functional form of either the
currents or ¢%.

2 We are implicitly assuming that the Schwinger terms remain
infinite ¢ numbers and may be ignored. In Ref. 3, the question
of Schwinger terms is discussed in more detail.
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the only bad thing that happens is that our explicit
expression (3.12) for the Hamiltonian is no longer
correct. Later on, however, we will see how the Hamil-
tonian can be specified in a more general manner which
is independent of any particular representation of the
algebra.

A motivation for giving up (3.9) may be seen in the
following chain of thought. When equations like (3.9)
hold, we are working with a representation which is
equivalent to that realized by free quarks. If we now
take an interaction —g[D?(x,1)—D%*(x,a)], and ex-
pand in powers of g, we will in effect be doing the usual
perturbation theory. However, in perturbation theory
it is well known that products of operators at a point,
such as appear in Eq. (3.9), are so singular that, for
practical purposes, they are meaningless, as would also
be expected on the basis of Haag’s theorem. Thus, it is
very likely that in the presence of interaction, Eq.
(3.9) is self-contradictory.

Actually, the idea of working with representations
other than that realized by free quarks might make good
physical sense for a quite different reason. In many
ways, the hadrons look as though they were made out
of quarks, but as yet no quarks have been found. One
might be tempted to think, then, that the world is some
kind of solution to the quark model in which the quarks
have, loosely speaking, picked up an infinite mass and
no longer exists as physical particles. In a normal field
theory of quarks, this would be a limit in which the
field operator ¢(x) goes away, but bilinears such as
¢"(x)g(x) remain finite, well-defined quantities.!
Clearly, this would be a situation where non-quark
representations of the algebra of the ®’s and Z* appear.

The possibility that nonquark representations of the
algebra might be interesting brings up a further point.
We have set up a formalism that is not manifestly co-
variant. Thus, Lorentz invariance can be demonstrated
only by showing that there exist Lorentz-transformation
generators A which have the proper commutation rela-
tions with the various operators. In the quark represen-
tation satisfying (3.9) we know that such generators
must exist, since in that representation our equations
are simply a rewriting of a manifestly covariant field
theory. The remainder of this section is devoted to
the question of Lorentz invariance in more general
representations.

The generators A are given by

A= / x09°(x)d3x. (3.13)

Thus, the Lorentz-transformation properties of any
operator are determined by its commutator with the
energy density %°(x). For example, the known trans-
formation property of 6%(x) itself leads to the familiar

% Rigorously, this must be a limit in which either ¢(x) vanishes

identically, or in which the asymptotic states cease to be complete.
In either case ¢ (x)g(x) must have a sensible limit.
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0 0
E0“°(x),0°°(y)]=i(—~~—)[a(x—y>o%(x)], (3.14)
dy*  dx*

where it has been assumed that no terms more singluar
than the first derivative of a & function appear in the
commutator. Let us see what restrictions relativity
imposes on the commutator of °°(x) with the ©’s.
First we list the Lorentz-transformation properties of
the D’s; they are

(A4, D (M) J= 2 H,D(x,M) +3iD(x,{a;,}1}), (3.15)

where the first term on the right comes from trans-
forming the coordinate x and the second is an “‘index
rotation.” For example, when M =g so that D is a
scalar, the anticommutator of M with «; vanishes and
the second term is absent. Next, we make the assumption
that the commutator of 6°°(y) and D(x,M) is no more
singular than a & function or its first derivative. The
general form of the commutator is then

[6°(y), D(x,M)]=6(x—y)O(x)
ad

+i—[o6(x—y)P*(x)], (3.16)
Oxk

where 0(x) and P*(x) are as yet unrestricted operators.
Multiplying (3.15) by v;, integrating over d3y, and
comparing with Eq. (3.15), one finds that O(x) remains
unrestricted, but that P*(x) must equal 2D (x,{as,M}).
Thus we can write the commutator of §°(y) and O(x)
in the convenient form

tw<y>,s>(x,M)]=a(x—y>[am<y>, / dox fD(X,M)]
d
—I—%i@[é(x—y)ﬂ)(x,{ak,M})]. 3.17)

To be complete, we need the commutator of 6°°(x)
with Z*, It is easier to give the commutator with

a
eﬂk(x) = Zk+%6klm——":’0 (X,a'm) )
Jx?
which is

3
[9m(Y),00"(X)]=ig;;D(X—Y)BZk(X)]

a
—i—[6(x—y)6"(x)], (3.18)
Iy*

where it has again been assumed that the commutator
is no more singular than the first derivative of a §
function.

We can now state the requirements of relativity as
follows: The only allowed representations of the algebra
are those in which there exists an operator 6°(y) which

2 J. Schwinger, in Theoretical Physics (International Atomic

Energy Agency, Vienna, 1963), pp. 89-134; Phys. Rev. 130, 406
(1963 ; 130, 800 (1963).
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satisfies Eqgs. (3.14) and (3.17). We need not consider
Eq. (3.18) because its only role is to define 8*!(x). In the
quark representation which satisfies Eq. (3.9), the ex-
pression for 6%(x) given in (3.12) satisfies these re-
quirements.”? Unfortunately, we have not been able to
find any other representation in which we have been
able to construct a §°(x) which satisfies the constraints.

While we have not demonstrated the existence of an
energy density 6%(x) in any interesting representation,
we have found that (3.14) and (3.17) are enough largely
to determine 6°(x) when it does exist. Thus, we need
not use singular-looking expressions like Eq. (3.12),
but can work with the presumably more sensible
commutation relations (3.14) and (3.17). The reason
for this is as follows. Suppose that in a given irreducible
representation of the algebra generated by the D’s
and Z%, there are two solutions to (3.14) and (3.17).
The difference A between the two 6°’s will evidently
satisfy

[A(y),:sa(x,M)J:a<x~y>[A(y>, / éD(x,M)dsx] (3.19)
and

[A(x),A(y) ]+[A(%),6(y) ]H+[6°(x),A(y) ]=0,

where the §%°(x) in the latter equation is one of the two
solutions. Now in an irreducible representation, A must
be a function of Z* and the ©’s, and Eq. (3.19) is then
sufficient to guarantee that A(x) depends only on
D(x,M)’s at the same point x: Any dependence on Z*
or derivatives of the ’s would lead to gradients of 8
functions in (3.19). Next, it is easy to see that
[A(x),A(y)] must vanish. Since A does not contain Z*
or derivatives of the D’s the commutator [A(x),A(y)]
must be proportional to §(x—y), but the coefficient of
8(x—y) must vanish since [A(x),A(y)] is antisymmetric
in x and y. Using this information, Eq. (3.20), and our
usual assumption that [A(x),6°(y)] is no more singular
than a 6 function or its first derivative, we find that

[60°(x),A(y)]=0(x—y)[HA(y)],  (3.21)

which implies

(3.20)

[AsA(n) 1=y {H,A®Y)]. (3.22)

The interpretation of Eq. (3.22) is, of course, that A is
a Lorentz scalar. But a Lorentz-scalar function of the
9’s, containing no derivatives or Z¥ must be a mani-
festly Lorentz-invariant function of invariant products
like ©2(x,1)— D?(x,a). Thus, the commutation relations
(3.14) and (3.17) determine 6°°(x) up to a (manifest)
Lorentz-scalar function of the ®(x,M)’s. This is the
same amount of freedom as is present when one simply
adds an interaction in the usual quark model.

We may summarize the last half of this section with
the statements: (i) In interacting theories, one will
probably have to avoid equations like (3.9). (i) When
such equations do not hold, one cannot simply take a

2 Note that the 6%(x) of Eq. (3.12) will not satisfy either
(3.14) or (3.17) unless Eq. (3.9) holds.
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field-theoretic Hamiltonian and rewrite it, in a straight-
forward way, as a function of the currents. (iii) Never-
theless, we have found that the requirements of rela-
tivity are such that 6%(x) is always determined up to a
relatively simple “interaction term.”

The reader will recall that we have consistently
assumed that the commutator of 6°(x) with various
operators is no more singular than a § function or its
first derivative. This is the minimum amount of
singularity which is consistent with relativity. With-
out this ‘“minimum-singularity” assumption, our con-
clusions would have been considerably weaker.

IV. DISCUSSION

In Secs. IT and III we have seen that quantum-
mechanical theories, both relativistic and nonrela-
tivistic, can be written in terms of coordinates like
charge and current densities. In each of the cases
studied, the one thing which seems least satisfactory is
the quite awkward expression for the kinetic-energy
part of the Hamiltonian. We saw, however, in the
relativistic case that the essential properties of the
kinetic part of H are completely determined by the
requirements of Lorentz invariance. Thus, there is
reason to expect that the singular expressions in our
formulas for H can be replaced by simpler statements
such as (3.14) and (3.17).

As far as relativistic theories are concerned, we
limited ourselves to the quark model. However, our
conclusions are by no means peculiar to this one model.
In the following paper, a theory of charged scalar mesons
is studied. Again it is found that a complete formula-
tion of the theory can be based on operators like charges
and currents.

To summarize, we know that it is possible to write a
theory in terms of currents. The next question is: Is
it a useful thing to do? Obviously we are not going to
try to answer this question. If we knew the answer, we
would probably have enough information to present a
complete theory of strong interactions. Nevertheless,
it probably is worth making one point. It does not
seem likely that a theory written in terms of currents
will be particularly useful unless it is somehow qualita-
tively different from a normal canonical field theory.
Thus we do not expect that rewriting the quark model
in terms of currents will cure the ills of Lagrangian
field theory. One way in which a qualitative difference
could occur is in the choice of a representation of the
current algebra. This has already been discussed in the
quark model. Another, more speculative, possibility is
that a theory, for which there is no analog in canonical
field theory, can be written in terms of the known weak
and electromagnetic currents along with some additional
operators like °. Presumably one would postulate some
algebra for these operators and assume that all hadron
states span a single irreducible representation of it. The
requirements of relativity would have to be investigated.
If they can be satisfied, it is likely that §°(x) would be
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determined up to some simple “interaction.” If such a
theory exists, it would describe a world in which there
are no elementary particles, only elementary currents.
In fact, this is about the only way in which we can
imagine writing a concrete, dynamical theory without
recourse to some kind of elementary particle.

The question of elementary particles brings up
another point. Where do the particles, namely, the
physical hadrons, show up in a theory based on cur-
rents? In attempting to answer this question, we prefer
to discuss nonrelativistic theories, where we know that
our statements make mathematical sense. Consider the
algebra (2.4) and (2.13), which, according to our claims,
describes V nonrelativistic spin-} particles, either bosons
or fermions. How, in fact, do we find these particles
if we start directly with the algebra of Egs. (2.4) and
(2.15)? The answer is that we have to look at repre-
sentations which satisfy (2.14) or (2.15). In these
representations, Egs. (2.14) and (2.15) tell us that there
exist states in which p(x), (x), and J(x) are all local-
ized at set of points? xy, %o, -« -, y. Such states could
be interpreted as states with particles localized at
%y, %, +++, xy. We might call such particles “ele-
mentary”’ to distinguish them from bound states which
cannot be found in this way, since the charge density
of a bound state is spread out rather than localized
at one point. The bound states could only be found by
diagonalizing the Hamiltonian. The implications of
these remarks for the relativistic case should be obvious.

The reader may also wonder how the S matrix
could be constructed in a theory based on currents.
In practice, this would be very difficult, but in principle
there is no problem. There are two ways to see this.
First, it is known?*?¢ that the matrix elements of
Heisenberg currents like D(x,.,M), taken at all times
¢, contain a quantity of information which is suf-
ficient to determine the particle cross sections. If, as
in the models discussed here, one has the Hamiltonian
and the currents at {=0, one can clearly calculate the
currents for all times, and the cross sections can then be
calculated, in principle. An easier way to arrive at the
same conclusion is to note that in any theory with an
explicit Hamiltonian, a set of formal scattering equa-
tions can be set up: The solution of these equations
yields the S matrix.

So far, we have always been talking about how this
or that can be calculated in principle. If some sort of
theory built on currents does exist, one would be faced
with the problem of making practical, approximate
calculations. We do not really have any good ideas as
to how this would be done. There are two approaches
which would seem natural, but it is not clear at this
point how they could actually be implemented.

In the theory of liquid helium, the use of currents

2 For example, the expectation value of p(x) will have the form
(o (X)) 32aa Vo (x—x2).

% H. Araki and R. Haag, Comm. Math. Phys. 4, 77 (1967).
( 26 J. Langerholc and B. Schroer, Comm. Math. Phys. 4, 123
1967).
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and densities as basic coordinates for the system has
led to physically significant results. The reason for this
may be seen by referring to the Hamiltonian (2.9). If,
as happens in liquid helium, p(x) is nearly a constant,
one can set the factor p~I(x) in the first term in H
equal to pe(x), where po(x) is the ground-state ex-
pectation value of p. The resulting Hamiltonian is
bilinear in p(x) and J(x) and is therefore much easier
to handle. Let us see what happens if we try an anal-
ogous approximation in the quark-model Hamiltonian
(3.12). The vacuum state is what corresponds in field
theory to the ground state of a quantum fluid, so what
we would want to say is that the baryon number
density D(x,1) is, apart from small fluctuations, equal
to its vacuum expectation value. The trouble with this
is, of course, that D(x,1) is the time component of a
4-vector, so that setting D(x,1) equal to a constant ¢
number makes no sense ##nless there is some preferred
frame of reference. Also, it is by no means clear a
priori that D(x,1) should vary only slightly from its
vacuum expectation value.

In view of this, it is interesting to note that there is
a physical problem where the baryon number density
is, apart from small fluctuations, a large constant, so
that a preferred frame of reference does exist. This is a
very dense neutron star?” (density >> 10 times nuclear
density). Thus, neutron stars might turn out to be
relativistic analogs of a tank of liquid helium. Actually,
this could make physical sense. For a sufficiently
dense neutron star, the usual description of matter in
terms of individual nucleons and hyperons is likely to
be meaningless: The properties of nuclear matter in
such a highly compressed state might be more appro-
priately described?® in terms of quantities such as the
baryon number per unit volume, hypercharge per unit
volume, etc., which enter in a natural way in theories
based on currents.

A second possible approximation scheme would seem
to be contained in the suggestion® that infinite sets of
baryon and meson resonances form simple representa-
tions of the algebra generated by D (x,\;) and D(x,vs)\:).
While this scheme may lead to a useful phenomeno-
logical model of the hadrons, it is not clear that such
an approach would be a useful way to work towards the
solution of a complete theory. In order to see what the
problem is, it is necessary to understand the relation
between a complete theory and the model suggested in
Ref. 29. For the sake of argument, let us suppose that
the hadrons actually are described by the D(x,M)’s
and Z*(x) of the quark model, along with some 6%(x)
built out of them. In such a world, the set of all states
with a given baryon number form one irreducible

% For a recent review of the subject of “superdense stars”
see J. A. Wheeler, Ann. Rev. Astron. Astrophys. 4, 393 (1966).

28 One of the authors (DHS) would like to thank M. Gell-Mann
for a stimulating conversation on this topic.

2 R. Dashen and M. Gell-Mann, Phys. Rev. Letters 17, 340
(1966) ; M. Gell-Mann in 1966 International School of Physics
“Ettore Majorana,” Erice, 1960, edited by A. Zichichi (Academic
Press Inc., New York, 1966).
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representation of the algebra (3.3) and (3.5). In the
phenomenological model, on the other hand, one works
only with the subalgebra generated by f* D (21,%5,%3,\i)dxs
and /"D (x1,%9,23,v5N;)dxs. Clearly, the set of all states
with a given third component of momentum P; form
a representation of this subalgebra. In general, this
representation will be complicated and highly reducible.
The hypothesis of Ref. 28 is that for Py— <o, infinite
sets of meson and baryon resonances which form simple
but still reducible representations of the subalgebra
are singled out. Just which representations occur and
the mass spectrum within a representation are, ac-
cording to Ref. 29, to be determined by the requirements
of relativity, self-consistency, and a certain amount
of input from experiment. Now it is clear that our
hypothetical complete theory built on all the ©’s and
Z* would, in principle, determine which representatiosn
and what mass spectrum are to be used in the
phenomenological model. However, if one were given
a specific 6°(x) written as a function of the ©’s and
Z*, it is not at all obvious how one would go about
calculating the parameters of the phenomenological
model. It may well be that the complete theory and the
model would be brought together only after the former
had been solved completely.

In closing we would like to remark on the connection
between the present work and the branch of axiomatic
field theory which deals with “rings of local observ-
ables.” The local observables are just the objects which
we are working with, namely, currents, components of
the energy momentum tensor, and so on. A nonobserv-
able is, for example, a fermion field. The difference
between the axiomatic approach and ours is simply that
the axiomaticians prove rigorous statements about
general theories without any explicit properties or
interactions, while we have been concerned with mathe-
matically dubious statements about concrete, specific
theories. As an example of the difference between the
axiomatic approach and ours, we have specified theories
in terms of a set of densities taken at a single time (we
have been implicitly setting {=0) with definite com-
mutation relations and a Hamiltonian written in terms
of the densities. On the other hand, it may be proved
from the axioms that knowing the matrix elements of
only one current for all times is sufficient to define the
theory. That these statements are not incompatible is
easily seen if we consider a simple classical system with
one degree of freedom. If one is given p and g at one
time, say =0, and a Hamiltonian H (p,q), it is possible
to compute p and ¢ for all times. On the other hand, a
knowledge of the coordinate ¢ for all times is also
sufficient, since from the trajectory ¢(#) one could
compute both p and H.

It is unfortunate that, in our present state of knowl-
edge of field theory, mathematical rigor and concrete
theories with interaction are mutually exclusive. It
would be nice to think that the axiomatic approach
and that which we have used here will some day con-
verge and produce a real theory.



