
S. ELIEZER AND P. SINGER 165

In our model there is no direct relationship between
K~ ~ m'e+e and E+—+ m+e+e-, unless some relation is
assumed between ft and fe.

(E) As we mentioned in the Introduction, the esti-
mate of Lee and Wu' for the ratio (Et' —+ ~+~ ~')c'c/
(IC2e ~ ~+~ xe) is ~10 '. This was based on the fact
that this ratio is proportional to (kR)" and that kE has
been chosen to be 3, corresponding to R, approximately
equal to the pion Compton wavelength. "Our ampli-
tude for K& ~ m.+m m. obviously also behaves like
"(kE)'," as can be easily checked from Eq. (10). The
value of the equivalent radius is however determined by
the parameters of the model (like fvpp1% p). The'result
in Eq. (16) supports the choice of Lee and Wu in their
rough estimate of the rate. It is of interest therefore to

~ It should be remarked, however, that by using the same argu-
mentation, N. Byers, S. W. MacDowell, and C. ¹ Yang PIigh-
Energy Physics md E/ementary Particles {International Atomic
Energy Agency, Vienna, 1965)] predict a ratio

(X,o-+ ~+~- o)gpss/(Z~o~ + -F0)=10-
which is much larger than our estimate. As these authors use
A~1/p, , i.e., the same value used by Lee and Wu, it seems to us
that the discrepancy stems from a diferent interpretation for k.

have a model also for the Ere ~ (3~)r r amplitude, as
this might turn out to be the dominant CP-conserving
transition. '

(F) The strong cancellation occurring in Eq. (11)
implies that electromagnetic corrections to the process
could be significant. The reduction caused by the can-
cellation being of the order of 10, one expects in fact
corrections as large as the matrix element itself. The
simplest correction would be to take into account the
mass difference p + —p, o and to allow for a small differ-
ence (e.g. , a few per thousand) between g,o+ — and
gp+ + o. The effect of such corrections has been studied
with a similar matrix element for the g ~ 3m C-noncon-
serving decay, "with the conclusion that the rate is
increased by a factor of 1.5—2. As we do not know the
accuracy of our SU3 assumptions, there is no point in
making detailed estimates. One should however keep in
mind that the electromagnetic effect of isospin noncon-
servation alone, could change our numerical 6gure for
Ere~ (~++ ")r=~ by a factor of 2.

'4 G. L. Shaw and D. Y. Wong, Phys. Rev. Letters 8, 336 (1962);
Y. Fujii and G. L. Shaw, Phys. Rev. 160, 1551 (1967).

P H YS ICAL RE VIE%' VOLUME 165, NUMBER 5 JANUARY 1968

Regge Theory of High-Energy Scattering with Relatively Large
Momentum Transfer

TETsUo SAwADA

Department of Physics, Tokyo University of Education, Tokyo, Japan
(Received 7 August 1967}

Functional equations for the Regge parameters a(t) and P(t) are derived from the unitarity condition,
which is valid for relatively large momentum transfer. By solving these equations we compute the high-
energy cross section with relatively large momentum transfer up to two arbitrary periodic functions. The
result agrees with Orear's fit except for the appearance of dips. We compare this result with high-energy
experiments on p-p scattering with large momentum transfer, and some prediction is made concerning the
position of the dips.

1. INTRODUCT&ON

NUMBER of empirical formulas have been pro-
posed" for the differential cross section of high-

energy proton-proton scattering with large momentum
ftranser. Among these the simplest is Orear's 6t'

Joel
s (s,t) =ye(—ay sin8)

dQ

with 2=595~135 GeV' mb/sr and 1/@=158~3
MeV/c, which is true for relatively large momentum

transfer, namely, for ~t~ &1(GeV/c)'. It is remarkable

*Present address: Department of Physics, University of
Colorado, Boulder, Colorado.

~ G. Cocconi et al. , Phys. Rev. Letters 11, 499 (1963); S.
Minami, T. A. Moss, and G. A. Armoadian, Nuovo Cimento 33,
982 (1964); A. D. Krish, Phys. Rev. Letters 11, 217 (1963);and
Phys. Rev. 135, 1456 (1964}.

J.Orear, Phys. Rev. Letters 12, 112 (1964); and Phys. Letters
13, 190 (1964),

that Eq. (1) can cover measurements with a wide range
of incident mornenta —from 1.7 to 31.g GeV/c. How
ever, recent measurements made by Allaby et al. ,

' and
also by Clyde et al.,4 revealed a significant deviation
from Orear's 6t, although Eq. (1) can still reproduce
the gross features of the elastic scattering. Another
series of measurements of the elastic differential cross
section for 90' center-of-mass (c.m. ) scattering angle
was performed by Akerlof et ul. ' for the range of incident
momenta from 5.0 to 13.4 GeV/c. The plot of ln(do/dt)
versus p' was 6tted by two straight lines with a break
at p'=3.4(GeV/c)'. In order to compare this measure-
ment with Orear's formula, we plot the deviation 6,

' J. V. Allaby et al. , Phys. Letters 23, 389 (1966).
4 A. R. Clyde et at. , University of California Radiation Labora-

tory Report No. UCRL-11441 (unpublished); UCRL-16275
{unpublished).' C. W. Akerlof et al., Phys. Rev. Letters 17, 1105 (1966}.
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A=loggo s—
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s—~e„„, (2)
dQ~ ( dQ)

versus psin8 (in our case p itself) in Fig. 1. This
quantity 6 has a dip around p=1.8 GeV/c.

Proton-proton elastic scattering at high energy has
been interpreted in the framework of the statistical
model and also in Regge theory. The statistical models
predict'~ an exponential decrease of the elastic differ-

ential cross section, with energy for large scattering
angle

do'el
(0=90') ~ exp( —s'/a') . (3)

dQ

From the numerical computation made by Fast, Hage-
dorn, and Jones, ' c turns out to be ~~ and a'=310 MeV,
which is not inconsistent with Eq. (1) for 0=90'. How-

ever, it is difficult to explain the angular distribution
of the elastic differential cross section from the statis-
tical model alone. This is because when the collision

complex, after having realized statistical equilibrium,
decays into the original elastic channel in competition
with decay processes into inelastic channels, the
memory of the directions of the incident momenta is
lost. Another characteristic feature of the statistical
model, as pointed out by Ericson' in the analogy with
low-energy nuclear reactions, is the Quctuation of the
differential cross section. However, such a fluctuation
was not observed' in high-energy proton-proton scatter-
ing, in contrast to the case of low-energy nuclear reac-
tions. Thus, the simple statistical model must be
modified' if high-energy scattering is to be understood
in the framework of this model.

Application of Regge theory to high-energy scattering

6 G. Fast and R. Hagedorn, Nuovo Cimento 27, 208 (1963);
R. Hagedorn ibid. 35, 216 (1965);A. Bialas and V. F. Weisskopf,
ibid. 55, 1211 (1965l.' G. Fast, R. Hagedorn and L. W. Jones, Nuovo Cimento 27,
856 (1963).'T. Ericson and T. Mayer-Kuckuk, CERN Report No.
66/TH 686 (un ublished); see also J. V. Allaby et al. , Phys.
Letters 23, 389 1966).

9 S. Machida M. Namiki, and I. Ohba, Progr. Theoret. Phys.
(Kyoto) 57, 10I (1967).

Fro. 1. Plot of b, =log10(so.o/dQ) —log10A —2.70P sin8 versus,
P sin8 GeV/c with A =595&135 GeV' mb /sr. Typical errors are
shown on the graph. The data of Akerlof et al. (see Ref. 5}are used.

de6ned by

with large momentum transfer was recently made by
Huang, Jones, and Teplitz, " and also by Anselm and
Dyatlov. "Huang et a/. interpreted the appearance of
the break found by Akerlof et at. ' in p-p scattering at
8=90' as a result of the branch point of the first Regge
cut passing through the line J=O. Anselm e] al. com-
puted the differential cross section by summing the con-
tribution of in6nitely many Regge cuts, and they got a
result which agrees qualitatively with Drear's fit
[Eq. (1)7. It is well known that the Regge theory has
been applied successfully to the analysis of the forward
diffraction cone of high-energy scattering, " especially
to S-E and K-E scattering where resonances in the
direct channel are not present in practice. Thus it is
desirable to make, if possible, the same type of analysis
of high-energy scattering with large momentum transfer.
In Regge theory, the high-energy scattering amplitude
2"(s,t) is assumed to be the sum of the contributions of
a few Regge trajectories in the crossed channels:

T(s t) p(t)s t'&+.

Contrary to the case of small
~

t t say
~

t
~

&m', where we
can parametrize o;(t) and p(t) (for example by taking a
few terms of the Taylor expansion), it is necessary to
determine the functional form of n(t) and p(t) in some
way if we want to apply Regge theory to scattering
with large momentum transfer, m'& ~t~&&s. Finally,
it is worthwhile to point out that the success of the
analysis of the forward diffraction cone by the Regge
hypothesis comes from the assumption that the Regge
cuts do not exist, or at least that their contribution is
very small. Ke have to reexamine this assumption when
we apply Regge theory to scattering with large momen-
tum transfer.

The organization of this paper is as follows. In Sec. 2,
the idea for determining the functional form of o.(t) and
p(t) is presented. In Sec. 3, functional equations for
o.(t) and P(t) are derived. In Sec. 4, these equations are
solved by changing them into difference equations, and
their physical meaning is discussed. A semiempirical ex-
tension of the result to large-angle scattering is made,
and then in Sec. 5 we compare our results with experi-
ments and make some predictions concerning high-

energy scattering with large momentum transfer.

2. ASSUMPTIONS AND PRESENTATION
OF IDEAS

In the Regge hypothesis, the high-energy behavior
of the elastic scattering amplitude T(s, t) is given by
Eq. (4), and it is usually assumed that the quasi-two-
body (for example, p+p —+ p+1V~*) scattering ampli-

"K.Huang, C. E. Jones, and V. L. Teplitz, Phys. Rev. Letters
18, 146 (1967).

GAIA.

A. Anselm and I. T. Dyatlov, Phys. Letters 248, 479
(1967)."R. J. N. Phillips and W. Rarita, Phys. Rev. 139, B1336
(1965). Further references will be found in their paper.
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In particular, for the case of forward scattering, i.e.,
for t=0, the unitarity condition becomes

0 ~ ~ ~

ImT(pt, ps; P1,P2) = Q p . d71 d7,„»
nM 7

FIG. 2. The elastic unitarity condition on the
scattering pI+p2 —+ p~'+p2 .

tudes T;(s,t) have the same form":

T;( t)-O;(t)'"&+" .

anB

X
I T(;P.,P.) I (9)

E„2

ImT(P, ,P, ; P,tP2) ~ Q Q»r„, (s) = o...(s), (10)
n=2 t'

We do not yet have a convincing theory which deter-
rnines the high-energy behavior of the production ampli-
tudes (e.g., P+P —+ p+22+»r+ with the correlated part
subtracted). Since our aim is to derive restrictions on

n(t) and P(t) from the unitarity condition of the s
channel, it is necessary to find a region of t where the
contribution from the uncorrelated part of the produc-
tion amplitudes is small, if possible. The unitarity
condition of the elastic amplitudes of p1+ps —+ P1'+ps'
is'4 (see Fig. 2)

~ "&(Pt+Ps—P )
2 ImT(p, ',p, '; p„p,)= —(2»r)'g

)y) g 2Vn

Vd'qg Vd'q„
~ ~ ~

(2»r)' (2»r)'

it is more conveinent to rewrite the sum g~ &
as

~"&(P +P P)—
v) Ve

n=2 r
Pd71'''d72 4, (7)

where r stands for all the quantum numbers, other than
linear momenta and particle number e, needed to
specify the intermediate states. "Equation (6) becomes

ImT(p, ',P,'; pr, ps) = E 2
n=2 r

x T (y i P1»P2 )T(y» Pl»P2)d71' ' 'd7ss —4' ( )

'g S. Gasiorowicz, Fortschr. Physik 8, . 665 (1960).
"In this paper, we suppress the spins of all the particles for

the sake of simplicity.
'5 r distinguishes diGerent states of the same particle number e,

since, for example, we have states p+e+m+, p+A+E+, ~ ~ ~ even
for the case n =3.

XT*(y, p1',ps')T(y; pt, P2), (6)

where e is the number of particles of the intermediate
state ly), and the notation is same as that of Gasi-
orowicz. "Since for an n-particle intermediate state the
sum is of the form

where o„„(s) is the cross section of P1+P2 —+ In, r).
Since we know experimentally that for 30 GeV/c)P; .)10 GeV/c the ratio" o,»(s)/a. ..(s) for P-p scattering
is 0.23, the contribution of the quasi-two-body in-
termediate states (including the elastic state) to
ImR(s, t=0) is larger than 23%. However, the contri-
bution of the uncorrelated multiparticle intermediate
states is not necessarily small for the case of t=0 (in
the worst case it may become as large as 77%). Now
let us examine how the ratio of the contributions of the
quasi-two-body states and the multiparticle inter-
mediate states to ImR(s, t) changes when

I
tl increases

from zero.
Although the integrand of Eq. (9) is positive definite,

for t=0 the integrand of Eq. (g) is complex in general
and assumes various phases when we perform the inte-
gration. Thus, we can expect that for finite value of t
the cancellation becomes more appreciable as the
number of particles in the intermediate state, namely,
the number of integration variables, increases when we
perform the integration of Eq. (g).'2 Therefore, if the
momentum transfer becomes larger than a critical
value, say

I
t, I, the contributions of the quasi-two-body

intermediate states to ImT(s, t) of Eq. (8) exceeds 50%.
From these considerations, it is reasonable to adopt
the following assumtpions:

Assgmptioss I For ltl & It.„l the unitarity condition
becomes

P
ImT(s, t) =

Qs i=two-body

XT;(s,t') T;*( st") +E( st), (11)

where T, (s,t') are the amplitudes of the quasi-two-body
(including the elastic) scattering, and t, t', snd t" are
related by Eq. (15). J'(s, t) is the sum of the contribu
tions of all the intermediate states other than those
of the quasi-two-body intermediate states; it is as-

"O. Czyzewski et a/. , Phys. Letters 15, 188 (1965).' In fact, the contribution of the uncorrelated jet intermediate
states is known to decrease as C exp(ct} for 8'«1

1 L. Van Hove,
R.ev. Mod. Phys. 36, 665 {1964)j, whereas, as we shall see later,
the contribution of the two-body intermediate states behaves as
Q'exp( —c'g —t). Thus, as ~t~ increases, the contribution ot the
latter eventually exceeds that of the former.



165 REGGE THEORY OF HIGH —ENERGY SCATTERING i85i

sumed to be less than the first term of the right-hand
side of Eq. (11) in magnitude and to decrease faster
than the first term. The next assumption concerns the
high-energy behavior of the quasi-two-body scattering
amplitudes.

Assgmption 2. The asymptotic behavior of the quasi-
two-body scattering amplitudes T, (s,t) is determined
by a small number of Regge trajectories of the crossed
channels, namely,

T, (s,t)-P, (t)(lns)&s-«t+ ~ . (12)

In Eq. (12), although rr(t) is common, the residues

P, (t) depend on reaction (j) of Pr+Ps ~
~
j). For gen-

erality, we have placed a factor (lns)~ in Eq. (12),
where E is a non-negative integer to be specified later.
X=O corresponds to the Regge pole of the crossed
channel, whereas Ã=i, 2 correspond to Regge
dipole quadrupole, and so on. Thus N indicates the type
of the Regge trajectory.

Our idea is very simple. By substituting the asymp-
totic form of Eq. (12) into both sides of the unitarity
condition given in Eq. (11)which is valid for

~
t~ &

~

t, ~,
we compare the power of s and also its coefFicient. It is
sufhcient to assume

T, (s,t')T (ts, t") & iE(s, t) i (13)
4~

for
~

t~ &
~
t,

~

ands))ttts, in order to derive the functional
equation of ct(t), since the power of s of the right-hand
side of Eq. (11) is determined by the first term and the
existence of R(s,t) does not alter the power. On the
other hand, in order to obtain a functional equation for
Pt(t) by comparing the coefficient of s~t" on both sides
in Eq. (11), it is necessary to assume that R(s, f) is
negligible compared to the right-hand side of Eq. (13).
Thus in this case, we have to take

~
t,

~

a little larger.
Finally, it is worthwhile to give a different explana-

tion of our way of determining the Regge parameters
n(t), Pt(t), and X in Eq. (12). Suppose that the Regge-
pole trajectory /=n(t) is a straight line with tr(0) =1,
namely,

ct(t) = 1+n'(0) t;

then using the unitarity condition of the s channel by
iteration, as is well known, there appears a Regge cut
with a branch point at I= 1+tetr'(0)t, which does not
coincide with the original Regge trajectory of Eq. (14)
(see Fig. 3)."Our problem is to determine from what
curve f=n(t) and from what type X of Regge trajectory

"When we compute the higher-order iterations assuming
a(t) =1+0,'(0)t, a series of the Regge cuts appears with branch
points at /=1+(1/e)n'(0)t with m=2, 3, 4, ~ ~ ., which may
accumulate at l = 1.However, if we make the requirement on of(t),
instead of assuming l =g{t) is a straight line, that the Regge tra-
jectory obtained from the first-order iteration is the same as the
zeroth-order Regge trajectory in position and type, then the
additional Regge trajectory or cut does not appear when we
compute the higher-order iterations.

defined in Eq. (12) we should start, in order for the
induced Regge singularity to be the same as the original
one in type as well as position. In the next section, we
shall find that E= i, namely the Regge dipole, "satisfies
the requirement we have made. "

3. EQUATIONS FOR n(f) AND gt(f)

In this section we study high-energy proton-proton
scattering with finite momentum transfer, namely
t,

~
&

~
t~ &&s. Thus, the scattering angle8isinfinitesimal;

8~&&1, the case of large scattering angle, will be
treated in Sec. 5. The variables t, t', and t" appearing in
the unitarity condition given in Eq. (11) are related by

cos8"= cos8 cos8'+sin8 sin8' cosP', (15)

where the 8's and t's are connected by

t = —2P'(1 —cos8), etc. (16)

Let us compute the integral appearing on the right-hand
side of Eq. (11) for large s:

dQ'
I (~,nt)=(l»)'" t8 ( 't)P t( t)'"' +"" (17)

kr

If we change the integration variables (O', P') to (tt, ',P'),
where

etc. ,
then

1
I;(s,rtt) = (1ns)'" — dye

nt'dot'/3 (nt')P *(~t")s'""+ '""' ' (19)

"T.Sawada, Nuovo Cimento 48, 534 (1967); and also TUEP
Report, TUEP-67-4 (unpublished).

'0 This conclusion is correct, as we shall see later, if

p~ (t/4) p~*(t/4)'
j=quaSi-tVpo-body

converges for
~
t

~
)~t, ~. This fact seems to indicate that some or

all of the Regge trajectories of mesons may be Regge dipoles
rather than Regge (mono) poles. Experimentally, it is not yet
clear. However, the proton form factor IT. Janssens, R. Hof-
stadter, E. 3. Hughes, and M. R. Yearian, Phys. Rev. 142, 922
(1966);W. Bartel et al. , Phys. Rev. Letters 17, 618 (1966)g is well
fitted by F(q') = (1+q'/0. 71)~, which is easily understood if the
vector mesons are Regge dipoles. On the other hand, the usual
three-poles fit fL. H. Chan, K. W. Chen, J. R. Dunning, Jr.,
N. F. Ramsey, and J. K. Walker, Phys. Rev. 141, 4 (1966);
W. Albrect et al. , Phys. Rev. Letters 18, 1014 (1967);M. Goitein
et al.

&
gbjd. 68t 10161 1018 (1967)3 F(g ) = Ei ci(mi +g ) ' with

g; c;m;~=1 does not work very well except when we add a large
background contribution. Moreover, the total cross section grows
with energy as ot,&(s)~C ln(s/s0) if the leading Regge dipole tra-
jectory has the property ~(0) =1, contrary to the constant be-
havior of the total cross section for the case of the Regge pole.
We cannot yet determine which is actually the case from cosmic-
ray experiments. However, a recent measurement of the inelastic
cross section of P+C~ with incident proton energy from 10 to
10' GeV, made by Grigorov et al. using the earth satellites "Proton
1" and "Proton 2," revealed that the cross section increases
slowly with energy and can be fitted by ln(s/s0) or by a small
power of s. References to this experiment and also other experi-
ments in the cosmic-ray energy region can be found in Barashen-
kov's PFortschr. Physik 14, 'l41 {1966)]report.
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T(s,t), using the Regge spectral function p(l~, t), m the
form

T(s, t) = p (X,t)s "dP.+0 (s
—'), (2g)

w ic ish' h is convenient for studying the high-energy be-
28havior of the amplitude. In Eq. ( ),

p(X&t) = 0 foi' X)Ag~BX (t) . (29)

I'IG. 3. Regge-pole trajectory (0) and the branch
point of the first and second Regge cuts.

A Regge pole corresponds to P(t)8(X—n(t)) for the
spectral function and a Regge dipole corresponds to a
5' function, whereas the finite spectral function pP. ,t)
yie s a egge.' ld Re e cut. It is an easy rnatter to change q.

he s ectral(23) into the form of Eq. (28) and compute the spec ra
function,

1
I;(s,g,)= (lns)'"- dx'dy'P;(n ')P;*(v ")~"'*'"""',

(23)

X(x',y'; p, )=a(p, ')+n(p, ")—1. (24)

In Fig. 4, we draw as an example the graph of

) the (x' y') plane for the case of

n()=1+n'(0)t. From Eq. (24), it is eviden

3 jx &y &
p&~jis sysymmetric with respect to the x' axis and

y' axis, namely

X(x', —y'; g,)=X(x', y'; re) (23)
and

X(—x', y'; it,)=Z(x,y; g,). ( )(26)

If dn(t)/dt) 0, which means dix(g&)/drt&&0, then
~~becomes a maximum for y'=(x ry

~(x',0; ~,)~ ~(x',y'; ~,). (27)

Considering qs.E s. (26) and (27), at the origin, we see

that li(x', y'; it,) becomes maximal or has a saddle poin .
( )= 1+n'(0)t as we can see in

Fig. 4, l~(x', y'; it,) has a peak at the origin.

I l we can write the scattering amplitudeIn genera, we ca

where a(gati) is the same as a(t) except for the argument;

it is defined by
=(. )=--(t), (2o)

E . ~15~and P(z&) is similarly defined. Remembering q. ( ),
g&" is related to g&, q&, and p y~b

gi'"=rtP+rti' 2rt, rt,—cos4 .l t' (21)

It is more convenien o int t introduce Cartesian coor inates
I I

( ', '), '
place of the polar coordinates (rt&', g ):

x'=it( cosg' —~it),
(22)

y'= p&' sin&'.

The shift of the origin is made in order to m~ ~ ~

der to make the new

integration variables symmetric with respect to q&' an

g&". Then Eq. (19) becomes

(~,t) =—,,
dl-'P (ni')P *(ni")

x =) (x',y', qt)

-8X(x',y'; rt&)-
—'X, 30

aX(x',y'; g,) =0 and
Bx

W (x',y'; it,)

0y'

If (
' ') is one of the solutions of Eq. (31) for given

i.e. atthen at the corresponding value o, i.e.,
there appears a finite discontinuity

has a eak orin p, (X,t) Since w.e know that l~(x', y'; it&) has a pea or
a saddle point at (x',y') = (0,0), let us compute the corre-

G. 4. Gra h of ) (x,y'; p&) on the (x',y') plane, for the case of
the linear trajectory n(t) =o. n(0)+~'(0)t. The scales of the x' and
y' axis are diferent.

where the integration is performed on the curves of
X=X(x', '; it, ) and the derivative 8/8e is to be made
normal to the curves. When we x, p

curve of integration. The vanishing actually occurs at
the peak and at the saddle point of li(x', y'; gati),

namely, at
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sponding discontinuity of the spectral function pt(X, t).
At the origin (x',y') = (0,0),

X=Xp=2u (rt,/2) —1, (32)

since rt&' ——rt,"=rtt/2. If we consider the case where
&(x',y'; ~i&) has a peak at (x',y')= (0,0), it is evident
that for a small positive number &, the expression

X(x',y'; rid) = Xp —p (33)

where f(rt,/2) is a factor which is independent of j:
f(mt/2) = [(2/nt)u'(nt/2)u" (nt/2)] '* (37)

In general, there may exist other discontinuities in

p, (X,t), although for the case shown in Fig. 4 p;(),t) has
only one discontinuity which we have already com-

puted. The first term of the right-hand side of Eq. (11)
can be written as

g I,(s,rtt)= (lns)s" p(X, t)s"dX+0(s-s), (38)
gs

where

p(X,t) =Qt p;(X,t). (39)

The discontinuity of p(X,t) st X= Xp is

lim p(X,t) —lim p(X, t) = f(rtt/2)P ~P;(rt&/2) ~s, (40)
X ~F0+0

and thus the discontinuity at X=X0 does not disappear
when we make the summation over j. On the other
hand, since the phases of other possible discontinuities
depend on j, pP. ,t) does not necessarily have the same
discontinuities.

Let us assume that the summation of the right-hand
side of Eq. (40) converges for some range of rtt. If E=0,
Eq. (38) gives the high-energy behavior which corre-
sponds to a Regge cut, whereas the left-hand side of
Kq. (11)behaves as ImP(t) s &'& for large s; this is a con-
tradiction. It is not dificult to restore the consistency
if we remember an identity:

(lns)

gives a small ellipse in the neighborhood of the origin.
In fact, expanding X(x',y'; rt,) up to second order of x'

and y', Eq. (33) becomes

[2u'(rtt/2)/rtt jys+u" (rtt/2)xs= —e. (34)

Since u'(p&)(0, Eq. (34) gives an ellipse for u" (rtt)&0
which is the case of interest. If we make the line
integration on this ellipse, Eq. (30) is

ptP(~, t) = IPt(nt/2) Is[(2/n~)u'(~i/2)u"(~t/2)7 ' (35)

and does not depend on e. Thus

lim p;(li, t) lim p—, (X)t) = ~P, (rt,/2) ~'f(rtt/2), (3&)
X~)tp—0 ) ~)~0+0

(lns)" ImP(t)s~t'&

= (Ins) + ImP (t)8(X—u(t) )s"dX. (42')

Since dp(h, t)—/dh definitely has a b function at X= Xp,

although the existence of other possible 5 functions is
not clear, let us identify the power of (Ins) and the
position of the 8 function at ) = ho and its coefFicient in
Eq. (42). We obtain""

Ã= 2Ã—1,
u(rt t) = 2u(rt, /2) —1,

lmP(~i) = sf(nt/2)Z IPt(nt/2) I'

(43)

(44)

(45)

where f(rt,/2) is defined in Kq. (37). In order to derive
Kqs. (43) and (44), it is not necessary that E(s,t) of
Eq. (42) be small but it is sufficient to satisfy the condi-
tion of Kq. (13). On the other hand, we assumed that
R(s,t) is negligible in order to obtain Kq. (45). If the
high-energy behavior of the elastic scattering amplitude
T(s,t) is determined by a few Regge trajectories and.
not by the Regge cuts, then p(X, t) in Kq. (39) is ex-
pected to be the sum of step functions as shown in
Fig. 5. Equation (43) implies the leading Regge tra-
jectory is a Regge dipole and has a contribution of the
form of (lns)P(t)s &'&, as explained in Sec. 2. In the next
section we shall solve Eqs. (44) and (45).

4. SOLUTION OF THE FUNCTIONAL
EQUATIONS FOR e(t) AND g(t)

In order to solve Eqs. (44) and (45), we introduce a
new variable x dehned by

x+ 1= lnrt t/ln2, (46)

"Ifwe consider Eq. (12), the solution X=1 corresponds to a
Regge dipole. The dipole nature of the leading trajectory t T.
Sawada, Nuovo Cimento 51, 208 (1967)g is expected, when we
adopt the point of view of "nuclear democracy" and consider the
high-energy scattering of a "composite particle. "

"Although we derived Eq. (43) at t( —~t. (, we may expect
that some of the meson trajectories are dipole also at t)0 and
have dipole resonances PR. J. Eden and P. V. LandshoB, Phys,
Rev. 136, B1817 (1964); J. S. Bell and C. J. Goebel, ibid. 138,
B1198 (1965); M. Goldberger and K. Watson, ibid. 136, B1472
(1964); E. P. Wigner, ibid. 98, 145 (1955)g. It is worthwhile tq
point out that even if the Regge trajectory is a pure dipole, in
the s plane the amplitude in general has dipole plus single pole
for 6xed /. We shall discuss elsqwhet. 'q &hc @tape gf &be meson
resonances.

where p(X,t) =0 for X)A is used. The unitarity condi-
tion of Kq. (11) becomes, for large s,

(1ns) + ImP (t)s~ "i= (1ns)'

1 " d
X— ——p(X,t)s"dX+E(s,t)+0(s s). (42)

2 g dX

The discontinuity of p(X, t) becomes a o function in
—dp(X, t)/dX, and the left-hand side of Eq. (42) can be
written as



TETSUO SANA DA

N( ~)+ g&pt) g at(l~)
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Fxo. 5. Graph of the Regge spectral function p(X,t) versus X.

and write n(r/&) and P(r/&) as n(x) and P(x), using the
new variable x:

Thus, using the variable x defined in Eq. (46), we find

lnb(x+1) —2 lnb(x) =E(x), (57)

where b(x) is defined as before by

(58)
and

1+ costa(r) i/2)
E(x)= ln f()///2)a (r/, /2); (59)

sin's-n(g&/2)

we regard K(x) as a known function. Equation (57) is a
typical inhomogeneous difference equation of first order,
and the general solution is the sum of one particular
solution of Eq. (57) and the general solutions of the
homogeneous equation. The result is

n(x) =n(r)r/2), etc. (47)

Then Eq. (44) is reduced to a difference equation of
first order:

00

lnb(x) =2*8(x)—P K(x+n),
nm 2&+~

(60)

n(x+1)—2n(x) = —1.
The general solution of Eq. (48) is

n(x)=1—2 T(x),
where T(x) is an arbitrary periodic function with

(48) and E(x) is an arbitrary periodic function with

E(x+1)=R(x) .

(49) From Eqs. (60) and (59), the residue b(r/, ) is

b (r/&)
—spies (tngg/tns)

(61)

Thus we obtain"
T(x+1)= T(x) . sin')ra (2 "r)&)

1+coss.n(2 "r/, ) f(2 "r/, ) o. (2 "r/, )

y/2n+1

(62)

01
n(t), )= 1—r/, T(lnrti/In2) (51)

n(t)=1 —(g—t)T(lnItI/ln4). (52)

and the convergence of the product is evident, since
the inside of the cubic bracket of Eq. (62) is bounded.
The cross section is related to the residue P(t) by

e
—isa(r ~)+1

P(n ) = . b(n —),
sinxn (r/, )

(55)

where b(r/, ) is a real function at least for some range of
r/„Eq. (53) becomes

Let us now turn to the equation for p(t) Since E.q.
(45) contains too many unknown functions p, (t)i), we
have to solve a set of equations. However, in this note
we introduce a phenomenological parameter function
o(r/, ) which is essentially an inverse function of elas-
ticity. Equation (45) becomes

ImP(~«= sf(«/2) I P(«/2) I'~(ni/2), (53)
with

~(g,/2) )1,
and later we shall assume that the q& dependence of
o(r/&/2) is weak. Separating the signature factor from

P(ni) by

d0
s—(s,t) = (Ins)'Ip(t) I's'~&')
dQ

(63)

where
(64)

1
U(x) = T(x)+ T'(x) T'(x)+ T"(x), (65)

ln2 ln2 1n2

and thus U(x) is also a periodic function;

U(x+1)= U(x).

If we substitute Eq. (60) into Eq. (63), considering
Eqs. (59) and (64), we finally obtain

in the high-energy limit. Since we have obtained the
solution of n(r/&) in Eq. (51), f(rt&) defined in Eq. (37)
can be written as

1jcossa (r/&/2)
b(r/, ) = bs()) i/2) f(g /2) o(i/, /2r) . (.56)

sin's-n (r/&/2)

'g Since our functional equation given in Eq. (44) is true only
at t& —

~
t, ~, the solution oi nitl is also true only in this limited

range of t. Therefore the appearance of the singularity at t=0 is
not surprising, because the contribution from the uncorrelated
multiparticle intermediate states to the unitarity condition given
in Eq. (9) is not negligible in the neighborhood of t =0.

d~- —
Ing, (Ingg-

-)/is—=2)/i E — +(lns)TI
(lns)' s dQ ln2 &In2

1 ' sin's. a(2 "g&)+P —In
~=) 2" 1+cos7rn(2 "r)&)

Ing,
+In U — —P —lno (2~r/, ),

ln2 n~ 2" (66)
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for ~tt)g~ t, ~. We determined the differential cross sec-
tion up to two arbitrary functions R(x) and T(x);
therefore, we can in principle predict the t dependence
of the cross section in the high-energy limit, when
do/dQ is given in the range of one period, for example,
in the range ~t, ~

& ~t~ &4~t, ~, as input information. We
need such information. on do/dQ for two different energy
values in order to 6x the arbitrary periodic functions
R(x) and T(x). Concerning the last term of the right-
hand side of Eq. (66), if a(it&), the inverse of the elas-
ticity, is a constant 0., then the last term assumes the
simple form:

00—P —lno (2"rt,) ~ —2 lno.
n-0 2"

(67)

Let us examine the meaning of our final result,
Eq. (66), term by term. The first term on the right-
hand side, 2giLR+(1ns)T], determines the main fea-
tures of the cross section, since the second and the third
terms are oscillating functions and give a finite modi6ca-
cation. This first term 2~t,LR+ (lns) T] is the sum of the
"shrinking" and "nonshrinking" terms. If the R(x)
and T(x) are bounded periodic functions, then globally
2gi[R+(1ns)Tj is a linear function of it&, namely of
gt There .exist two diferent types of "dip" in
1nLqPdo/dg. One occurs in the term ln~ U(luau, /ln2) i,
since U(x) defined in Eq. (66) is a product of two
periodic functions {T(x)+(1/ln2)T'(x)) and (T'(x)
+(1/ln2)T(x)"), and the latter factor is a derivative
of a periodic function; therefore U(x) has at least two
zeros in one period. At the point where U(x) vanishes,
we must observe a dip. It is worthwhile to point out
that this type of dip appears in a periodic way with re-
spect to lniti/ln2, since ln

~
U(x)

~

is a periodic function.
If we consider the case where the slope of the Regge
trajectory is very small, we can observe only this type
of dip, since in this limit Eq. (66) becomes

1 2 dp. (1nrti (»gi)—
+(»s)Ti

(lns)' s dQ Eln2 &ln2)

+In2+1n~ U(lnrt, /ln2) i
—21no. (68)

Another type of dip comes from the term

section is ho and the itth term of Eq. (69) has a dip
at gati

——~t&(n); then in order to observe the dip, we have
to make a measurement of the cross section inside the
region

I«—«(~) I
& (I/~ap) expt —2" 'Aaj, (7o)

which very rapidly becomes narrower with increasing e.
In Eq. (70), ap is the average value of T(x) and will be
defined in Eq. (71). Thus we cannot observe this type
of dips except for the case of small N in Eq. (69). In
particular, if the slope of the Regge trajectory is small,
cx(2"it&) goes through even integers at large value of
2"g&. Since we can observe only the dips with small m, the
dips which we can see occur at large value of momen-
tum transfer g&. Thus this type of dip is difFicult to
observe when the slope of the Regge trajectory is small.

5. SEMIEMPIRICAL EXTENSION TO
LARGE-ANGLE SCATTERING

Since our results given in Eq. (66) concerning the
differential cross section of high-energy scattering with
q,) i

t,
~

contains two arbitrary periodic functions
T(x) and R(x), we need, as input information, do/dQ
in the range of two periods in order to determine T(x)
and R(x). However, in practice we do not know values
of do/dQ sufficiently precise to determine T(x) and
R(x). Therefore, we introduce an additional assump-
tion that T(x) and R(x) are continuous periodic func-
tions which do not oscillate violently. In other words,
when we make a Fourier expansion of the periodic
functions T(x) and R(x),

T(x)=ap+ P a„cos2~ex+ P b„sin2mex (71)
n=l n=l

R(x)=cp+ P c„cos2~nx+ P d„sin2~mx, (72)
n~l n=l

we assume that the lower harmonics dominate, namely,

(73)

The same relation is assumed also for the c; and d;. If
we retain only the lowest term of the Fourier series,
then Eq. (66) is

1 sin'xrx(2 "it,)
I((n) = Z —ln

~=i 2" 1+cosp.a(2"rt,)
(69)

1 2 do
ln —gP—=2«(cp+ap lns)+W(it&), (74)

(lns)' s dQ

on the right-hand side of Eq. (66). For even integer
values of u(2"it&) with m= 1, 2, 3, , the argument of
the logarithm function of Eq. (69) vanishes and thus

1n[rtPdo/dQg has dips. However, this type of dip is not
easy to observe if the slope of the Regge trajectory is
relatively small. First of all, we shall show that we can
observe only the dips with small values of N in Eq. (69).
Suppose that the error of the measurement of the cross

where

00

W(it, )= P ln~~ cos(pin'aprtg)
~

n=l 2n—'

+1n~ bi cos2nx —ai sin2~x ~+const. (75)

In Eq. (74), W(qi) is almost constant except for the
dips.
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$,0

hand side of Eq. (66) is a decreasing function of g~.

Therefore, it is necessary to make a semiempirical ex-
tension in such a way that do/dQ becomes symmetric
concerning the exchange of t and N. If we consider that

t is —a more basic variable than t in our case, the
simplest way to do so is to introduce a new variable p by

rt= (g—t)+ (Q—I)—2p, (77)

0,$

o.o

FIG. 6. Plot of ~/p versus sir18 arith sc= 1.21.

Before we apply Eq. (66) to the analysis of high-

energy scattering at large momentum transfer, we
have to extend the formula, since Eq. (66) was derived
in the region of

~
t,

~
(

~
t ( &&s, where the scattering angle

8 is small, while the momentum transfer q~ is finite.
However, in practice most of the data for scattering
with large momentum transfer comes at present from
experiments on relatively large-angle scattering. Except
for the logarithmic dependence, the first term of the
right-hand side of Eq. (74) coincides with Orear s fit
given in Eq. (1) barring large scattering angle, since

g, = p sin8 L(1+cos8)/27 '. (76)

%hen we consider proton-proton scattering, it is evident
that Eq. (66) is not applicable to the cross section in
the neighborhood of 8=90', since d0/dQ must be
symmetric with respect to 0=90', whereas the right-

which reduces to g& for 8-+ 0 and to g—e for 8-+ m. .
We replace q& with q in Eqs. (66), (68), and (74). The
new variable q can also be written as

q =
2 p(sin-', 8+cos-,'8—1).

In terms of this variable g, Eq. (74) is

2 do
ln -q'—=2g(co+ uo lns}+14'(g) . (79)

(Ins)'s dQ

This is very close to Orear's fit plus the dips of 8'(q),
since p and z 'p sin8 are nearly the same for a=1.21
as shown in Fig. 6.

Figure 1 shows the existence of a dip at p'=3.4
(GeV/c)' for 8=90', which corresponds to rt=1.5
GeV/c. Therefore, if this dip comes from the term
ln

~
U(lng/ln2)

~

of Eq. (66), which is the case when the
slope of the Regge trajectory is small, then we can
predict that the second dip must occur at g=3.0
GeV/c, since U(x) is a periodic function. The second
dip at n=3.0 GeV/c corresponds to p'=13.6(GeV/c)2
for 8=90' scattering. Since U(x) has at least two zeros
in one period, we can expect another dip between the
two dips at g=1.5 and 3.0 GeV/c. A more detailed
analysis of large-angle scattering using Eq. (66) will be
published elsewhere.
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