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The correlation energy (the exact energy minus the Hartree-Fock energy) of an electron gas with a
high and slowly varying density is examined. The term proportional to the square of the density gradient
is evaluated by the application of perturbation theory to the external Geld and of the random-phase (or
high-density) approximation to the Coulomb interaction. This term has the form bE,Q'j= J'd x
B(p(x)}~Vp(x) ~, where p(x) is the electron density. B(p) is found, by summing the leading divergent dia-
grams, to be L8.4'IOX10 s+O(p '~s lnp}+O(p '~ ))p '~' Ry, with the length measured in units of the Bohr
radius. The role of the density gradient in the correlation energy problem of atoms is discussed.

I. INTRODUCTION

'HK correlation energy problem of a many-electron
system has not been extensively investigated

except for a uniform electron gas at high density, where
the random-phase approximation is applicable and the
translational symmetry greatly simplifies the problem.
The calculation of the correlation energy for a non-
uniform electron gas or for systems with a finite number
of electrons has not been carried out except for the
lightest atoms, ' although the Hartree-Fock energy for
the most important nonuniform electron gas, namely,
the many-electron atoms, can be calculated with high
accuracy. ' Because of its complexity, the calculation of
the correlation energy of a general nonuniform electron
gas seems to be beyond the technique available at
present. However, the problem becomes tractable under
the idealized condition that the density is high and
slowly varying. When the density is slowly varying, the
correlation energy may be expanded in powers of the
density gradient. Such an expansion can be dehned
unambiguously with the aid of the density-functional
formalism recently developed by Kohn and his co-
workers. ' ' When the density is high, the coeKcients of
the density gradient expansion may be calculated by
the standard diagrammatic perturbation theory.

The objective of this paper is to examine the cor-
relation energy in the limit of high and slowly varying
density. The correction term to the correlation energy
of a uniform electron gas which is proportional to the
square of the density gradient is evaluated by analyzing
the second-order contribution of the perturbation
expansion in powers of the external 6eld. Qualitative
features of the correlation energy problem of atoms are
also examined. In Sec. II, we describe the basic physical
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features of the problem and give a qualitative estimate
of the effect of the density gradient on the correlation
energy. Since the small density nonuniformity must be
caused by an external Geld, the problem reduces to a
study of the response of a uniform electron gas to an
external held. Section III is devoted to a derivation of
the expression of the correlation energy in terms of the
long wavelength values of the density response function
of a uniform electron gas. To separate the correlation
energy from the total energy in a transparent and
unambiguous way, we make moderate use of the basic
language of the density-functional formalism'. The
response function is studied in terms of diagrams, and
the subset of diagrams contributing to the correlation
energy are identified. The mathematical procedures for
evaluating these diagrams are carried out in Sec. IV,
and the explicit formula for the correlation energy is
determined. In Sec. V, the role of the density gradient
in atoms is considered. Because of the large density
gradient in atoms, the density gradient expansion is
shown to be a divergent series. It is also shown that the
collective motion of electrons plays a much less im-
portant role in atoms than in the uniform or nearly
uniform gas and the notion of the dielectric constant is
not very useful in describing electrons in atoms.

The appendices are devoted to the mathematical
details involving the derivatives of the Green's function
and a few singular integrals needed in the text. Some
useful formulas are listed. These appendices should
serve as a convenient reference for other calculations
involving the high-density electron gas.

II. QUALITATIVE FEATURES

I.et us first review some of the basic characteristics
of a uniform electron gas at high density. The average
Coulomb repulsion among the electrons is canceled by
the held of a uniform positive external charge back-
ground and thus, a uniform average density is main-
tained. By high density, we mean that the average
interparticle distance ro is small compared to the Bohr
radius, i.e.,

r,«(s'm) —',
16$ iS
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we expect that

E;„,= d'x E;„'(p(x)), (2.5)

I. (esr/4p ) '" (2.2)

Now suppose that the external charge distribution
becomes nonuniform. Then, the average electron
density will be nonuniform. There will be a change in
the electrostatic energy of the charge distribution as a
whole, a change in the kinetic energy Ez;„, and a change
in the interaction energy E;„& due to the modification
of the correlation of density fluctuations. Explicitly, the
total energy is

g2

E= d'x 22(x)p(x)+-,' d'xd'r p(x)p(x+r)

where po ro ' is the Fermi momentum. The energy of
the system is the sum of the kinetic energy and the
interaction energy due to the correlation of density
fluctuations. The correlation over a distance com-

parable to ro can be approximately described in terms
of the motion of free electrons since, by (2.1), the
Coulomb potential becomes much less than the kinetic
energy of the electron states which contribute to the
correlation. The correlation over a distance large com-
pared to ro is mainly due to the long-range Coulomb
force. On the other hand, the motion of the electrons
tends to screen the Coulomb force produced by the
density fluctuations. The screening may be charac-
terized by the screening length L,. The density Quctu-
ations separated by a distance much larger than L,
become uncorrelated. The leading terms of the perturba-
tion expansion in powers of e' and lne' based on the
above physical picture has been extensively studied. ' 7 '
The screening length is given by

where E; ss(p) is the interaction energy per unit volume
of a uniform gas with density p. To obtain better
approximations for E; t,, one naturally expects an
expansion in powers of g to be helpful. Such an ex-
pansion is the "gradient expansion. '"

We are only interested in the correlation energy of a
nonuniform electron gas. The Hartree-Fock energy
includes the first three terms of (2.3) and a part of
E;„t, because of the correlation arising from the Pauli
principle. If the condition (2.4) is satisfied, we expect
that the correlation energy E, may be written as

E,= d'x E.n(p(x))+DE„

hE.= d'x B—(p(x)) l Vp(x) l'+0(g'),

(2.6)

Ec 2 d Xd r ( (P (X)P (X+r) )screened

g2

(p (x)p (x+r))unscreened) . (2.7)
r

where E,,'(p) is the correlation energy per unit volume
of a uniform electron gas of density p and B(p) is a
function to be determined in the next two sections. Let
us give a crude estimate of B here.

In calculating the HF energy of a uniform gas, no
screening is taken into account. The correlation energy
is roughly the correction due to the effect of screening

r
The unscreened density-fluctuation correlation function

yE2.,„+E, (2.3) is well known to be'

where p'(x) is the density fluctuation. Therefore, if p(x)
varies very little over a distance of a screening length,

(2.4)Z.
I Vp/pl =—g«1,

~ M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364
()957).' K. Sawada, Phys. Rev. 106, 372 (1957).' K. Sawada, K. A. Brueckner, N. Fukuda, and R. Brout, Phys.
Rev. 108, 507 (1957).

where 4c(x) is the potential due to the external charge
and p(x) is the average density. From the above dis-
cussion of a uniform electron gas, we see that E;„t,
involves only the correlation of density fluctuations,
which is small beyond a distance L,. More explicitly,

e2

E;„,= ,' dsx(fsr (p'(x-)p'(x+r)) —,
r

(p'(x)p'(x+r)) —& 0, for r))1-, ,

—-', psL(sinp, r —p,r cospsr)/p, srsjs.

Thus, the screened correlation function is, for r»ps ',

(p (X)p (X+r) )screened

—9/4(32r) 4/2+2/2/r4)~ r/Ls (28)—
where we have substituted (32rsp)'" for ps and -' for
cosspsr. We need not consider the small r behavior of
the correlation function because the effect of the density
gradient is appreciable only for large r. The constants
p and l., in (2.8) are no longer defined for a nonuniform
gas. However, if the density is nearly uniform, one may
use the density at x to evaluate these constants. This
approximation is good for r much less than L,. As r be-
comes larger, one may use the density at x+~r to
evaluate these constants. As a function of r, (2.8) be-

' See, for example, C. Kittel, Quantum Theory of Sol&s Qohn
Wiley L Sons, Inc. , New York, 1963), Chap. V.
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Expanding (2.9) in powers of Vp(x) assuming

r) r
p x+- =p x — Pp x

2i 2

we find, keeping only the second order in Vp(x)

h(x, r)= ——Vp'" VL, '+—p'I'(VL, i)' e 'Ir ~ .
12 24

(2.10)

comes distorted from the density correlation function
for a uniform gas as a result of the slight variation of the
constants. An estimate of the effect of the density
gradient on the correlation energy may be deduced
from such a distortion, which is given by the di6erence

5(x,r)=—p2i (x+r/2)(expI —r/L, (p(x+r/2))] —1}
—p"'(*)(expL—«/L. (p(x))]—1}. (2 9)

III. FORMULATION

In this section, we search for a formula of the form of
(2.6) for the correlation energy of a nearly uniform
electron gas. It is clear, from the qualitative discussion
in the previous section, that the problem should reduce
to an analysis of the response of a uniform gas to a weak
external field, which causes the small density non-
uniformity. From such an analysis, one can determine
the energy and the density in terms of the external field.
One then looks for a way to eliminate the explicit
dependence of the correlation energy on the external
field and obtain an expression in terms of the density
only. We find it convenient to start our analysis with
the density-functional formulation. '

The energy E and the average density p(x) may be
obtained by minimizing the energy functional E[p)
keeping the total number of electrons fixed. We break
up E[p] into two parts:

EM-=E .G]+E.I ] (3.1)A crude estimate of the effect of the density gradient on
the correlation energy is given by

The r integrals are easily performed. One finds

AE,~8 '3 ' kx ki e d X(L,Vp i ~ VL,

E&r[p] is defined such that, by minimizing it, one
would obtain the energy and the density in the Hartree-

d'xd'«L —9(3x')~1'/4«']h(x, r)—.(2.11) Fock approximation. E.Q] is the "correlation energy
functional. " When the density variation is small, we
expect that E.[p] may be expanded in powers of the
density gradient Vp(x). If only the two lowest-order
terms are kept, one has

—-'p'Ik(L, VL. ')'} (2.12) E.[p]= d'x (A(p(x))+B(p(x)) I Vp(x) I'}, (3.2)

Using the fact that L, (e'«npo) '" is proportional to
p "' (2.12) reduces to

AE,~2.7x10 ke d x p i3(x)
I
vp(x)

I
. (2.13)

Although (2.13) is a very crude estimate, it does show
that B(p) I see (2.6)] is of the order O(e'). Since E,', the
correlation energy of a uniform gas, is of 0(e')+0 (e'lne')
Lsee (3.16)] and L,k=O(e '), one might expect, by
(2.4), that AE, =O(gE,O) =0(e')+0(e'lne'). Equation
(2.13) and the calculation in the next sections show that
the 0(e' lne') term is absent.

The above estimate is based on the picture of a
distorted density correlation function and a distorted
screening length. The distortion is described by the
average density p(x), which is regarded as a parameter
slowly varying in space. However, nothing has been
said about the physical processes which give rise to the
distortions. Since the nonuniform density is due to an
external field, we have to study the response of the
many-electron system to an external field. When the
density variation is small, the analysis reduces to the
analysis of the density response of a uniform electron
gas. The next two sections are devoted to the deter-
mination of B(p) based on such an analysis.

The perturbing Hamiltonian is then

0'kP—k i
ky'-0

where pj, is the density operator. The energy to the
second order in p is

«I pk I ~)(~ I P—k I 0)E=E'(n)+Z vks-kZ

=E'(n)+2K s ks-»(k, 0), (3.3)

where n, I 0), P',
I rn), E are, respectively, the density,

the exact ground and excited states and their energies
of a uniform electron gas, and F(k,a&) is the density

where A (p), B(p) can be determined by applying (3.1)
and (3.2) to a weakly perturbed uniform gas in the
following way.

Consider an electron gas in a unit volume perturbed
by a weak static field:

q (x) = P q ke'" *.
kp-'0
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response function of a uniform electron gas given by + + ~ ~ 1

P(k,co)= i— d4x e "—*+'"'(T(p(x,t)p(0))) (al

=I(—k, a&) =s(k, —(u). (3 4)

The average ( . ) is taken over the ground state of a
uniform electron gas. The density, to the first order in

p, is given by
+ + + +

pg ——q kr(k, 0),
Pp=S. (3.5)

Equations (3.3) and (3.5) summarize the effect of the
external field. 5 (k,0) contains the full information of the
response of the uniform electron gas to the external
field. Now we have to separate the correlation energy
and Hartree-Fock energy from the total energy. This is
accomplished in the following manner.

The results (3.3) and (3.5) may be obtained by
minimizing the functional

+ + ~ ~ ~

FIG. 1. (a} The Hartree-Fock energy diagrams. Because of the
translational symmetry and the uniform charge background, only
the first diagram is nonzero for a uniform electron gas. (b} The
first diagram gives the second-order perturbation on the kinetic
energy. Each cross represents a density vertex with the momentum
of the external field.

E[ pj=P(n)+P q &p& zQ p—&p &5' (k,0). (3.6)
(3.8) now becomes

Similarly, minimizing the functional

EHpgj=& iran(n)+ P tp ~p~ —-', P p„p ~&irp
—'(k, 0)

(3.7)

E.Qg=E.'(n) —i2+ p~o &(F '(k, 0)—FnF '(k,0)).

The contribution of the —V term of 8 '

2E ps -~(4''/&')

(3 9)

will give the density and energy in the Hartree-Fock
approximation. Here FHp is the density-response func-
tion in the Hartree-Fock approximation. It is the sum
of all the Hartree-Fock energy diagrams perturbed
twice by an external field. (See Fig. 1.) Thus, the
correlation energy functional for a weakly perturbed
uniform gas is, by (3.1), (3.6), (3.7),

E Epj=EG 7—E»bj
=F.,'(n) ——',P pap &(5' '(k, 0)—r 'nF(k, 0)),

(3 g)

F., (n) =E(n) E'H p (—n), —

is the correlation energy of a uniform electron gas. The
density-response function F may be expressed as a
geometric sum (see Fig. 2)

cancels that in FHp
—'. This cancellation means that the

electrostatic energy of the electron charge distribution
as a whole is included in the Hartree-Fock energy and
plays no part in the correlation energy.

Equation (3.9) is an expression with no explicit
dependence on the external field. Furthermore, it is
applicable even if the density varies rapidly in space as
long as the amplitude of the variation is small compared
to n. To obtain 2 and 8 of (3.2), we only need thelong-
wavelength part of (3.9). On the other hand, (3.2)
makes sense even if the density varies appreciably as
long as it is slowly varying, i.e., as long as it varies very
little over a screening length, according to the quali-
tative discussion of the previous section. Therefore, to
compare (3.9) and (3.2), we expand the integrand of
(3.2) in powers of (p(x) —n) and the (F '—Fne ') of

and hence,

where

F=F+FVF+F VF VF+
=F/(1 VF), —

P—1 F—1 V

V=—4~e'/k',

= F + F

= F i(&-vv)

+ ~ ~ ~

and F contains no isolated interaction line. Equation
FIG. 2. The full density-response function

as a geometric sum of F,
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{a)

The correlation energy can be calculated once A and
B are substituted in (3.2). If we regard E.[p] as a small
correction to EnFQ], the correlation energy E, is
approximately given by

E.=E.+nFj (3.15)

l399IL) 9
)( peak

p-k/2 p+k/2
I I

q- k/2, '~,' q+k/2

p- k/2 p+k/2
(3)

(b)

p-k/2 p+k /2

p-k/2 p+k/2

(2)

where pnF(x) is the density in the Hsrtree-Fock
approximation, and minimizes EnF+j:

Eir FP] =0.
bp(x) P~PHg

The remaining task is to evaluate (3.14), i.e., to find
the ground-state energy and the long-wavelength
behavior of the density-response function for the uni-
form electron gas. For such an analysis, we proceed to
apply the perturbation theory, which seems to be the
only technique available. The perturbation expansion
is an expansion in powers of e'm/po, which is valid only
in the high-density limit. In this limit, the ground-state
energy is well known.

~=QHFO+g 0

EnF'= n{ 'po'/2m (3/4-7r)e'p )— (3.16)
E. = ~enon(0. 0622 lnr, —0.096)+o(e ),

where
(c)

FIG. 3. (a) Diagrams for FHp(lt, O). (b) Additional terms for
8{1((,0). (c) The correlation energy diagrams calculated by Gell-
Mann and Brueckner. The thick wavy line represents an inter-
action line modi6ed by the dielectric constant in the random-
phase approximation.

(3.9) in powers of k'. Let

then
F(k,0) =a '+bk'+

F '(k, 0) =a—a'bk'+. . . .

(3.10)

(3.11)

e ' is given by the "compressibility sum rule'"

a—'=lim F(k,0) = dn/dp. —

Therefore,
a = —(d'/dn') P'(n) . (3.12)

Expanding (3.2) gives

d2

E.gj=A(n)+ -A(n)-,'P ploo g
kM

+B(n)P k'pl, p g. (3.13)

b=—bHp+bc. (3.17)

b, is then the contribution of Fig. 3(b). The diagrams
may seem to indicate that b, =O(e'), but the last five
diagrams of Fig. 3(b) diverge unless the interaction
lines are properly modihed by the dielectric constant.
As one would expect, after introducing the dielectric
constant (in the random-phase approximation), Fig.
3(b) becomes the correlation energy diagrams of Gell-
Mann and Brueckner perturbed twice by an external
field. LSee Fig. 3(c).]

The qualitative argument in the previous section has
shown that

e'ni (9s) '"
p, &4i

and p, is the Fermi momentum. a, anF can be obtained
by differentiating E' and EnF', respectively Lsee
(3.12)j. The function F(k,0), and hence b, can be
calculated using the perturbation expansion given in
Fig. 3. The sum of the diagrams in Fig. 3(a) gives FnF.
The sum of all the diagrams in Fig. 3(a) and Fig. 3(b)
gives Ii. Let

A (n) =E,o(n),

B(n) = —',(a'b —anF'bnF) .
(3.14)

' See, for example, D. Pines, in Lectures on the Many-Body
Problem, edited by E. R. Caianiello (Academic Press Inc. , New
York, 1964), Vol. II.

Substituting (3.11), (3.12) in (3.9) and comparing the
result with (3.13), we conclude that

b, =O(e') .
By (3.14) and (3.17),

2B(n) = (a' anF )bHF+a b, . —
Since a—any=0(e'), we have

2

B(n) = -', b,+o(e'),
08$

(3.18)

(3.19)

(3.20)
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using the fact that
d'E'

—7r'

+O(e').
pm

with

Z(p) —= — dqV
—

(q)G(p+q),

44re' 1
V (q)—=

«(q)

(4 3)

(4 4)

The formula (3.20) may be understood qualitatively
in the following way. b is the long-range part of F(k,0),
which may be viewed as the second derivative of the
energy with respect to the external potential as is
clearly demonstrated by the diagrams. ~'/porn is the
derivative of the chemical potential, or roughly of the
external field, with respect to the density. Thus, B(rl)
is qualitatively the second derivative of the correlation
energy with respect to the long-range variation of the
density.

The fact that b, diverges without the modification of
the dielectric constant shows that one must have the
screening of the Coulomb force for the local density and
the expansion in the density gradient to be meaningful.
This is obvious in view of the qualitative discussion in
Sec. II. By using the dielectric constant, one eGectively
sums the leading divergent diagrams of all orders and
defines a lower cutoR' for the divergent integral over the
momentum transfer of the Coulomb interaction.

«(q, «o) is the dielectric constant in the random-phase
approximation. The extra factor of 2 in (4.1) is due to
the spin multiplicity. The precise meaning of G'(p) in

(4.1) is
~G(p)

G'(p) -=--—
86

which has a double pole (forced by momentum con-
servation) at «= «~ p —iii —sgn(«„—y). The derivatives
of G(p) are discussed in more detail in Appendix A. As
will be seen shortly, we need to make the substitution

8 8—~(p) = —~(p)+2 ob( )~(P— ), (4 6)
86 Bp

for G'(p) in (4.1), which becomes, after integrating the
8(«)5(p —«„) term

IV. EVALUATION OF b,

To calculate b, to O(e'), we only need to consider the
last five diagrams Dabeled by (1), (2), and (3)j in Fig.
3(b). It is not practical to evaluate the diagrams for an
arbitrary k and then identify b, with the coeKcient of
k' in the k expansion, because multidimensional inte-
grals are involved in the evaluation. %e shall instead
obtain an expression for b, by expanding the integrand
and extract the coef5cient of k'. Then, the integral to
be performed, involving no k, becomes much simpler.
Consider the diagrams (1) first.

A. Diagrams (1)

F"'(k o) = —4 dp &(p)G(p+k)~(p)
Bp,

where

a
+Z(p„o)—P (k,o), (4.7)

Bp

d p %p+Q sp
P'(k, «o) =- —2 —,(4.8)

(2ir)' oo—«o+o+ «„+ig sgn«o

1Zy—= 0 (/l —«p) .

To find the b' term of F"'(k,0), we expand (8/«lp)
P'(k, 0) and G(p+k):

These two diagrams have the same value. Their
contribution to F(k,O) is

F&'&(k,0) =2X2 dp G(p)'Z(p)G(p+k), (4.1)

where the symbols'dp always denotes the four-dimen-
sional integral

8 m k' m—P(k,0) = — +— +.
I9p, 7c vp Pp 12K sp

'oo= po/m,

(4.O)

(2w)4i

The Green's function is given by

G(p) = [« «„+p+—ig —sgn(«„—44) j—',
«„—=p'/2444,

p =po'/2«44,

(4 2)

a=G (p) —(k.p/m+ko/2is) —G(p)
Bp

(k p)' 8'
+ G(p)+ . (4.10)

2m Bp

By symmetry, (k p)' may be replaced by b'p'/3.
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~x(- —„' g~+

+ — — + — + — +

l I
P P

(p3

(b)
FIG. 4. (a) The k2 term of the diagram (2) in Fig. 3(b). Each

circle represents a factor h g operating on the line on which the
circle is drawn. (b) The zero-momentum-transfer vertex function
which constitutes the lower parts of the last two diagrams in (a).

Therefore, the k' term of —G(p+k)BG(p)/BIi is

k2 8 k2p2 82 cI

lim — —W(P+&)+ G(P+~) ~(p)
2m Bp 6m2 Bp,2 Bp

k2 8' 2k 2

= ——X ', G(P)+ -p,X~ G—(P). (4.11)
2m Bp,' 3m 8p4

We have used the identity (see Appendix A)

Figure 4(b) defines the vertex function A"'(p), i.e.,

BG(P')
A&'~(p) = — d p' V-(p —p')— (4.14)

Bp

With the aid of the identity (4.12), the analytic ex-
pression for the diagrams in Fig. 4(a) can be obtained:

k' /1 B' B'
dP A"'(P)I — (P)—l ~ (P) }

m &2 BpP BgP )
—=b&"k'. (4.15)

Diagrams (3), the last two in Fig. 3(b), contribute
equally to the k' term. Similar to Fig. 4(a), 5(a) gives
the k' term of diagrams (3). The over-all factor of 4
is due to the fact that each vertex has a spin multi-
plicity 2. The last two terms of Fig. 5(a) give

a 2

dq —P'(q) (v(q)(l .vp)2V(q) —Ll vpv(q)]P)
Bp —=bi&Pik' (4.16)

where

P'(q, )&p—= 2 dp G(p+q)G(p)

is also given by (4.8). Each triangular loop gives a
factor ,' BP'/B—Ii —V(q)is d. efined by

V (q)
—=4v.e'/q'p(q) .

Let the vertex function A&" (p) be defined by Fig.
5(b). Then the first two terms in Fig. 5(a) are the same
as those in Fig. 4(a) except that A"' is replaced by
A('&. Thus, their contribution b2"' k' is obtained by
substituting A&'& for A&'& in (4.15). Now b, can be ob-
tained from

tn—1 B)n i—
G(p+&) I

——
I G(p)'-' (m —1)!& Bp (n 1)!& Bp&—

1 ac+vs —1.

G(P), (4 12)
(m+n —1)! BIi

where es, n are integers greater than zero. Therefore,
by (4.9) and (4.11), the k' term of F"'(k,O) is

k2 8 g4

dp &(P) —
s (P)+ p pv (P)

m Bp' Bp,'
—k'Z(pp, O)/24m vs—=b&'~k' (4.13)

B. Diagrams (2) and (3)

The k' term of diagram (2) in Fig. 3(b) is given in
Fig. 4(a). A circle represents a factor k 7'. The V'

operator operates on the momentum variable of the
Green's-function line on which the circle is drawn. The
over-all factor of 2 is due to the spin multiplicity.

b =b&'&+b(2)+bj ('&+b2('&.

The sum is, by (4.13), (4.15), and (4.16),

b,= b'+b"+b"' Z(Pp, O)/24&—r'vs, (4.17)

t

2

(Bj
4 ~

&
P P

(b)

Fro. 5. (a) The k2 term of diagrams (3) in Fig. 3(b). (b) The
vertex function constituting the lower parts of the first two
diagrams in (a).
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1 Appendrxa and

quote the resu
siona1 IntegraThe q integral is a oour- ImenSi

where

82 a3
bs — —— dP 'Lp ~

2 gP,m~p

d3 dG0q

(2x)3 2xi
(4.18)

a3
b" ——dp ~(p)e

a))i

ELFCTRON GAENERGY OFCORRELATION EN

nd

8
b' = ——;4"'=——2-'4 dq —P' q

X qV( )V,'V(q) ——V(q)

r to theto turn the or-integral contou
1 ibl bs and let the dimension eimaginary axis and e

(4.22)
defined by

CO= iqe0y.

metry and (4.22),Then, by spherical symm y

ed the identityIn deriving (4.18), we have used t

~&»(p)y~&»(p) =—az(p)

Bp
(4.19)

C. Evaluation of the Integ

4.18to evaluate the integrals in

tobeoqe n, toconsI er( 41 e ) "we need onlyto consi er
Recall that /see (4.3), ( . )]

&(P)= — dq V (q)G(p+q (4.3)

of b, is due to the small q part of

(. ) f hdesirable to su bstitute (4.3) in
Then t e rema' '

ining q IntegraP ' g
and the O(e') term can enonsrngular an e

e no~ integralis nee e o

,4.18), hSubstituting (4.3 m

where

dq V-(q) L-',I,(q) —-',I,(q)],
lpga Bp

i
1Idq V (q)-.I q,

m

a2

dP ~(p+q "-P,

(4.20)

a3

dP G(P+q;" P, (4.21)

83
I (q)—= dP G(P+q) (p) ..

Bp,

ev. 112, 812 (1958)."J.Quinn an d R. Ferrell, Phys. Rev.

of zerohich is easily seen by puttrng a densrty vertex o

Z(p) in all possible
~ ~

mom e dia rams formomentum on the g
ways.

rais

4mo

(2w)' p

qdq (4.23)

b'= ——1lf —rl
aP „2 xe& Po&~0 0 q 0 —ao

. otice thatdimensionless functron. . o
'

momentum. qE uations (B26) an
erefore,

. The dielectric constant h(x,y)=O(1) as x~0. The ie ec
foi'm

4me'
e = 1 P'(—q,i—qi)oy)

q2

e'mpo 4 / q=1+ -Rl —,y
q' xkpo&

(4.25)

) is a dimensionless uunction, and Lseewhere R(x,y is a

R(0,y)
—=R(y) = 1—y tan —'y-'.

4.24) can be easily exextracted. It
th i t 11 te lower limit of t e q in

in o i y ppe
finite cuto,6 the integral is of 0 e . xp' '

integral is now

e2
l

—))f(—)') + (")
qdp, ke p,

'

d
e2

(IP0

e2m 4 ——1—1+,-R(r) f(0,y)
X Pf)X2 7'

e"f(o r),'Po+o(—e')

e'f(0, y)/2p—o+0 e' . (4.27)

b", and b"'inte rais for b,We consider the q in g
separately.

ension of aninverse ve o
'

y,cit andSince b, has the dimension
a ay=so 'a/aPO, b' must be o t e
(4.20)]
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Substituting (4.27) in (4.24) and using the expressions
for Ii, Io given by (826) and (828), we have

4x m " dy
b'= 4me'

(2 )' (2 )'v, 2 2P,)
y (5+9y)

X + — +o(e')
(1+y')' 9(1+y')'

Substituting (4.33) in (3.20), one obtains B(p). Then
(3.2) reads

~ LP7= d'~ &'(p(~))+~~.r pj,

AE,Lpj =4.235 X 10 e d x p~(4
~
Vp(x)

~

XL1+O(e' lne')+O(e') j. (4.34)

+o(e') . (4.28)
(22r) 'opPp

AE,[p]= (8.470X10 Ry) d x p P~ Vp(x)
~

If we measure lengths in units of the Bohr radius
(e'm) ', we have

Again, by dimensional argument, b"
t see (4.20)j

must have the form

em "d(I " dy(1 (q ('29)
ppvp p (I 22r ko happ

where g(x,y) is a dimensionless function. From (827),
we see that

Since

4 y'(3-y)
g(0,y) =—

(2~)' (1+y')'
(4.30)

(4.29) becomes, after the (I integral is performed,

e'm " dy—
L
—

p lm(y) jg(o,y)+o(ep)
ppvp —22 22r

e m 1
J.82872+ o (ep)

Poco (2~)P (4.31)

e2m

Xg

Poco�

(22r) 4

e'm

"dy( 1 1-I 2+
—~ 2 ( (+)p)(2+)l)'22(p)

X0.59136.
Poop(2~)o

Combining (4.28), (4.31), and (4.32), we have

bl+bll+ billy o ( 2)

(4.32)

X 1.97563+ o (e') .
Ppi)p (22r) 4

(4.33)

The evalua, tion of b, to O(e') is thus completed. One
easily verifies that the small term o (e') in (4.33) is of the
order O(e4)+O(e4 lne').

The y integral was performed numerically.
b"' Lsee (4.18)$ may be obtained in the same manner

although the algebra is more tedious. Wraith the aid of
the formulas given in Appendix 8, b"' reduces to, after
some algebra,

XL1+O(P '"»P)+O(p '")] (435)

%e see that the results here agree in order of magnitude
with the estimate given in Sec. II. LSee (2.13).j

The correlation energy is given by (3.15), i.e., by
substituting the electron density in the Hartree-Fock
approximation in (4.34) or (4.35).

In the above evaluation of b„ there was no approxi-
mation made until we performed the q integration,
where only the contribution of the small q is extracted.
The dielectric constant, which describes the collective
motion of the electrons, behaved like a lower cutoff of
the otherwise linearly divergent q integral. The lower

q cutoff by the dielectric constant near (eomPo)2(2 is
equivalent to the cutoff of the density correlation out-
side a sphere of radius I, (e'mpp) '(2. The number of
electrons inside this sphere is of the order (pp/epm)'(2,

which is large in the high-density limit. Thus, the long
range correlation and the collective motion of many
electrons contribute substantially to the correlation
energy.

The above mathematical procedure is very straight-
forward and involves no numerical work except for two
one-dimensional integrals. The calculation of the next-
order term, i.e., O(e')+0(e'lne'), would involve more
complicated numerical work for the evaluation of the
exchange diagrams Lthe first five of Fig. 3(b)$. We have
demonstrated the power of the many-body diagram
technique combined with the density-functional for-
malism. Such a technique may be generalized to study
other many-body systems with slowly varying densities.

V. DENSITY GRADIENT IN ATOMS

For a many-electron atom, a large fraction of the
electrons is concentrated within one Bohr radius around
the nucleus and the density there becomes very high.
In spite of the qualitative difference between the high-
density uniform electron gas and the atoms, which we
shall discuss in detail later, it is instructive to apply to
the atoms the correlation energy formula for a high-
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FIG. 6. —E, (empirical) is taken from the last column of Table III of Ref. 5.
EG~ is given by (5.1) and (3.16), hE, from (4.36) and E,' from (5.2).

density uniform electron gas. The integral

Eon= d22: E '(p(x)), (5.1)

42r r'dr Q(r) '"~ V'p(r) ~')Tp

dr
r2dr ((p 3/2)-4/2

~

r—2/2
(

2j
r

"T. G. Strand and R. A. Bonham, J. Chem. Phys. 40, 1686
(1964). We are grateful to Dr. Jerry Peacher for pointing out this
and related references to us.

~ The empirical correlation energy has been obtained for many
atoms by Clementi (see Ref. 2) by subtracting the HF energy from
the experimental total energy.

using the Hartree-Fock electron density" for p(x) and
E,' given by (3.16), can be easily evaluated numerically.
Figure 6(a) shows E and the empirical correlation
energy" for a few atoms. %e see that E ~ over-estimates
the correlation energy by about a factor of 2 in every
case. The obvious reason for the discrepancy is the fact
that the density is not uniform. To estimate the effect
of the nonuniformity, the formula (4.35) can be used to
compute the correction to (5.1). The results are shown
in Fig. 6(b). We see that (4.35) overestimates in every
case by about a factor of 5 the correction needed to
reproduce the empirical correlation energy. These
overestimates can be easily understood as follows.

If one uses the Thomas-Fermi density instead of the
Hartree-Fock density Lalthough, strictly, the latter
should be used according to (3.15)], (4.35) would be a
logarithmically divergent integral due to the r '/'

behavior of the density near the nucleus, i.e.,

This divergence is weak, however, and can be cutofI'

at a very small r to match the result given by the
Hartree-Fock density, which is very high (although
finite) at r=0. This suggests that the density gradient
is too high for the gradient expansion to be useful.
Recall that the physical picture behind the correlation
energy formula for a uniform electron gas is the long-
range correlation due to the Coulomb force. This long
range is made 6nite by the effect of screening owing to
the collective motion of electrons. Thus, qualitatively,
the correlation energy involves an integral over a sphere
of radius L„ the screening length. The same physical
picture is behind the formula for the density-gradient
square correction term with more emphasis on the outer
region of the sphere since b. is essentially the second
moment of the density Ructuation correlation function.
One encounters the same situation, when evaluating
higher-order terms in the gradient expansion, with the
outer region of the sphere contributing even more
substantially to the integrals. In an atom, however, the
electrons are concentrated around the nucleus (see
Fig. I, for example), so concentrated that a sphere of
radius L, becomes larger than the high-density core,
i.e., the outer region of the sphere is essentially empty. "
In view of the above discussion, it is clear that the
gradient expansion tends to overestimate and that the
higher the order, the worse the overestimate. In short,
the density gradient in atoms is so large that the gradi-
ent expansion becomes a divergent series.

The divergent series must be summed formally before
it is used for computation. The formal sum is unknown,
but a crude estimate can be made as follows. %e look
for a function f(p, ~

Up~2) which is well behaved for

"This point was made by C. Herring during discussion at the
Slater Symposium held on Sanibal Island, January, 1967.
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lo tron gas because the small size of the atom effectively
cuts off the long-range correlation between electrons.

LO—
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APPENDIX A

In this Appendix, we review a few of the basic
mathematical properties of the Green's function:

G(p) =(« «s—+I +is sgn(«~ —) )j '

O.OI

0.01

80HR RADII

I.O i0
=I' —s 9(«—«„+p) sgn(«, —ls) . (Ai)

«—«y+ p,

Fio. &. (t) 4«r'&(p(r)) ~vp(r) )', see (4.36). (2) 4«r'E'(p(r)) Since
see (3.16). (3) err'f(p{r), V'p(r)}, see (5.3). (4) p(r)/100, the Har-
tree-Pock density in units of hundred electrons per cubic Bohr
radius (Ref. 12). The screening length L,~r, '~~ is shown for
r=0.1 (L,~.37) and for r=0.5 (L,~.68).

5 («—«y+p) sgn(«y ii) = h (««r+)i) sgil«

infinite I'7pIs and which reduces to the integrand of
(4.34) for small

I VpI'. Then the difliculty arising from
the very high density gradient may be avoided, and
we expect

Z.'=— 4sr'dr f(p(r), I
7p(r) I

')
0

(5.2)

to be a reasonable estimate of the correlation energy.
Since, if the density gradient is high, a higher density
gradient would imply a smaller region in space for the
distribution of the same number of electrons, and since
the correlation energy is mainly a long range effect, we
expect the correlation energy per electron to decrease
as the density gradient increases in the region of high
density gradient. Since E, (p) is roughly proportional
to the density, the function

f(p, I ~p I') =&'(p)/Li —&(p) I ~p I'/(y&'(p))3" (5 3)

where Y is an adjustable constant greater than zero,
satisfies the above requirements. We found, if y=0.32,
then E.' given by (5.2), agrees well with the empirical
value. LSee Fig. 6(c).j The integrand of (5.2) is shown
in Fig. 7 together with the integrands of (4.34) and the
density for Z=10. We see that the integral is mainly
contributed by the electrons in the middle and outer
shells where the density is high.

From the above discussion, we arrive at the following
qualitative conclusions on the calculation of the atomic
correlation energy. First, the gradient expansion cannot
be used unless it is formally summed to in6nite orders.
Second, the screening due to the collective motion of
electrons is not as important as it is in a uniform elec-

G(p) = $e «„+)i+i«I—sgn«j-'. (A2)

Equation (A2) is a convenient form if G is regarded as
a function of p, or e~. Because the inanitesimal imaginary
number iq has a variable coefficient, extra care is needed
in manipulating the Green's function. For example,
differentiating (Ai) with respect to «and (A2) with
respect to p, we have

8——G(p) =
I «—«s+)s+irl sgn(«~ —p)1 ', (A3)

86

8
G(p—) =—(« «„+)«+—is sgn«7-'.

BJLL

(A4)

Although the right-hand sides of (A3) and (A4) both
appear as the square of G, they are not the same. The
Green's function is a distribution. The square of a
distribution is in general not de6ned without additional
specifications. Equation (A3) represents a double pole,
or the square of the simple pole G(p), only if we regard
it as a function of «. Similarly, (A4) is the square of
G(p) only if it is regarded as a function of p or «„.
Equations (A3) and (A4) are simply rels, ted. Differ-
entiating the last line of (Al) shows that

8 a——G(p) =—G(p) —2ir«8(«) b(p —«,) . (A5)
Bp 86

Similarly, higher powers of G(p) in the variable «are
different from those in the variable e~ or p. Their
relationship can be found by dirert diffcrcntiation, For
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example,

B B
G(p) =—~(p)+2qri~(»)& (w —»p

Bp Bc Bp

APPENDIX B

%e perform the integrals

B2

I1(q) = dP G(P+q) (P),

B2

G(p)+ 2qrib' (»)b(y »,—)
B6

y2prib(»)b'(y »p)—, (Afi)

B3

I.(q) = dp G(p+q) (p),
Bp,

B3

I,(q) = dp G(p+q) G(p)»„,

(4.19)

B3 B3

G(p) = — G(p) —2qrib" (»)b(p —»„)
Bp, B6

—2qrib'(»)h'(g —»„) 2qri—b(»)h (p—»„,.—E, . (Ai)

and give exp ici exl' 't e~ ressions of the functions needed in
the text.

Consider I1(q). By (A6),

At a static density vertex of the in.. '
infinitesimal momen-

turn, on5 one encounters the limit

I,(q) =
d3p

~(p+q) (p)
27ri BE

lim G(p+S)G(p)

B
+S(q—»,) ——G(p+q)

BE —&=0

—= lim G(»,p+S)G(», p). (AS)
+»'(I »p)G(~, p+El)— (Bl

The first term on the right-han side of Bl) is
Regarding the G's as simp e po es i
that (Ag) reduces to a double pole in the p p ane, i.e.,

lim G(p+8)G(p)
b -+0

= lim (»—»~p+y+ig sgn») '(»—»p+p+ig' sgn») '

Ppp+q(1 —
Ppp) (P)

B2—np(1 —np+q) G(p)
BC —~-'p+ti

= (» »„+IE+—iq sgnE)
—'

B
= —~(p).

Bp
(A9)

where

d p +p+q

BEp' (2qr)' D

B2

pF'(ql, ~),
BM

(82)

erall when an neth-order pole approaches an
(m+pp) th-order pole.nth-order pole, the result is an m n

Thus, we have the identity

D=—EG '(~, p+ql) j.—.,
=M»+pq q+»p$ 1gsn(p»~q»p (B3)

and F' has been defined by (4.8). The second term on
the right-hand side of (81) is

gqwa —I B

,
,

—
I G(p+~) —G(p)

(rE 1)! B~—'~ (m —1)! Elp

tR+ tl.—1

G(p),
(m+n —1)! Bp)

m, e=i, 2, 3, (A10)

d p
&(~— ) ——p ').

(2qr)' B»p
(B4)

Since we are interested eventua y y
'

all onl in evaluating
onl the art which is even

in Ep will contribute, we symmetrize (B4) with respec
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=iF +4F "~

&65

to + and obtain

where

82

J(q,co),
BcoBp,

(85)
~(~, p+e)

(2~)'—

J(q,co) =2
d p sp+q+sp

(2s)' D
(86) 82

+ (~, fi+if)
BG0Bp

&(~—~~)
ep

kee the even cor formulas we only
e ri ht-hand side of (81) ispart. The third term on the rig t- an

+LG(~, a+if) j.=..~ '
~—

~
—e~)

d'p
~

h (~—e )G(~, P+if)
(2s.)'

d3

, &'(~—.)CG(, P+il)j,-..
(2s.)'

82

+ (~, fi+if) &4 —~,
-Bp -p

'—~J + 'F„„' 3m-Q(&u)—S(q).].hF-' —.J.-——
Bp

(811)

where

S(q) —=
dap

,&(I ~~)&(I ~~+.)
(2s)'

m2

8(2pp —q) .
(2s)'q

+b(~—e~) —~(~, P+il)
Bp P~fp

Fo ', J——2-s i8((o)S(q),
8 8

Bp BcoBp
(87)

(88)

I,(q) =
dap

(2')'

de 83

(p+q) . (p) e.2' BE

82

+ -"(p+q)
-86 —&=0

+ ~(p+q) (&'(I e~)~+~(I—
86 —a=0

at onl even parts in w are kept.
sli htly complicates the inte-The factor e„ in Ia(q) slig t y comp

'

gration. Again, by A7

Combining 82), (85), and (87), we have
+G(~, p+a)Di" (~ ~~)~+2fi'(I——e ) . (812)

The (even part of) first term is
Ii(q) = 2F~~ 2 J~~+4 pp

ts to denote partial diGer-Ke have used subscripts to eno
entiations.

we can express I2(q) and I3(q)In the same manner, we can expr

d' 8' 1—I ) —X-', (ei —~~,)+P+q. P 2 P
(2s)'

I2(q) =
dSp

(2s)'

83
—.(p+q), (p)

2'"l 86

8~ (
(2s)' 8(o

= 4sF„„'+-,cdF„„.0 & 0

8
+b(~—ey) (p+q)

-86 -e 0

in (812) have been evalualuatedAll the other terms in
before. Thus,

I3(q) = l~F--'+~(F-' J.-—
+b'(~ —en) ~(p+q +-'F '—4s.ib(~)S(q)

+&"(u —,)G(, P+il) (810)
3 0 J +iF o 3sifi(co)S(q) j+~—E4F-'—4 .-

Bp
(813)
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F' and J can be obtained from the definitions (4.8) and

(86). Explicitly,

a2
P'= 4—vib(~)S(q)

BGP
Sm'

2mpp m
FP(q, co) = —1+

(2v)' 2qvp-

CX Vp

(n '- vpP)ln
~+&p

+ (1+r') '+o(1), (819)
(2v )'vpq'

o.++up-
+ (np' —vpP) ln — (814)

0!+—'Vp

m Q' + 'Qp)—J (q,&o) = ln —
~

—ln
(2~)'q ~—vp& +++v p&

where
M

Ay=
q 2m

co —=~qv py,

R(y)—= 1—y tan 'y '. (815)

The following formulas are useful. For q
—+0, and y

fixed)

co is regarded as a complex number. Explicit expressions
for I&, I2, and I3 can then be obtained by differentiating
(814).The co integration contour is below the real axis
for ~(0 and above for co&0. Thus, when differentiating
with respect to co, one must take into account the
discontinuities of the functions at co=0 across the real
axis. Let

S=—g~ic(~)S(q)

Sm'
+ (1+y') '+0(1), (820)

(2pr)'vpq'

83
c' P'= 47rib((a)S (q)

Bco
32m2

r'(1+r') '+o(1), (821)
(2v)'vpq'

Sm

8 4m op

, L
—(1+r') '+~(r)3+0(q),

Bq (2pr)'q
(823)

O' Sm'op
L(1+y') '—&(y)3+0(1),

gq2 (2pr)pq2
(824)

l9—(F-'—~ -) = r'(3 —r') (1+r') '+o(1)
8p (2v)'q'vpP

(822)

—4mPp
F'(q, iq"r) = &(r)+0(q'),

(2v.)'
(816)

Ir(q) = r'(1+r') '+0(1),
(2v )'vpq'

(825)

(1+y') '+o(q')
(2v-)'vp

(817)
Ip(q) = r'(3 —y') (1+y') '+o(1),

(2~)pv Pqp

(826)

8' 4
(1—y') (1+y') '+o(q'), (Big)

(2v)PvpP

Ip(q) = r'(~+9y') (1+r') '+0(1).
(2v )'vpq'

(827)


