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Using the experimental results' we find order of mag-
nitude agreement at t=0 but comp/efe failure for other
t values because the cross sections are exponentially
varying with different slopes. One is therefore inclined
to dismiss the agreement of the predictions for the
cross sections at t=o as accidental. One is reluctant
however to say the same of the agreement for the
coupling constants, if only because of the success of
similar methods for calculating the fourth order cor-
rections to the eel vertex. '

8 K. J. Foley, R. S. Gilmore, S. J. Lindenbaum, W'. A. Love,
S. Ozaki, E. H. Willen, R. Yamada, and L. C. Yuan, Phys. Rev.
Letters 15, 45 (1965); K. J. Foley, R.&S. Jones, S.J.Lindenbaum,
W. A. Love, S. Ozaki, K. D. Platner, C. A. Queries, and K. H.
Willen, ibid. 19, 397 (1967).

FIG. 1. The Ã* dominance approximation. The diagrams rep-
resent dispersion relation, not Feynman diagrams so all particles
are on the mass shell.
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We consider f1xed-momentum-transfer dispersion relations for the process K+N —+2+m.. Under the
assumption that the asymptotic behavior of the amplitude at high energies is governed by the Regge
trajectories in the crossed t channel J'+~ ~ 2+N, we obtain a sum rule which allow's us to estimate
the F0~BP coupling. The calculated value agrees well with the estimate by Dalitz, Wong, and
Rajasekharan, and that by Das and Mahanthappa.

1. INTRODUCTION

ECENTLY, sum rules involving parameters of
strongly interacting particles have been derived

within the framework of dispersion theory. In such

derivations, assumptions are made about the asymp-

totic behavior of scattering amplitudes at high energy.
Alfaro et ul. ' and Soloviev' have based these assump-

tions on considerations of unitarity and constancy of

the diffraction peak. Sakita and Wali' consider a Regge-

pole model in which the asymptotic behavior is given di-

rectly by the Regge trajectories of the crossed 5 channel.

Working within the framework of SU(3) symmetry they
obtain sum rules for I'J3 scattering corresponding to the
exchange of a 27-piet in the t channel. Our work is based

*Present address: Department of Physics, Syracuse University,
Syracuse, N. Y.

'V. de Alfaro, S. Fubini, G. Furlan, and C. Rossetti, Phys.
Letters 21, 576 (1966).' L. D. Soloviev, JINR Report K-2343, Dubna, 1965
(unpublished).' B. Sakita and K. C. Wali, Phys. Rev. Letters 18, 29 (1967).

on considerations similar to those used in Ref. 3; how-
ever, we only make use of the isospin invariance of the
strong-interaction Hamiltonian. In particular, we con-
sider here dispersion relations for the process E+E—+

Z+n. to obtain the Fo*(1405)BPcoupling and compare
our result with that of other authors. ~'

For the process

2. SUM RULE

K+1V—+ Z+n.

let p and k be the 4-momenta of the incident nucleon
and kaon and p' and k' those of the outgoing hyperon
and pion. Then

p+k= p'+k'.

The T matrix is used to define the invariant amplitudes
4 R. H. Dalitz, T. C. Wong, and G. Rajasekharan, Phys. Rev.

153, 1617 (1967).'T. Das and K. T. Mahanthappa, Nuovo Cimento. 39, 206
(1965).
. 6P; Babu, F. Gilman, and M. Suzuki, Phys. Letters 24B, 57

(1967).
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in the usual fashion: %e note, however, that

where
T//

——A—
// (v,t)+ ,'y -(4+k')8/& (v, t),

v=p k/mN, t=(k+k')',

(2) ImB,e(—v t) =C su"ImB~i(v, t).

This leads to the nontrivial sum rule

and n and P refer to the isotopic spin of the outgoing
hyperon and pion. 8// (A/& ) has the familiar isotopic-
spin decomposition

Bs-=4-8")+has, r-78( '

(Isospin operators of the kaon and nucleon have not
been distinguished. ) The amplitudes 8'+& are related to
the eigenamplitudes of isospin by

8(+)= (1//6)8(0)
~g(» (4)

It is well known that the two invariant amplitudes
A(v, t) and 8(v, t) have different asymptotic behavior in
v for fixed t. Thus, if

Cz/z, i" ImBj'(v, t)dv+ Q Cz/z, /™
&~0zi 0 j 1I2 3/2

XImB„z(v,t)dv=0, t&0. (10)

Since Cz/z, 0 —1/Q6 Cz/z, l = Cz/z, z/Q =-'„Cz/z, z/z'"
=~„we have, for t=o,

dvg(1/Q6) ImB, '(v, t)+-,'8, '(v, 0)7

+ LzImB„'/'(v, 0)+zImB„z/'(v, 0)7dv=0. (11)
0

3. EVALUATION OF THE COUPLING CONSTANT

then

A (v, t) -+ v ('&

z/~00

8(v, t) —& v (') '
p moQ

To evaluate the F0*BE coupling we saturate the
dispersion integrals in (11) with the A, Z, )lr, and
)&/*(1236) poles below threshold and the Fo*(1405),
Fz*(1382) resonances above threshold. We obtain

In a Regge-pole model a(t) refers to the dominant Regge
trajectory in the crossed t channel K+zr —+ 2+%. The
isotopic-spin quantum numbers in this channel are I= 2
and I=~. Since no mesons with I= ~ have so far been
observed experimentally, it is reasonable to assume that
nr=z/z(t) &0 (t&0).We are therefore led to consider that
combination of s-channel 8 amplitudes which receive
contributions only from I= ~ amplitudes in the
channel:

G~Z G~NK GYO+ ZzrGYO+NK8,o(s,o) = (g6) +(V6), (12)
s mg +zz s mroe +zc

G Zz~GZNK GYj *Zn~Yg+NK
B."(s,0) =2 +2 a(szmr, ')

s—mz'+zs s mr, ~'+—ze

where (13)

a(s,mr, .z) = L=', (pz+m ')

Bz/z(v, t) —= P Cz/z, ;"8,'(v, t) .
i=0,1

(5) ——',{ti'—(m»/+mz)(mr;. +mz) } (14)
—(1/6s) {(s—mz/'+ mK') (mr, .m z+s)

—(s mz +/—z') (mr, ~mz/ m/i'+—mK )}5,
Here 8,' are the eigenamplitudes of isospin in the s
channel E+E -+ Z+zr and Cz/z, ;"are the appropriate
elements of the s —+ t isospin-crossing matrix for the
system. We assume that the amplitudes 8,'(v, t) satisfy
unsubtracted dispersion relations in v for 6xed t. There-
fore

GNN~GNZK8 '"(s,0) =3
s—(ti'+mKz+m z') —ie

(15)

G// "N GÃ~zKa(/z m/&/+ )"ImB, '(v', t)
tEp . /6) 8„'/'(s, 0) = 2 —. (16)

s—(mN'+mz' /z' mK—'+m—N*') ie—8&&/z (v. t) P Cz/z, i
Ozi

totic beh avior of 8z / z (v t) is g iven by th e Iere s an d u are th e usua1 Mandelstam variah les
s=mK'+m/i'+2v N and u=mz'+u' 2vm// t U—se of—.
(12) to (16) in (11) results in the following equation:

lim Bz/z(v, t) —+ v"/'"& '.
t fixed ~&0

Hence we have the sum rule

(I)
GYO~NKGY p*Zrr — Gji.ZwGd NK GZZ~GZNK

Grg@ZwGry"/iKa(mrs* ymrp )
+2G/iz/~Gatv zK+ s G//~z/~GN~ zK

Xa(mN', m/r e') (17).
i=0,1

Cz/z, ' ImB, '(v, t)dv=0, t&0. (g)
For the right-hand side of (17) we use the following
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values of the various coupling constants7' ":
G~~.=(15)»'=g) Gxx.——2fg) Gx~z=(1 2f—)g)

Gsx =(2/ 3)(1—f)g, GsNx= —(1/~3(1+2f)g,

with f=0.4, and

This gives

G~*N ———Gz*zx=4.4 BeV ',

Gy, *g = —Gy, ~~=1.81 BeV '.

&,*z Gr,*rex=04. (18)

G2=3r
m p (p./m +1}

which follows from the interaction used to calculate the matrix
elements (14) and (16). t See S. Gasiorowicz, Elementary Particle
Physics (John Wiley 8z Sons, Inc. , New York, 1966), p. 310$.

VThe coupling constants are normalized as follows: G NN'

=gnNN /4~
V. Gupta and V. Singh, Phys. Rev. 135, $1442 (1964).

9 A. W. Martin and K. C. Wali, Phys. Rev. 130, 2455 (1963).
'0 We use the experimental widths I'(E*~Em) =120 MeV,

I'(I'1*~ Zvr) =3.8 MeV, and the normalization

4. DISCUSSION

The value of the FeeBP coupling obtained in Eq. (18)
compares reasonably well with the estimate of Dalitz,
Kong, and Rajesekharan4 who obtain for it a value of
0.5, and of Das and Mahanthappa' who obtain a value
of 0.4. As has been remarked by Dalitz et al. , this is a
rather large coupling for an s-wave interaction. How-
ever, Dalitz et al. obtain their value from a coupled-
channel E-matrix theory with SU(3) symmetry and
kinematic mass breaking; Das and Mahantappa's esti-
mate results from a coupled-channel X/D solution. Our
calculation is based on entirely different considerations
of high-energy behavior of an inelastic amplitude in a
Regge-pole model. The closeness of the various esti-
mates suggests that the YO*BI' coupling is indeed com-
paratively large.
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A new method of calculating phase shifts from the Bethe-Salpeter equation is presented. The diGerential
equation is solved below threshold by using a variational method, and then the scattering amplitude is
continued to the physical-scattering region, using Pade approximants. The singularity structure of the
Bethe-Salpeter partial-wave amplitude in its o8-shell variables was studied to Gnd the nearby singularities
that could most strongly affect the continuation.

I. INTRODUCTIO&

HE recent calculations of phase shifts for the
Bethe-Salpeter equation' in the ladder approxi-

mation have demonstrated the practical use of the
equation for the study of two-body scattering ampli-

tudes. Schwartz and Zemach' used the Schwinger

variational principle based on the integral equation
which yielded a rapidly convergent sequence of approxi-
mations to the phase shifts. A mesh-point solution has
also been achieved which in addition was applicable to
the three-particle inelastic region. As more difficult

*This work was done under the auspices of the U. S. Atomic
Energy Commission.

f Present address: Department of Physics, University of
California, Santa Barbara, Calif.

' K. K. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1.951).
' C. Schwartz and C. Zemach, Phys. Rev. 141, 1454 (1966).
'M. J. Levine, J. Wright, end J.A. Tjon, Phys. Rev. 154, 1433

(1967).

problems of higher dimensionality are attempted (e.g. ,
the three-body problem), the disadvantages of both
methods become apparent. The Schwinger method
becomes increasingly dificult to set up, and the mesh-
point method may require prohibitively large matrices.

A comparison of the bound-state calculation of
Schwartz4 with the calculation of phase shifts by
Schwartz and Zemach' shows that less sophisticated
methods suKce to solve the former problem. The reason
is that the boundary conditions on the wave function
can be easily imposed, and thus the differential equation
can be used. In this paper, we present a method of
computing phase shifts by calculating the scattering
amplitude below elastic threshold and continuing it to
the scattering region. By calculating below threshold
we avoid the problems of solving a singular integral

' C. Schwartz, Phys. Rev. 137, 8717 (1965).


