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Dielectric Constant of Rare-Gas Mixtures*
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The calculation of the frequency-dependent dielectric constant of a binary mixture of rare-gas atoms is
discussed. This macroscopic property reAects the fact that when two unlike rare-gas atoms undergo a colli-
sion, a dipole moment is formed. The problem is formulated in terms of response theory, which relates the
dielectric constant to an integral of a correlation function, and the lowest-order contribution is explicitly
calculated using the same empirical expression for the dipole moment as was used by Levine and Birnbaum.

1. INTRODUCTION
' ~)URING the collision between unlike rare-gas

atoms a dipole moment is formed. The macro-
scopic manifestation of this fact is described by a dielec-
tric constant. It is the aim of this paper to set up the
problem of calculating the frequency-dependent dielec-
tric constant for such a system using a time-correlation
function theory' and then to calculate the lowest-order
contribution.

The experimental situation has been summarized in
a recent paper by Levine and Birnbaum' who also cal-
culated classically an expression for the frequency-
dependent absorption coefFicient by adopting a simple
model for the collision process between two unlike rare-
gas atoms. Levine' has given the quantum-mechanical
extension of their calculation. Their results are in good
agreement with the limited experimental data available
in spite of the simplicity of the model. Of several ways
one can approach the problem of calculating a dielectric
constant, they consider the auxiliary problem of treating
the gas mixture in thermal equilibrium with a black-
body radiation 6eld and then use Kirchho6's law to re-
late the absorption coeflicient a(ru) to the power per unit
frequency per unit volume due to spontaneous emission
I(cu) and the energy density of the radiation field Lsee
Eq. (2.1) of Ref. 2j. By assuming that the index of
refraction is unity they can determine the dielectric
constant. Their problem reduces to the calculation of
I(cv), which is done classically by using kinetic theory
to compute an expression for the number of collisions
of a given type and using the Larmor power formula of
classical electromagnetic theory to describe the radia-
tion emitted during each collision of this type. Then the
6nal result is obtained by averaging over all types of
collisions. In the quantum-mechanical calculation of
Levine' the golden rule of time-dependent perturbation
theory is used to calculate the spontaneous emission.

~ Research performed under the auspices of the U. S. Atomic
Energy Commission under Grant No. AKC AT(30-1)-2812. This
work is part of the thesis of David Rosenthal to be presented to
Temple University in partial ful6llment of the requirements for
the degree of Doctor of Philosophy.

' For a review of correlation-function theory see R. Zwanzig,
Ann. Rev. Phys. Chem. 16, 67 (1965); R. Kubo, J. Phys. Soc.
Japan 12, 570 {1957).' H. B. Levine and G. Sirnbaum, Phys. Rev. 154, 86 {2967).' H. B. Levine, Phys. Rev. 160, 159 {j967).

Again Kirchho6's law is used to relate this expression to
the absorption coeScient as is derived in Appendix A.
The reader is referred to their work for a detailed dis-
cussion of the model and of the experimental agreement.

A completely different approach is used in this paper,
which in the biased view of the authors has some distinct
advantages. The linear response of a system to an ex-
ternal time-dependent electric 6eld has been discussed
by Kubol who related the transport coefficients to time-
correlation functions; in particular, the dielectric con-
stant is related to a transform of the dipole-dipole corre-
lation function. The task is to use the microscopic dy-
namics appropriate to the model being considered to
evaluate this correlation function and then to use some
well-known transform relations to obtain the real and
imaginary parts of the dielectric constant in terms of
which the index of refraction and absorption coefFicient
are given. This method has the advantage of starting
with an expression for the quantity of interest which is
generally valid and then introducing in a straight-
forward way the model and a systematic approximation
procedure suited to the model. In our calculation the
form for the dipole moment is the one used by Levine
and Birnbaum and by calculating the lowest-order con-
tribution to the correlation function we 6nd an expres-
sion in this order for the dielectric constant. The real
part of the dielectric constant is seen to be essentially
unity which in Refs. 2 and 3 had to be assumed. This
fact enables one to obtain a simple relation between the
imaginary part of the dielectric constant and the ab-
sorption coeKcient. The resulting expression agrees with
those of Levine and Birnbaum' and Levine. ' It must b~
stated that it was not obvious to the authors when they
performed this calculation that the two methods wouid
lead to the same results. In the calculations of Levine
and Birnbaum the energy density for a blackbody
radiation 6eld enters through Kirchho6's law which in
the classical calculation of Levine and Birnbaum is
taken to be the Rayleigh- Jeans function and in the quan-
tum calculation of Levine is taken to be the Planck
function. In the correlation function calculation the
blackbody radiation 6eld never enters the discussion.
However, it will be pointed out at the relevant point in
the text how the quantum correlation function di6ers
from the classical one in a way which has an eQect simi-
lar to that of changing the form of the energy density.
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2. GENERAL PROBLEM

Consider the electric vector K of a plane wave polar-
ized in the z direction and propagating in the x direction,
which is expressed as

E,(x,t) =Eo expLi((at —kx)], (1)

where for a homogeneous, isotropic, and nonmagnetic
material describable by a complex dielectric constant e,

the relation between co and k is given by

k'=au'c '. (2)

Introducing the index of refraction e and the attenua-
attenuation constant ~ by e' '=n —i~, k is given as

In Sec. 2 the general approach will be introduced and
the application to our specific problem will be discussed.
The expression for the correlation function valid in
lowest order is obtained with most of the details given
in Appendix B.The explicit form assumed for the dipole
moment is introduced in Sec. 3 and the appropriate
quantum-mechanical correlation function is evaluated.
In Sec. 4 the real and imaginary parts of the dielectric
constant are evaluated and the absorption coefficient
obtained with some of the details relegated to Appendix
C. The classical limit is also taken. A brief outline of the
classical calculation of the correlation function is given
in Sec. 5 and a comparison with the expression given by
Levine and Birnbaum is made as they obtained a slightly
different quantity. In Sec. 6 a discussion of the results
is given.

the expression for X(ru) derived by Kubo' which is

X(co)= d$ e '"'C(t,p).

C(t,P) is the correlation function associated with the
response of the s component of the dipole moment per
unit volume to an external time-dependent electric field
along the s direction. The quantum-mechanical expres-
sion for 4(t,p) is

4(t,P) = (i/AV) dX Tr(p[H, M, ( ihh) —jM (t)), (9)

where M,(r) is the Heisenberg opera, tor,

M, (r) =e'"'"M,e '~'" (10)

+0+VAA+ VBB+~AB p

p is the reciprocal of the product of the Boltzmann con-
stant with the Kelvin temperature, p is the canonical
ensemble, V is the volume of the system, M is the total
dipole-moment operator, and H is the Hamiltonian of
the system in the absence of an external field.

At this point we introduce the detailed nature of the
system. We consider a system of EA atoms of species A
and XB atoms of species 8 confined to the volume V.
The species are assumed to be in the gaseous phase. It
is assumed that the atoms have no permanent dipole
moment and a negligible polarizability and that the only
dipoles present are those which are induced during the
collisions of unlike molecules. The Hamiltonian for the
system is assumed to be of the form

k = (oa/c) LN —iej. (3)

The average Poynting vector as a function of position is

where
Nx p.o Ne p o

Ho= Q +Q —=Hao+Heo, (12a)
12mA & 12ggB

S,(x)=S (0)e

so that the absorption coefficient a(ra) is

n((u) = 2oax/c

(4)
V»=& Va(lr' —r I) (12b)

From the above it is evident that a knowledge of the
dielectric constant determines both the index of refrac-
tion and the absorption coeKcient.

The above is valid independent of the details of the
microscopic system as long as it can be described by a
nontensorial uniform dielectric constant. To relate the
dielectric constant to the microscopic dynamics, it is
written in terms of the susceptibility X(oa) as

and

V»=Z Ve(lr' —r I)

NA NB

VQQ Q Q Vge(Ir; —r, I) ~

i 1 j~l

(12c)

(12d)

The total dipole moment M, is given by the following
sum:

e= 1+4m.X, (6) M, = g Z t „;(r;—r~),
i 1 j~1

(13)

where X(co) is the coeflicient which relates the polariza-
tion P to the local electric field E as

The nature of the systems of interest allows us to equate
the local field with the external field and hence to use

where an explicit functional dependence of the dipole
moment to(r) on the nuclear separation between an A

and a 8 atom will be assumed in the next section.
Introducing the quantum-mechanical Liouville opera-

tor L defined by
(14)
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Eq. (9) can be rewritten as

e

C(t,P)= Tr'p L dke"~31,
l

e'~'i"M, (15)
av 1

In Appendix B it is shown that only those terms in

Eq. (22) with i,=j and m=e contribute and that each
pair contributes the same. This allows the reduction of
the correlation function to the form

and since iL/A is the Heisenberg time derivative opera-
tor one can write

C (t,P) =N, N, C,(i,P), (24)

C(t,P) =(1/V)((dN. /dh)M. (t)), (16)

where 3f, is known as the Kubo transform, and is de-
6ned by

with Ci(t,P) a two-particle correlation function given
by

C p(t,P) = (i/

B'AV)

tr {[p,(r),e-e"'j
XeiHltla (r)e

—irrii IA} (25)
(17)3f,=— c9e"~M,e "~.

0

The form of Eq. (16) will aid in a later comparison with
the classical calculation.

It is possible to perform the X integral in Eq. (15)
and when one introduces explicitly the form for the
canonical ensemble

(26)

(27)H2= (—A'/2m) i7,',
'is = fsgrwe/(rtt~+ tse),&Ig)

and
p
—g—1g PH

where
(29)5= tre-l'~'Z= Tre l'~,

where relative and center-of-mass coordinates have
been introduced with

one is led to the following expression for Ci(t,P):

Ci(t,p) = (i/ZA V) Tr{ttM„e e~je'~""M.}. (20)

Expression (20) may be used as a starting point for
an approximation scheme similar to that developed by
Fano4 in his discussion of pressure broadening. The sub-
stitution of Eq. (20) in Eq. (8) leads to an expression
for the susceptibility in terms of the resolvent operator.
The Liouville operator can be split into a free-particle
part and an interaction part, and then an expansion
similar to that given by Pano will lead to a density ex-
pansion for the susceptibility. The lowest-order approxi-
mation which is calculated in this paper is obtained by
neglecting the interparticle interactions. A similar as-
sumption is made by Levine and Birnbaum when they
introduce the straight-line trajectory approximation.

Let us now discuss this lowest-order approximation.
Neglecting the interparticle interactions and using the
free-particle representation to expand the trace in Eq.
(20), we can write Ci(t,P) as

C(~,P) = E D{i},
ZAV (&)

where D{k}is given by

Ng Ng

D{i }=&{1}I&r. Li--, e ' 'je'"""l*l-1{1}&, (22)

and l {k})by

with
l k;) plane-wave states.

4 U. Fano, Phys. Rev. 131, 259 (1963).

where tr stands for the trace over a complete set of
single-particle states. Thus the problem has been re-
duced to that of evaluating C»(t,P) which is equivalent
to calculating the correlation function associated with
the polarizability a„(id) of a free particle of mass rN and
dipole-moment operator p,„i.e.,

ni, (ce) = V e '"'C»(t, P)dt, (30)

where the average dipole moment is written as

(31)

The susceptibility is then that of a system of N&N&
independent dipoles with dipole moment &ii,&e, so that

I= (N~Ne/V)a„. (32)

3. CALCULATION OF CORRELATION
FUNCTION

On expanding the trace in Eq. (25), one obtains for
C»(~,P)

C»(t,P) = (i/ASV)Q (e e'«' —e e' ')

Xe'~'«~ —'~"' "i&iris *lq&l' (33)

where the eigenstates are

li,& V ii2ei~.r-
@=p,ogre ~'"',

(34)

It is not possible to proceed further without an explicit
form for p, Ke shall adopt the expression used by
Levine and Birnbaum" which is
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so that the matrix element of p, is

PA'
&kl/ I«}=

V
et/«-2& '~ze-~'"'dxdydz. (36)

&kl/ I«}=
i/ —p(~)"'(ip. /f.—)

2y4V

i
exp —

l
k—« l

' (37)
4p2

On substituting Eq. (37) into Eq. (33) and replacing
the sums by integrals in going to the usual large volume
limit the resulting integral is

The x and y integrals are done at once by completing
the square and the s integration is done the same way
after an integration by parts and one finds

and n~ and n~ are the particle densities of the two

species.

4. DIELECTRIC CONSTANT AND
ABSORPTION COEFFICIENT

The frequency-dependent susceptibility is now ob-
tained by substituting Eq. (41) into Eq. (8) which is
shown in Appendix C to yield

X(p/) =2C i —sinh22Pipp/ dt
0

Pm q
5/2 /M/2

—+-'Pzi/2+tz
l

+ dy
V' & 5

i /45

!c' (t,p) =
Vhz ~4&6~»~)

dqdk
p y-/-

X f cosh[45(y ——',Pit)g} +$P'It' —y'
l

. (42)

(—ph'q (—Ph'k
X exp! —e~l-

2m E 2m

-zht
Xexp (qp —kp) (q.—k.)2

2m

(43)E hl =6 Gl Z6 M

one obtains, by combining Eqs. (6), (42), and (43),

%riting the dielectric constant in terms of its real and
imaginary parts,

lk —«l' (38) 5'(&o) —1=8mC —sinh —'Phrs
272

dt sin~t

(Pm/y2+ xP2/5/2+ tp) 5/2

dy cosh[rp(y —)Ph) j+ (44)
(Pm/yp+xP2h2 y2)5/2

(39) andS=q+k and %=q—h.

The integrals are then elementary and the result is

dt cosset
(45)

p (pm/pp+gp2I52+t2)5/2
5"(45) = 82rC sinhxzpitp/

The above integral can most conveniently be done by
the change of variables

i/4ppPm4 ) Pm
c (t p)= +t2+i—pht !

f/4y55(32) V/

/pm
+t2 iPht . (4—0)

It is to be noted that Eqs. (44) and (45) are direct ex-
pressions for the dielectric constant and do not rest upon
the assumption that the index of refraction is unity.

The static dielectric constant can be obtained by set-
ting pp =0 in Eqs. (44) and (45) and one finds that

X i+— i+, 46,'

/pm -'/'
Since the terms in the brackets are complex conjugates,
this insures the reality of C2(t,P). The free-particle par-
tition function f/ is V[22rPA2m 'j '/', which, together
with Eq. (40), enables us to write the total correlation
function from Eq. (24) as

-
pm p2I52

C'(t,P) =C — + +(t+ziPA)'!
4 )

~pm ppi'22

+(t—-,'iph) '
Eyp

where
in~n///452(22/)5/2 Pm "'

C=
ypI5(32)

(41)

which in the classical hmit becomes

n~n///4 22P(pr) 5/2

5.'(0) = 1+
(2)"'v'

(47)

In the experimental situations for which Levine and
Birnbaum' have fit their parameters, the static dielectric

(41') constant differs from unity by a term of order 10 ' which
provides a justification for assuming the index of refrac-
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pm
Xsinh&zPhc0 Eg c» —+x4P'h'

~) (48)

tion is unity. Eq. (47) is in complete agreement with
Levine, ' who used Kramers-Kronig relations together
with a knowledge of cc(co) and the assumption of n(co) = 1

to calculate e(0).
The integral in Eq. (45) is related to a modiffed Bessel

function of the second' kind which then gives for the
imaginary part of the dielectric constant

8 Pe"(cd) = z.C— + ~ p2h'
~)

dielectric constant. These relations are

~
—~2 X~2~2 g2

c =Qnc/cc/. (49b)

By combining Eqs. (48) and (49b) one obtains for cr(cd),

/'pm
cc(ce) —

i +—8 h
)

N
3cn(ce) E y'

pm
X sinh-,'Phce E2 ce +-'P'h' ~, (50)

and when n(c0) can be approximated by unity in Eq.
Let us go back to Kqs. (2), (3), and (5), which enable (50) one recovers the result of Levine. ' Making such an

us to relate the index of refraction and the absorption approximation and taking the classical limit of Eq. (50)
coefficient to the real and the imaginary parts of the one obtains for cc(cd)

cc,(ce) =
nAnB/c02(s)5/2(2) c/2L(Pm/y2) c/2co]4 lt~L(Pm/y2)1/2cL/]

12''c(m/p) '" (51)

S. CLASSICAL CALCULATION

Since the classical calculation is somewhat different
in detail and a comparison with the quantum calculation
and a comparison of the two with Levine and Birnbaum
is desired, the classical calculation will be outlined in this
section. To perform the classical calculation the only
change needed in the previous sections is that the corre-
lation function given by Eq. (16) is to be replaced by
the corresponding classical expression which is

C(t,P) = (P/V)(M, (0)/M. (t)). (52)

c,(t,p) =
V2J'dv~ —//moo~/2

dr0dv0

Xjr.(0)/c. (t)e """", (53)-
where v is the classical velocity. By use of the same ex-

~Handbook of iVathematical Functions, edited by M. Abramo-
~vitz and I. A. Stegun (U. S. Department of Commerce, National
Bureau of Standards, %ashington, D. C., 1964), Appl. Math. Ser.
55, pp. 376—9.

By comparison of these two equations one sees that the
essential structural difference is that the Kubo trans-
form in Kq. (16) has been replaced by a simple factor
of p and otherwise one has a classical statistical me-
chanics equilibrium average to calculate. It is this
structural difference which is mysteriously equivalent
to the change from the Rayleigh-Jeans distribution to
the Planck distribution which was made by Levine' in
performing the quantum calculation.

Again in the lowest order one is able to reduce the
problem to an effective single-particle problem in terms
of the correlation function

pression for the dipole moment, one has

and

/c, (t) = oy(zo+zo, t) e pL —v'(~ ro+v, t~')] (54)

p. (0)=tcovL —2y'zo(ro vo)+v„]e """. (55)

Substituting Eqs. (54) and (55) into Eq. (53) one obtains

gp 2p2

c,(t,p) =
V'(2z/pm) z/'

drdv

Xexp( —L(~~pm jy tz)z2+2ym(rm+r vt)))

X (z+v, t)L—2y'z(r v)+rt.], (56)

5(~)"'(pm/a')'"/ '
c,(t,p) =

(2)'/'vm V

t3

X (57)
(pm/~2+t2)c/2 (ttm/~Q+t2)r/2

It is to be noted that the above correlation function
differs from the one obtained by Levine and Birnbaum'
since they calculated a slightly different quantity. It is
possible to integrate Eq. (8) by parts and obtain an ex-
pression for X(ce) of the form Lsee Eqs. (7.1) and (7.2) of
Ref. 2]

x((v) = 4' ( c) 0icd /ttC'c—(t)e '"',
0

(58)

where the subscript indicating the initial values has
been dropped. The above can be integrated by repeated
completion of squares and integration by parts to give
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and it is the related correlation function C»(t) which they
calculated.

After substitution of Eq. (57) into Eq. (30) and
several integrations by parts, the real and imaginary
parts of the dielectric constant are now reduced to

p~y-2/2 /p~y-»2
5 (0/) = 1+C 3

I
+5021

v'& &v'&

/P2/5—2 dt50sin0//~ +&
0

and

5 (00)=C

oo Pm 1/2

dtco'sin~t — -- +t'
0 7'

/82/5
d/20/ cos00/( +t2

))

(59)

where

00 8m
+ d/002 cos0/t +/', (60)

0 7'

2/A/5B/5022r5/2/82/2) 5/2

C'=
2 "26my

(60')

2002It 2$(8m/72)» 200j
(0/) =C

(8225/P 2) I / 2

+0/'"It0D82/2/y2) '/250], (61)

Setting or=0 one recovers at once the result expressed
in Eq. (47).

The integrals in Eq. (60) are given in Ref. 5 and one
is led to

Levine and Birnbaum" using a completely diferent
approach.

It is felt that the main advantage of the approach
taken in this work is that it is based on a general and
rigorous first-principles expression for the dielectric
constant and therefore lends itself to a systematic and
straightforward approximation procedure such as a
density expansion. In addition no further assumptions
need be made outside of those which naturally arise in
the statement of the model assumed. For example,
nowhere in this paper was the assumption made that
the index of refraction is unity, except when we wanted
to make a comparison with Levine and Birnbaum. On
the other hand their procedure assumes a value of units.
for the index of refraction, which, of course, is a good
assumption for the range of experimental situations of
interest to them. It is not at all evident how one would

modify their approach for the case where this assump-
tion is not valid. To go to higher order using their tech-
nique it would be necessary to concern oneself with the
very dificult problem of the emission of radiation from
interacting particles. The higher-order approximations
via the Kubo formula do not encounter such funda-
mental problems and this will be the subject of a future
paper.

It is felt that the calculation in this paper also has
another interest. It provides a rare example where a
Kubo formula can be evaluated in a straightforward
way. The more typical situation is to relate the Kubo
expression to a function which satisfies an integral equa-
tion and the problem is to then solve this integral equa-
tion. (The reader is referred to the bibliography of Ref.
1 for a long list of such calculations. )

APPENDIX A

-
/82/5q

'/'—."( )=c' z,
)

Ey&
(62)

where Eo and E~ are modified Bessel functions of the
zeroth and first kind. They are related by a recursion
relation~ which when used will yield

Since Levine' did not derive his starting equation,
Eq. (2.1), it was felt useful to include a derivation of it
from Kirchho6's law, which relates the absorption coefh-
cient a(50) to the power due to spontaneous emission per
unit frequency interval per unit volume I(0/) and the
intensity of the blackbody radiation field cg(00). This
law has the form

which is in agreement with the classical limit of Eq. (48)
and therefore leads also to Eq. (51).

6. CONCLUSIONS

where
n(50) = I(50)/C25(50),

N(0/) =
~2/. 3$~2ca/kT 1]

(A1)

(A2)

The phenomenon of collision-induced absorption has
been treated in this paper using the formal theory of
linear transport processes which relates a linear trans-
port coeKcient, in this case the dielectric constant, to
a transform of a time-correlation function which has
come to be known as the Kubo formula. Both the quan-
tum and classical lowest-order contributions to the di-
electric constant of a rare-gas mixture were calculated
using a simple model for the collision induced dipole
moment. The same problem was recently discussed by

and I(0/) is to be calculated here.
From Schiff' [Eq. (36-22)) the amount of energy

emitted per unit volume per unit time involving spon-
taneous transitions from a higher-energy state b to a
lower-energy state /5, I,5(50), is given by

4' g'
I 5(0/o5) =

~
(M,),5~ 2P550, 5,

Vc'
(A3)

6L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Com-
pany, New York, j.955), 2nd ed.
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where Eb is the probability that the system is in state b so that one can write Kq. (A6) in the form used by
and Levine as his starting equation.

(d.b= («b—b)))/i/ ~ (A4)
APPENDIX B

I(co) = P /«lb(M, ). Ib'P «/.«bb( /« ra. b)—. (A5)
Vg3 o, {}

Now substitute Kqs. (A2) and (A5) into Kq. (A1) and
obtain

4m'
a(~) = — P ~.bl&/M. &.bl'Zb S(~.b —~)

Vch O. &

X &zb)) b/bt 1) (A6)

The use of the canonical ensemble gives that

p g
—Acurbfb jkTp

bp (A7)

I(/d) may be obtained from Eq. (A3) by noting that
many states a,b may have the same energy difference
and I(/o) itself is a per unit frequency quantity. The re-
sulting expression is

The correlation function of Eq. (20) will be reduced in
this section to a two-particle correlation function involv-
ing an A and B atom multiplied by a factor of E&$8.

Introducing a complete set of intermediate states one
writes Eq. (22) as

t
D{k}=g(e z''/b/ —e z'~b~) exp i(b{q}—b{k})—

{e) h

x I&{k}lw*l{q}&l', (81)

where M, is the total dipole-moment operator. The prod-
uct of the two sums contained in the M, matrix elements
may be split up into contributions where both terms in-
volve the dipole-moment operator for the same A and B
particles, the same A particles but diRerent B particles,
the same B particles but diRerent A particles and diRer-
ent A and Bparticles. The resulting expression for D{k}
may then be written as

D{k}=Z(e '/'~ —z ""')exp i(b{q}—b{k})- LZ l&{k}l/-/l{q})l'+ Z &{k}l/*vl{q}&&{q}l/-/1{k}&
{~) h i'm

i yern

+ 2 &{k}I/- I {q}&({q}I/-. I {k}&+2 &{k}I/. * I {q})&{q}I/--I {k}&5. (82)
tJS

imam

jwn

The contributions from the last three terms will be
shown to vanish.

Let us consider the contribution to the last term for
given values of i, j, m and e. The matrix elements may
be written as

NA

&{k}I/ *') I {q}&&{q}I/ *-I{k}&=II ~(k.",q.")

Ng

Xg b(k, ,qp)&k, "k,sl/. ;;Ik;«k//b)

(k.«q 2!
I&

. .
I
k.«k.B)—y—I dr)dr;/))(r;«-r e)

Xexp[i(k;« q; )rz)e5—) (86)

which upon making the change of variables

u=x ~—r,~ and w=x ~+r ~

The second and third terms of Eq. (82) contain a
factor like

X&k «k al& „lk «k /b& (83) can be rewritten

where lk;) are of the form
&k,«q/z I/b„, I

k;«k/z&= (factor) X du/b, (u) (Bg)

I
k,)—y—t/bede; r) &84) which has been argued above to vanish.

The expression for D{k}is therefore of the form

Hence it follows that

&k «k)«'I/). ;/I k "k z&= V—' dr;«dr+/«„, . (85)
where

Ng Ng

D{k}=ZZ D"{k}
i 1 j 1

(89)

It is now assumed that p, is an odd function of the rela-
tive coordinates (z;—z, ) and an even function of (x;—x,)
and (y;—y;) which will make Eq. (85) vanish.

D"{k}=P(e z't'~ —e z'I")) exp i(e{q}—z{k})—
{~J

x I({k}I/. ;;I {q}&l . (81o)



DIELECTRIC CONSTANT OF RARE —GAS M I X TU RES 185

Let us calculate a sample D'/{k} by letting i= 1 and j=1. This yields

NB

D"{k}=Q(es'('& —e s'(~&) exp i(e{q}—e{k})— P h(k "q;")g t&(k, ,q, ) l(k&"k( It(.gglq&"qP&l', (811)
i~2 j~2

and by summing over all {q}except q&" and q&s one reduces D"{k}to

NA NB
D"{k}= Q Q exp{—P[e(q;~)+~(q )7} P [e t/('(""&+'(" && —e /&('("'"' ~'(~' &&]

ql, A,q&B

Xm {i[~(q(")+~(qi')—~(k(")—~(k&')7} I(k&"kI'I/ *» I q& "q&'& I', (B12)

where
g(k .A) &/t(k A) 2//2/NA ~

or writing this result in a representation independent
(B13) form one has

Upon writing the correlation function C (t,P) as

c'(t,~)=Z c".t, (B14)
gj (t P) — tr{$+ & //Bs)&i Ba—//&+ &

/ Hg/A} —(B2P)
bhV

where

we have that

z

C„,= g D' {k},
ZAV ~I ~

where tr is the trace over a complete set of single-

(B15) particle states for the eifective one-particle problem.

APPENDIX C

C, (t tt) = P [e—/&(I(m"&+«(/~ &&

~1A~1AAV I/, 1.AqgAIclBqlB

The derivation of Eq. (42) will be given here. Upon
substituting Eq. (41) into Eq. (8), one obtains

it—e &('(~&"&+'(~»&7 exp —[e(q )+5(q& )
h dt

—(&(k~')+&(k~'))] l(k&"k~ I/*»lq&"q&'&I' (B16)

with b1" given by

--S/2
—c.c. , (C1)+-,'p'k'+(t+ ,'i8h)'-

2

(&
A —P &

—
/& ~ (kg~&

k1A
(B17)

C (t)P) = VgX»q&&, g(t)/8) —= )Vga/&C~(t)P) . (B18)

By inspection of (B15) we see that all C;,; are identical
in form so that we may write the desired result

where c.c. stands for complex conjugate. We now con-
vert the integration of (C1) into integrals along straight-
line contours in the complex plane by the substitutions
r = (t&1~iPA) in the first and second terms, respectively,
thus obtaining

We also note that the two-particle Hamiltonian may
be written in terms of the translational energy of the
center of mass and the translational energy of a particle
with reduced mass whose coordinate is the relative posi-
tion. Since the dipole operator only depends on relative
coordinates, it is easy to see that the center of mass will

completely disappear from the problem leaving

&((~)—Ce—///&~ /2

(c—iPA/2

0—iP~/2

(o+iPA/2

0+iP~/2

p»&
——5(2

+1it2I/2+ r 2 (C2)

Pm --S/2

+1p2h2+ 2
4

@ (t tt)= Q (r, // (e& g // (&—&)——
bhV &q

«xp -[~(q)—~(k)] l(kl/*(r) lq&l', (B19)
h

Note that the integrand of the first term is analytic
throughout the rectangle which is bounded on two sides
by the positive real axis and the part of the imaginary
axis from the origin to ~~PA. The integrand of the second
term is analytic over the mirror re8ection of the real axis
of the above described rectangle. Contour integrals
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around the respective rectangles for each of the two
integrands will vanish so that (C2) may be written as

The above terms can now be combined into the form
which is Eq. (42),

X(cv) = —2C sinh-,'Pho)

Pm
Xg—iver +1P2jg2+72

2

——o/2

+{ e
—Phot/2

0+iP&/2

X(co) = —2C sinh-,'P/uo dt
0

ptg
Xg

—i' t + &p2 jg2+ l2
2

--S/2

Pm
——o/2

X8
—icor +1$2h2+ T2

2

ePAco /2

i@I't /2

Ph/2

dy cosh'(y ——',ptt)

f3pm
——a/2

X&—icur + jp2p2+ &2
2

Pm
——o/2

X +~P
2—7

(c4)
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New Approximation for the Calculation of Neutron Scattering
from a Simple Liquid

LEON GLASS AND STUART A. RZCE

Department of Chemistry and James Franck Institute, University of Chicago, Chicago, Illinois
(Received 14 August 1967)

A conceptually simple and easily applied approximation is made for the Van Hove distribution function
G(R,t) of a classical liquid. This approximation gives a less rapid temporal decay of G(R,t) than is found in
the Vineyard convolution approximation. In addition, by requiring that the sum rules be satis6ed, we 6nd
that for I, smaller than about 0.5)&10 '3 sec the "correlations" in a liquid may be said to be increasing.
Comparisons are made with recent neutron scattering experiments. There is fair agreement between the
theoretical and experimental results.

I. INTRODUCTION
' 'N j.954, in a study of neutron-diBraction phenomena,
~ ~ Van Hove introduced the time-dependent general-
ization of the equilibrium radial distribution function. '
This function, denoted G(R, t), represents the ensemble
averaged time evolution of the spatial distribution of
pairs of molecules in a liquid. G(R, t), and its space and
time transform S(x,co), contain a wealth of information
concerning the properties of a liquid. For example, by
use of the first Born approximation S(x,co) may be
shown to be proportional to the probability of creating
an excitation of momentum hx and energy 4u in a
scattering experiment. ' ' As expected, then, S(x,ra) ap-
pears in the theoretical expressions for the scattering
of light' ' and neutrons" by a liquid.

There have been two approaches to the computation
of S(x,cu). In one, the hydrodynamic equations have

* U. S. Public Health Service Predoctoral Fellow.' L. Van Hove, Phys. Rev. 95, 249 (1954}.
'- C. Kittel, Quan@am Theory of Solids (John 0'iley R Sons, Inc.,
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excellent theoretical review of neutron scattering by liquids.

been solved to And the time-dependent distribution
functions. As might be expected, such analyses lead to
quite good agreement between theory and observation
in the hydrodynamic regime, ' and even to agreement
in the case of the long-time behavior probed by neutron-
scattering experiments. ' ' However, since a hydro-
dynamic theory avoids study of the microscopic dy-
namics of the liquid and uses only the coarse-grained
hydrodynamic equations of motion, such an analysis is
not capable of predicting the behavior of the liquid for
short times.

In the other approach, attempts have been made to
determine G(R, t) by examining the microscopic be-
havior of the system. ~'~ Because of the complicated
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