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An extensive systematic energy-dependent phase-shift analysis in the kaon laboratory momentum range
140-1495 MeV/c has been made of E+p scattering data, supplemented by information from E+p forward
dispersion relations. S, P, and D waves were included, and various assumptions were made concerning the
source of the inelasticity. Results are presented for solutions allowing all possible combinations of up to
three partial waves to be inelastic. Four basic types of solution are found, and experiments are suggested
which will best help to decide among them. Two of these groups of solutions show some evidence for a reso-
nance in the P~y2 partial wave, although its precise characteristics cannot be determined with present data.

1. INTRODUCTION quarks would be needed to construct an object with the
correct quantum numbers. Thus it is important to deter-
mine whether the structure observed in the total cross
section is associated with a resonance in the E+p
system. Furthermore, since E+p scattering is the only
simple strange-partide system directly accessible to
experiment which is not plagued by multichannel
problems at low momenta, a knowledge of the E+p
phase shifts could help greatly in theoretical analyses
of the ES interaction.

For these reasons we have made an extensive system-
atic phase-shift analysis of E+p scattering data in the
kaon laboratory momentum range 140—1495 MeV/c, the
range being dictated by the availability of experimental
data. In this paper we report on the results obtained
from an energy-dependent analysis. In a subsequent
paper we will report on further work on this system.

In Sec. 2 we outline the formalism, including the
electromagnetic corrections, and in Sec. 3 we present a
critical discussion of the data used in the analysis. In
Sec. 4 we discuss phase-shift ambiguities and their
possib1. e resolution by the use of forward dispersion
relations. Section 5 is devoted to a brief discussion of the
possible inelastic channels available to the E+p system,
and in Sec. 6 is discussed the parametrization used and
the search procedure followed. The results are presented
and discussed in Secs. 7 and 8. Section 9 is devoted to
conclusions and outlook. Finally, details of Legendre
fits to the diGerential cross sections are given in
Appendix A, and Appendix B contains details of the
data sets used.

'HK existence of a wealth of accurate experimental
pion-nucleon scattering data has enabled several

groups' ' to perform extensive phase-shift analyses up to
a momentum of about 2 BeV/c. These analyses have
confirmed much that was known about the mÃ system,
and have, in addition, disclosed many interesting phe-
nomena hitherto unsuspected. These discoveries have
revitalized the phase-shift analysis technique, and have
shown that, when used in conjunction with other tech-
niques, it can be a powerful device to aid our knowledge
of scattering phenomena.

With the successes in the mE field. it is natural to
attempt to apply similar methods to other systems and,
in particular, to E1V scattering. Unlike E p scattering,
early experiments on E+p scattering failed to discover
the presence of any significant structure. However, in a
recent series of accurate total cross-section measure-
ments Cool et al.3 have presented evidence for structure
in the region of 1250-MeV/c kaon. laboratory momen-
tum. If this structure is associated with a resonance in
the E+p system it could not be incorporated into an
SU(3) multiplet of dimensionality less than 27. There
are also difhculties in the quark model since at least 5
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2. FORMULATION

A. Basic Etiuations for Measurable Quantities

The E+p state is pure I= 1, and so we will denote
partial-wave amplitudes by I-g, g J i.e., Sll, Pll, I'ls, etc. ,
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where J=l+—', is the total angular momentum of the
system. Natural units, such that 5=m =c= 1, are used
throughout this paper. The spin decomposition of the
scattering amplitudes is exactly the same as for +E
scattering' which, for completeness, we briefiy outline
b eloper.

If we denote by g(s, 8) the spin-Hip amplitude, and by
f(s,8) the non-spin-fUp amplitude, then these are
given by

(iv) Total cross section:

4x ~
os(s)=—P [(l+1) Imf~(s)+11mf~ (s)j. (7)

q

(v) Inelastic cross section,

n .(s) =nr(s) —4 2 L(l+1) I f~+(s) I'+ll f~-(s) I'j (g)
E 0

f(s,8) = Z [(i+1)f+(s)+if'-(s) jP (cos8), (1)
l~o

g(s 8) =i Z [fh-(s) —fi-(s) jPi'(cos8)
l~1

(2)

where

pi~(s) exp[2ibi~(s) j—1

2zg

g~~(s) =exp[ —2 Imn~~(s)],

bi~(s) =Reni~(s),

and q is the center-of-mass momentum.
The relevant measureable quantities may be ex-

pressed directly in terms of f and g, or f&~(s), as follows'.

(i) DiBerential cross section for unpolarized target:

where s is the square of the total center-of-mass energy,
8 is the center-of-mass scattering angle, P~(cos8) and
PP(cos8) are the ordinary and associated Legendre
polynomials, and f&+(s) is the partial-wave amplitude
with total angular momentum J=l&~~. The latter
amplitudes may be expressed in terms of complex phase
shifts n&~(s) by

exp[2ing~(s) j—1
fi+(s)=

—n W—m W+m
REM +

2W(1 —cos8) E mE+ m—cos8—(p~—1)

8'—E E—m
(1—cos8)+ sin'8 (9)

m 2m

n sin8
gREM

2W(1—cos8) E+m

B. Electromagnetic Corrections

The scattering data which we have used are, in
general, not corrected for electromagnetic effects. These
corrections are important only for scattering in an
angular range near to the forward direction, the range
decreasing with increasing momentum. Practically all
the effect of the electromagnetic interaction may be
included by using those terms which may be expressed
as additive corrections to the amplitudes f(s,8) and

g(s, 8) of Kqs. (1) and (2). A prescription which is non-
relativistically correct to all orders in 0,, the fine-
structure constant, and relativistically correct to first
order in 0. has been given by Roper et al. ' We shall use
that method here. Thus, relativistic electromagnetic
(REM) amplitudes for E+p scattering correct to first
order in 0, are

(«/did) =
I f(s,8) I'+

I g(s, 8) I'.

(jj) Recoil proton polarization for unpolarized target:
+( ~

—1)
2W E+m E m-— —

+
2m 2m

cos8, (10)

2 Re[f*(s,8)g (s,8)]R
P(s,8) =

do (s,8)/dQ
where

(qxq')

I (qxq')
I

'
—n[E(W E)+q'j

q'W(1 —cos8)and q' is the center-of-mass momentum of the final kaon.
(iii) Forward real part:

where E is the center-of-mass energy of the proton, lV

($) is the total center-of-mass energy (W=gs), and g„ is
the proton's total magnetic moment in nuclear mag-
netons. Nonrelativistic (Coulomb) amplitudes correct
to all orders in o. are

Ref(s, 0) = P [(l+1)Ref~(s)+l Refi (s)]. (6)
famO

&(exp
—in[E(W —E)+q'7 1—cosln, (11)

qW' 2

4 See e.g., J. Hamilton and %'. S. Woolcock, Rev. Mod. Phys.
SS, 73& (1963).

~ See e.g., 0. T. Vik and H. R. Rugge, Phys. Rev. 129, 2311
(1963);and Ref. 2.

gCoul (12)

These Coulomb amplitudes contain the nonrelativistic
electromagnetic amplitudes to first order in 0,, which are



1772 LEA, MARTIN, AND OADES

also contained in Eqs. (9) and (10). The common
terms are —oPZ(W —Z)+qmj

oui e-
q'W'(1 —cos8)

gcoul a= 0.

(13)

fEM fREM+ fcoul fCoul a y (15)

Thus the total electromagnetic corrections which are
independent of the nuclear phases are

data are now available. 3 Other data in this region, ~'~

although less accurate, are consistent with the data of
Cool et ul.3 and are included in the analysis.

To summarize the situation, accurate data are now
available from 850-2000 MeV/c, but below this region
there are still no accurate measurements. An indepen-
dent set of measurements below 850 MeV/c would be
very useful in order to provide a basis for the absolute
normalization of differential cross-section data in this
region.

gEM gREM ) (16)
B. Inelastic Cross Section

and these are to be added to the nuclear amplitudes
/given by Eqs. (1) and (2)] to give the total amplitudes,

f and g.
The above corrections are adequate for our purposes

because (i) most of the differential cross sections are not
measured very close to the forward direction. In the
three cases where there is an angular point with
cose&0.95, the errors on the data are such as to render
a more accurate correction unnecessary. (ii) The correc-
tions we ignore are always estimated to be less than
1', and our final phases are rarely predicted to that
accuracy. Furthermore, inclusion of the general form
of the corrections would either greatly increase the
computer storage necessary, or, alternatively, increase
the time of computation considerably.

3. EXPERIMENTAL DATA

The main bulk of the experimental data consists of
total cross sections and elastic differential cross sections,
with, in addition, a few inelastic cross sections, and a
few values for the recoil proton polarization. The data
are distributed fairly uniformly in the region 140—1500
MeV/c but there is a large gap from 1500-2000 MeV/c
in which no angular distributions have been measured.
Consequently we have restricted our analysis to the
region below 1500 MeV/c. We discuss below the data in
the region 140-1495 MeV/c and the corrections which

we have included in our analysis.

Between the threshold for single pion production
(525 MeV/c) and 2 BeV/c there are only nine measure-

ments of the total inelastic cross section. ' '" "Since
the available data indicate quite rapid changes in the
inelastic cross section over this momentum range, more
data is clearly required. Furthermore, an accurate
knowledge of the inelastic cross section provides an
important constraint on possible sets of phase shifts,

C. Differential Cross Section

Prior to the phase-shift analysis we analyzed the
differential cross-section data in terms of Legendre-
polynomial expansions. This gave information which

enabled us to remove obvious inconsistencies in the
data, and also determine the highest number of partial
waves required to fit the data. In Appendix A we give
details of these fits together with a graph of the Legendre
series coeKcients. We give here a discussion of all the
differential cross-section data available together with
comments on the corrections we found necessary.

l. Below 300 MeV/c

Because of the large forward peak caused by Coulomb
scattering, no attempt was made to fit this data with
Legendre polynomials. The differential cross sections
at 140, 175, 205, 235, and 265 MeV/c (Ref. 8) were
included unaltered in our analysis to provide a low-

energy constraint on the phase shifts.

A. Total Cross Section

Prior to the publication of the data of Cool et al. ,a the
K+p total cross section was only poorly known. The
data available up to 850 MeV/c consisted of some very
early emulsion resultse and three pointsr (at 457, 522,
and 589 MeV/c) from a counter experiment. Both of
these sets of data disagree with more recent total cross
sections calculated from the differential cross sections
of Goldhaber et al. ,' and have not been included in our
analysis. Between 850 and 1495 MeV/c very accurate

' D. Keefe et al. , Nuovo Cimento 12, 241 (1959).
'.T. F. Kycia, L. T. Kerth, and R. G. Baender, Phys. Rev. 118,

553 (1960).
S. Goldhaber et al. , Phys. Rev. Letters 9, 135 (1962).

Z. 355, 5ZO, and 6' MeV/c

These remaining three low-energy differential cross
sections of the Goldhaber group' are well fitted by a two-

9 T. F. Stubbs et al. , Phys. Rev. Letters 7, 188 (1961).' V. Cook et al. , Phys. Rev. Letters 7, 182 (1961);Phys. Rev.
129, 2743 (1963).

»'H. C. Burrowes et al. , Phys. Rev. Letters 2, 117 (1959).
~ A. Bettini et al. , Phys. Letters 16, 83 (1965).
"W. Chinowsky, G. Goldhaber, S. Goldhaber, T. O'Halloran,

and B. Schwarzschild, Phys. Rev. 139, B1411 (1965).
'4 T. A. Filippas et al. (to be published)."E. Barrelet (to be published).
". R. W. Bland et al. , Phys. Rev. Letters 17, 939 (1966); in

Proceedings of the Thirteenth Anngal International Conference on
IIigh-Energy Physics (University of Qa,lifornja press, Berkeley,
Calif. , 1967).



parameter Legeodre-polynomial expansion. This is con-
sistent with our assumption of the dominance of s waves
at low momenta.

This counter experiment~ gave fairly large errors on
the di8erential cross-section values. In order to bring it
into general agreement vrith the more recent data at
520 MeV/c' the points were renormalized to 90% of
their quoted values. It was also found necessary after
the first 6ts to rebin the points at cos8= —0.423 and
—0.574 into one point at cos8= —0.499.

4. 778 3AV/c

This recent bubble-chamber experiment'~ has very
good statistics. However, our Legendre series 6ts indi-
cated that it was necessary to rcbin the four points at
cos8= —0.35, —0.45, —0.55, and —0.65 into two points
at cos8= —0.4 and —0.6.

5. ZN 3feV/c

The results of this early bubble-chamber experiment'
are reasonably well fitted by a three-term Legendre
scries.

6. 910 MeV/c

This propane bubble-chamber experiment" was
mainly intended to measure the recoil proton polariza-
tion. Some diBerential cross-section data were also
produced and they are well fitted by a three-term
Legendre series.

7. 970 cod 1170 3EeV/c

Both of these sets of spark-chamber data" are
reasonably well fitted by three-term Legendre poly-
nomial expansions. In the 970-MeV/c set it was found
necessary to rebin the points at cos8=0.4 and 0.6 into
one point at cos8=0.5.

8. 1450 MeV/c

This comprehensive counter experiment" is well
fitted by a five-term Legendre series.

In addition to the data listed above, there are pre-
liminary data from four bubble-chamber experiments.

The Legcndre fits indicated that it was advisable to
rebin the data completely from intervals of 0.1 in cos8
to intervals of 0.2.

"S. Focardi et al. , Phys. Letters 24, 3314 (1967).
'S%'. Hirsch and G. Gidal, Phys. Rev. 135, 8191 (1964),

N. 860, NO, and 1200 MeV/c

This preliminary data" is well 6ttcd by three- or
four-term Legendre series expansions. We have re-
normalized the data slightly in order to bring it into
line with the most recent total cross-section measure-
ments of Cool et el.~

D. Recoil Proton Polarization

To date there have only been two measurements of
the recoil proton polarization. There are four points at
9M MeV/c" and three preliminary points at 778
MeV/c. "The values at 910 MeV/c have been changed
in sign to agree with the conventional de6nition of
positive polarization. '2

To summarize the data situation, in the momentum
range up to 1 BeV/c, there are 16 sets of elastic differ-
ential cross-section data of which only 4 have average
errors of less than 10%.Between 1 BeV/c and 1.5 BeV/c
there are 3 sets, of which 2 have good statistics. There
are now very accurate total cross-section measurements
above 850 MeV/c, but below this momentum the total
cross-section data is poor. The situation for inelastic
cross sections and recoil proton polarization measure-
ments is very bad, there being a mere 8 points of the
former and 7 of the latter.

From the above it is clear that the E+p data situation
is far from good. In order, in the future, that the K+p
situation be comparible to that of mX scattering, it
would be necessary to have complete sets of data, i.e.,
differential cross sections, recoil proton polarizations,
and independent measurements of the total and inelastic
cross sections, at momentum intervals of about 50
MeV/c. We appreciate the experimental difhculties that
this would involve, particularly at low momenta.

4. PHASE-SHIFT AMBIGUITIES AND
FORWARD DISPERSION RELATIONS

In Scc.3 we have seen that the available experimental
data consist mainly of total and differential cross sec-
tions. Fitting only such data can lead, uI, u given
5$D5$8Ã/8 to scvci al ambiguities. A second solution
may be obtained from the true solution by interchanging
partial waves of the same J value but with opposite
parities. This is the Minami ambiguity. "Then there is
the sign ambiguity" where a third solution may be

'9 R. W. Bland et al. , quoted by G. Goldhaber in University of
California Radiation Laboratory Report No. UCRL-17388
(unpublished); see also Ref. 16.

'0 T. F. Kycia (private communication).
~~F. Femino, S. Iannelli, F. Messanares, L. Monari, and P.

Serra, Nuovo Cimento (to be published).
"We are grateful to Dr. V. P. Henri for pointing out this change

in sign."See e.g., L. D. Roper and D. S. Bailey, Phys. Rev. 155, 1744
(1967).

'4 S. Minami, Progr. Theoret. Phys. (Kyoto) 11, 213 (1954).
~5 See e.g., H. A. Bethe and F. de Hoffmann, Mesons aisd Fields

(Row Peterson k Co., New Vork, 1955), Vol. 2, p. 70.
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obtained by simultarieously reversing the signs of the
real parts of all the phase shif ts. In addition, a combina-
tion of these two transformations can produce a fourth
solution. "

The measurements of Goldhaber et al. ' at low mo-
menta showed that Coulomb interference 6xed the sign
of the real part of the forward scattering amplitude as
negative, thus removing the sign ambiguity. They then
showed that the differential cross sections could be 6tted
with a dominant repulsive S~~ phase. Applying the
Minami transformation we see that there is a second
solution with a dominant repulsive E'~~ phase. Besides
these two solutions there is a third solution, the Yang"
ambiguity of the second. This is a mixture of an attrac-
tive P~~ phase and a larger repulsive 8~3 phase. Gold-
haber et ul. favored the dominant repulsive S~y phase
shift on the grounds that the energy dependence of the
phase was proportional to q rather than q', thus exclud-
ing a simple p-wave type threshold behavior. This
situation has also been discussed by Ino, '7 who 6nds that
a theoretical study of the forces in this system favors the
5» dominant solution. In our analysis we have assumed
that the dominant repulsive 5~~ solution is correct at
low momenta. At higher momenta, however, the phase
shifts may have changed sufFiciently rapidly for both
ambiguities to be present.

From Eqs. (1)—(8) it can be seen that although the
total and elastic differential cross sections remain in-
variant under the sign and Minami transformations,
the forward real part will change sign under both trans-
formations. Thus to resolve these ambiguities requires
both recoil proton polarization data and values for the
real parts of the forward scattering amplitude.

In our analysis we have included values for the real
part of the forward scattering amplitude as calculated
from a E+p forward-dispersion relation subtracted once
at threshold. The inclusion of the forward real parts
thus resolves the sign ambiguity, but since there are
so few values of the recoil proton polarization the
possibility still remains of Minami-type ambiguities at
higher momenta.

If we denote by f+(v) the forward amplitude for E+p
scattering at a total kaon laboratory energy v, a disper-
sion relation subtracted once at threshold is

where
tÃ p 5$8$+

vY—

(mY m) mx gr
Eg=

44mmy

S. INELASTIC CHANNELS

The kaon laboratory momentum is k', and ns& and gz
are the masses and coupling constants of the hyperons
I' (A' and Z') to the KX channel.

The physical integral in (17) was evaluated using
known total cross sections below 19 BeV/c, 2' and a
Regge-pole model above this momentum. The Regge-
pole parameters deduced by Rarita and Phillips were
used for the latter part of the calculation. The subtrac-
tion constant was evaluated by using the s-wave scatter-
ing length of Goldhaber et al. ' The integral in Eq. (17)
involving the E p unphysical region was evaluated
using a constant-scattering-length approximation to the
Dalitz-Tuan~ extrapolation procedure for the s waves,
and a Lagrangian method for the p-wave Fq*(1385)
contribution with an SU(3) coupling. "This treatmen. t
of the It p unphysical region is rather crude. However,
although a far better treatment of this region is neces-

sary if one is to deduce accurate values for g&,
32 its con-

tribution to the forward real part in the region below
1.5 BeV/c is rather small for the particular dispersion
relation we have used.

At a given momentum, a range of values of Ref+(v)
was found by taking into account the error on the
s-wave F+p scattering length, ' by using different sets
of K P scattering lengths in the unphysical region, "
and by varying the values of the EYE coupling con-
stants between their SU(3) values Ltaking the SU(3)
mixing parameter n= 3j, and the small values obtained

by t.usignoli ef, al. '4 The extremities of the range of
values obtained were used to de6ne the "error" on the
forward real part for the purpose of the analysis. The
major part of this error comes from the error on the
s-wave K+p scattering length.

Ref~(v) =Ref+(mx)

(v mY)EF

V Vy Vy St~

(v—mlr)
6' dv'k'

a v' cr+ v'

-('v +v)(v +m&) (v v)(v mrr)

(v —mx) "& Imf (v')
dv' — —, (17)

(v'+ v) (v'+ mrs)
'

"See e.g., G. Kallen, ElemerItary I'article I'hysics (Addison-
Wesley Publishing Co., Inc., Mass. , 1964)."T.Ino, Progr. Theoret. Phys. (Kyoto) 37, 398 (1967).

The main features of the total and partial inelastic
cross sections for IC+p scattering in this region are shown

' W. Galbraith et al. , Phys. Rev. 138, B913 (1965); W. F.
Baker et al. , ibid. 129, 2285 (1963);A. N. Diddens, E.W. Jenkins,
T. F. Kycia, and K. F. Riley, ibid. 132, 2721 (1963); M. B.
Watson, M. Ferro-Luzzi, and R. D. Tripp, ibid. 131, 2248 (1963);
O. Chamberlain et al. , ibid. 125, 1696 (1962);P. Nordin, ibid. 123,
2168 (1961);see also Refs. 3 and 8—13."R.J.N. Phillips and W. Rarita, Phys. Rev. 139,81336 (1965).

"R. H. Dalitz and S. F. Tuan, Ann. Phys. (N. Y.) 10, 307
{1960)."R.L. Warnock and G. Frye, Phys. Rev. 138, B947 (1965)."See e.g., H. P. C. Rood, Nuovo Cimento 50, A493 (1967).

''l J. K. Kim, Phys. Rev. Letters 14, 29 (1965);M. Sakitt et al. ,
Phys. Rev. 139, 8219 {1965).

g'M. Lusignoli, M. Restignoli, G. A. Snow, and G. Violini,
Phys. Letters 21, 229 (1966).
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TAsxx I. Possible main inelastic channels.

Inelastic
chRnncl
E+p -+

ES~
«(720)E
EEmr
XÃ*(1236)
E*(890)Ã
EA e(410)
ESx~m
E¹(1400)
Egg(549) .

ESmxxx
Z0(1865)~
X~ (1080)g
XX*(1525)

Ploductlon
Kaon

laboratory
momentulII

(MeV/c)

525
715
825
870

1075
1110
1120
1220
1417
1422
1460
1495
1500

thrcsholda
Total
C.IXI.

cner~
(MCV)

1573
1659
1711
1732
1829
1845
1849
1896
1984
1987
2003
2019
2021

Vhdth of
resonance

ln 6nal
state

(MCV)

Ax
~11
D18
~11 D18

~11

p

p

E13

~ll D18
+lip D18
ills ~18
+11) +13) ~15
+11 +18 ~15
+lip ~18
~11 D18
+11 J 18
~11 D18
~lip ~13

p

p

~11 D18 D15

Contribution to initial state
Z+p partial v ave for Anal

state in a relative
s vraveb p vravee

a Calculated at resonance mass.
b Relative s wave between all final particles.
e Relative p wave between two particles in final state, the rest being relative s waves.

qualitatively ln Flg. 1. Thc totR1 lnclastlc cross scctlon
rises sharply around 1 3eV/c and then increases more
slowly to a value of about 11 mb at 2 BeV/c.

In Table I are shown details of possible inelastic
processes. The threshold for single pion production is at
525 MeV/c, but the Iirst measured value for the inelastic
cross section is 0.06+0.03 mb at 642 MeV/c, ' which
sho%'s that there 18 no rapid lnltlal I'lsc ln this channel.
At 870 MeV/c the production of Ã*(1236) can occur,
and beyond this momentum the inelastic cross section
rises quickly. Above 1075 MeV/c, E*(890) production
a,iso becomes possible and the two resonant states,
EÃ*(1236) and E*(890)X, then dominate the inelastic
channels up to 1500 MeV/c. ""

Table I also shows the initial E+p states from which
the various inelastic states can bc produced, in relative
s or p waves. It can be seen that E*(1236) may be
produced in a relative s state from the initial Drs E+p
state, and in a relative p state from initial Pn, Pqo, and
F~~ states. E*(890) can be produced from the same
states, and, in addition, production in a relative s state
is also possible from an initial Sn E+p state.

'

A preliminary analysis of EiV*(1236)production data
by Kand et a1.""indicates that there is roughly equal
production f lorn En and Prs E+p lllltlal states with an
RddltlonRl contrlbutlon) lncl caslDg 1apldly %'1th IDo-

mcntuID, flOID a State of opposltC Pallty.

An lnltlal sulvcy of thc RVRllablc datR RDd the slnglc-
energy phase-shift analyses that had been made to date
led us to the conclusion that, at this stage, a multi-
energy analysis vmuld be the most useful approach.

Tmxz II. Fits to X+p data vrith one vrave inelastic.

Inelastic partial
waves

Sll
~11
+18
D18
D15

+11
+18
D13
D15

XX)P X8

(a) Published X+p data
202 2791.5
202 1689.1
199 621.9
201 685.9
197 354.9

(b) All E+p data
333 4149.3
333 2952.7
330 962.3
332 1091.3
328 648.4

13.82
8.36
3e13
3.41
1.80

12.46
8.87
2.92
3.29
1.98

0
0.6 l.0

FIG, 1.Qualitative behavior of the total and
partial Z+p cross sections.
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IO- Tmz.z IV. Fits to E+p scattering data with three waves inelastic.

y) —I 0
LLI
LLI

C9
tal -20

~ -30

-40

GO
I.O

0.8—

P„(86V/c)

0,5
I

i

I.O l.5

Inelastic partial
waves

S11P11P13
SllP1lD13
S11P11D15
S11P13D18
S11P18D15
S11D13D15
P11P13D13 (l)

(ii)
P11P13D15
P11Dl3D15 (i)

(ii)
(iii)

P13D13D15

X /ÃDF+DF X

(a) Published E+p data
199 211.2
199 182.0
199 294.0
199 187.8
199 180.4
199 333.4
199 247.4
198 180.5
199 233.5
199 190.3
197 184.0
197 176.3
199 185.1

1.06
0.92
1.48
0.94
0.91
1.68
1.24
0.91
1.17
0.96
0.93
0.90
0.93

Probability

23.37
80.13
0.00

70.47
82.30
0.00
1.11

80.84
4.73

65.78
73.81
85.25
75.18

I- 0.6—
C3

CO

0.4—
Lsl

K
0.2—

0.0 i I I

FxG. 2. Phases and inelasticities for solution
P13D15 (ii) of Table III(a).

After some preliminary trials the following parametriza-
tions were used for the real part of the phase shift 8,
and the inelasticity factor g ..

3,=q"+'(A (+B(q'+c(q'),
(18)

nE= (&+x~') ',

S11P11P13
S11P11Dl3
SllP11D15
S11P13D18
S11P13D15
S11D13D15
P11P13D18 {l)

(Q)
P11P13D15
P„D„D„(i)

(ii)
{iii)

PlsDlsD15

(b) All E+p data
330 403.0
330 378.9
330 530.7
330 419.6
330 396.2
330 613.3
330 481.5
329 395.4
330 464.7
330 388.1
328 370.9
328 369.5
330 402.0

1.22
1.15
1.61
1.27
1.20
1.86
1.46
1.20
1.41
1.18
1.13
1.13
1.22

where
s—s~ 'I' s—ss)

yi = e(s—ss) — D(+Ei
s s

0.3-7

3.28
0.00
0.06
0.72
0.00
0.00
0.70
0.00
1.52
5.14
5.69
0.41

TABLE IIL Fits to IC P a ™'ngdata with two waves inelastic. an/ e(s—ss') is usual (0 j.) step function The available

Inelastic partial
waves

SllP11
S11P18
S11D13
S11D15
P11P13 (i)

(Q)
P11D13
P11D15
Plsols
P18D15 (l)

(li)
DlsD15 (i)

(ii)

S11Pll
S11P18
S11D13
S11D15
P11Pls (i)

(ii)
P11D18
P11D15
P13D13
Plu» (i)

(Q)
D8D5 (i)

(Q)

+DF

(a) Published E+p
199 769.6
199 283.1
198 318.4
198 278.6
199 414.5
199 417.1
198 221.1
198 253.2
198 236.3
198 187.9
198 176.0
197 337.4
197 319.8

data
3.89
1.43
1.61
1.41
2.09
2.11
1.12
1.28
1.19
0.95
0.89
1.70
1.62

0.00
0.01
0.00
0.01
0.00
0.00

12.48
0.49
3.25

68.50
86.72
0.00
0.00

(b) All E+p data
330 1257.3
330 5403
329 556.7
329 554.0
330 774.9
330 740.9
329 453.1
329 453.5
329 451.7
329 419.6
329 384.3
328 651.1
328 617.8

3.82
1.64
1.69
1.68
2.36
2.25
1.38
1.38
1.37
1.28
1.17
1.98
1.88

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.05
1.91
0.00
0.00

Probability
x'/&» 20

IO

Cf)
LU
UJ
0 -IO
C9
tai
CI

z-20
40

-50
0.0

I.O

1

0.5
I

I

I,O I.5

0.8—
g

0.6—
C3

CO

0.4—
Ld
Z.'

0.0

FIG. 3. Phases and inelasticities for solution
PllD13D15 (iii) of Table IV(a).
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CO
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FIG. 4. Phases and inelasticities for solution
EyyDyIDgs (iii) of Table IV(b).

Fzo. 6. Phases and inelasticities for solution
SgEgggge of Table IV(b).

data are not sufficiently accurate to determine the
precise form of g» at low momenta just above the in-
elastic threshold. The form used was found to be
adequate.

For a given partial wave there is thus a maximum
of six parameters, A», 8», and C» for the real part of the
phase shift, and D», E», and sg for the inelasticity factor.
The parametrization was chosen mainly for its sim-

plicity and not for any particular physical reason, the
only physical restriction on the parameters being the
requirement that sg be greater than the Grst inelastic
threshold.

The parameters mere varied to minimize

l500 MsV/c

l400
QO

l200"
I500 MeV/c

where d D, ,t is the experimental error on the data point
Dexpgp and Dpggg~ ls the corlespondlng value obtained
from the parametrization. %e will quote results either
in terms of x'/Enr (where Pop=En Xr is the-
number of degrees of freedom, E~ being the total
number of data and Ep the number ot parameters) or
E(x',XDp), the corresponding probability.

—0.2

IO- I40 MeV/c

—O, I

-0.05

Ref, 80
l

0 0.05 O.IO

FIG. 5. Adair plot for solutions shown in Figs. 3 and 4.

r
I

"0.5 0
cos 8

FIG. 'E.: Fit to the elastic differential cross section at f40 MeV/c
from solution P~~DiaD&5 (iii) of Table IV(b).
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TABLE V. Phases at 1495 MeV/c as determined by all the E+p data {5in degrees).

165

Type

Group I
P11D13D15 (iii)
P11D13D15 (ii)
S11P18
D15

Group II
~11P11D18
P»D13D15 (i)
P11P18D13 (ii)
~11P»P13
P11D18

g /+DF

1.13
1.13
1.64
1.98

1.15
1.18
1.20
1.22
1.38

Sll

—29.3 1.00
—23.8 1.00
—64.7 0.29
—13.5 1.00

—38.8 0.40
—23.4 1.00
—30.5 1.00
—50.4 0.21
—20.7 1.00

P11

0.5 0.19
7.1 0.19

—19.1 1.00
—1.6 1.00

72.4 0.19
59.6 0.15
59.8 0.13

123.4 0.12
94.3 0.05

—22.0 1.00
—21.7 1.00

13.4 0.12
—35.4 1.00

—15.3 1.00
—17.1 1.00
—19.5 0.72
—19.3 0.58
—24.0 1.00

D18

—4.9 0.43
13.0 0.75

—19.5 1.00
2.4 1.00

—17.6 0.48
10.0 0.60

—4.9 0.46
—17.4 1.00
—6.0 0.19

D1s

2.6 0.81
—11.2 0.63
—3.3 1.00

—15.6 0.33

—3.4 1.00
—13.3 0.75
—2.5 1.00
—4.5 1.00
—0.2 1.00

Group III
P11D15
P11P13D15
~11P11D15

RiD15
D13D1s (ii)

1.38
1.41
1.61
1.68
1.88

—26.8 1.00
—37.8 1.00
—28.9 0.89
—22.9 0.66
—22.2 1.00

9.9 0.33
18.8 0.16
11.6 0.18
12.5 1.00
5.0 1.00

—28.3
—19.7
—24.2
—33.1
—34.0

1.00
0.63
1.00
1.00
1.00

10.1 1.00
1.0 1.00
8.2 1.00
3.1 1.00

12.1 0.55

—7.3 0.53
—8.5 0.72

—10.1 0.53
—15.2 0.49
—8.3 0.68

Group IV

P»D» (11)

~11P18D15

P18D13D15

~11P18D13

P»D15 (i)
P18D13
P11P13D18 (i)
~11D13

~11D18D15

D13D1s (i)

1.17
1.20
1.22
1.27
1.28
1.37
1.46
1.69
1.86
1.98

—35.0 1.00
—41.0 0.73
—33.7 1.00
—52.3 0.45
—43.4 1.00
—30.4 1.00
—36.3 1.00
—17.5 0.56
—16.5 0.57
—23.9 1.00

—30.4 1.00
—22.5 1.00
—25.8 1.00
—21.6 1.00
—7.2 1.00

—38.3 1.00
—29.4 0.79
—52.7 1.00
—49.5 1.00
—49.0 1.00

103 0.37
11.7 0.25
10.7 0.27
9.5 0.24

—22.8 0.47
3.3 0.39
0.4 0.32

—6.4 1.00
—3.6 1.00

—10.0 1.00

—7.6 1.00
—5.0 1.00
—7.8 0.94

—13.2 0.76
—6.3 1.00

—15.1 0.55
—11.9 0.59
—16.2 0.21
—18.4 0.22
—9.8 0.59

0.3 0.66
—6.6 0.74
—2.3 0.70
—4.4 1.00

6.7 0.62
2.1 1.00
0.1 1.00

—6.2 1.00
—3.7 0.90

4.0 0.62

The Legendre-polynomial 6ts (see Appendix A) show
that above 1 BeV/c, d waves are expected to be present.
Thus we have included the five partial waves S&~, P&~,

Ei3, Dis, and Dis. Since one of the objects of the present
work is to determine the minimum number of param-
eters needed to Gt the data, we have performed analyses
under the assumptions that (i) only one wave is inelastic

(5 combinations), (ii) only two waves are inelastic (10
combinations), and (iii) only three waves are inelastic
(10 combinations). For each of the above choices about
100 minimizations were made from general trial solu-
tions, their only common feature being a negative
s-wave phase shift at very low momenta. The resulting
solutions were then sorted into diferent types, and
several of the best of each type subjected to further

I
lO

E
Cg

CD

b

l75 MeV/c
205 MeV/c

0
-I.O

I

-0.5
I

0
cos 8

I

0.5 I.O
0- I.O

I

-0,5
I

0
cos 8

I

0.5 I.O

FIG. 8. Fit to the elastic difFerential cross section at 175 MeV/c
from solution P11D13D15 (iii) of Table IV(b).

FIG. 9. Fit to the elastic differential cross section at 205 MeV/c
from solution P11D18D15 (iii) of Table IV(b).
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l.5

2
C)
6

'C7

~ ~

IIb

255 Me I.O—

355 MeV/c

-0,5 0
cos 8

0.5 LO
0.0

-I.O
f-

0.5

cos 8

Ot5

FIG. 10. Fit to the elastic diGerential cross section at 235 MeV/c
from solution P11D13D15 (iii) of Table IV(b).

Fze. 12. Fit to the elastic diGerential cross section at 355 MeV/c
from solution E11D13D1s (iii) of Table IV(b).

extensive searching. The best solutions of each of the
latter groups were used for final minimizations.

'7. RESULTS

We have made our analyses using two data sets,
details of which are given in Appendix B. The first set
consists of published data in the range 140-1495 MeV/c
and has a total of 214 data points. The second set con-
tains, in addition, the preliminary differential cross-
section data at 735,"860, 960, and 1200 MeV/c, ts'r and
preliminary recoil proton polarization data at 778
MeV/c. "This latter set has a total of 345 data points.
Details of the best solutions obtained under our various
assumptions concerning inelasticity are given below.

A. One Wave Inelastic

Table II shows the minimum values of X' obtained
for the five possible cases using the two data sets. The
most interesting feature is that, with the exception of
the very slight increase in the case of D», X2 falls as the
inelasticity is ascribed to a higher partial wave. The
main reason for the bad fits is that it is impossible to
simultaneously fit the higher-momenta differential cross

sections and also reproduce the rapid rise in the inelastic
cross section. The improvement in X' as the inelasticity
moves to a higher partial wave is due to the fact that
higher partial waves contribute more to the inelastic
cross section.

B. Two Waves Inelastic

Table III shows the minimum values of X' obtained
for the ten possible combinations of two inelastic partial
waves. The main features to emerge from these searches
are that all solutions in which Sip is inelastic are bad, the
case of S~~P~~ being the worst of all. Closer examination
of this particular combination shows that, as in the case
of one wave inelastic, it is unable to fit the rapid rise in
the inelastic cross section.

For the combinations P~~P~3, P~SD~S, and D~~D~S two
solutions appeared in each case, both solutions having
comparible values for X'. The best fit to the published
data having two waves inelastic was given by solution
P,sDts (ii), and we will see in the Sec. 8 that this solution
is marginally better than even the best solution with

I.5

l.0——

4-
E

Cs

2-

265 MeY/c

Ce

0.5-
b'e 520 MeV/c

0
-I.O -0.5

cos 8

f

0.5 I.O 0-I,O
I

-0.5
'I

0
cos 8

I

0.5 I.O

FIG. 11.Fit to the elastic differential cross section at 265 MeV/c
from solution PrrarsDrq (iii) of Table IV(b).

Fro. 13. Fit to the elastic differential cross section at 520 MeV/c
from solution E~~D~Nj. ~ (iii) of Table IV(b).
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2—
L

E

sl

lsb
I—

0
—I.O —0.5

522 MeV/c

cos 8

f

0,5 I.O

than 50%. ln the case of the combination PttPrsDrs two
solutions appeared, while for P~~D~~D~5 three solutions
were found. The best fit to the published data is given

by solution PttDtsDts (iii), although, as noted above,
PrsDts (ii) gives an even better fit. When the pre-
liminary data is also included this solution with three
inelastic waves still gives the best fit and, moreover, is
now the best of all the solutions having either one, two,
or three waves inelastic,

Figure 3 shows this best solution PtrDrsDts (iii), as
determined by the published data while Fig. 4 shows
this same solution when the preliminary data is also

l.5

Fto. 14. Fit to the elastic diGerential cross section at 522 MeV/c
from solution P11D13D15 (iii) of Table IV(b).

three waves inelastic. When the preliminary data was
also included this solution still survived as the best solu-
tion with two inela, stic waves, but now some solutions
with three waves inelastic gave better fits to this
complete data set.

Figure 2 shows the characteristics of this solution as
determined by the published data. The corresponding
solution determined by all the data is very similar. One
interesting feature is that both P~3 and a~5 show signs

I.O

E

b
U

Q5-

0.0
-I.O -05

735 MeV/c

1

G5 I.O

I.5-
cos 8

Fzo; 16. Fit to the elastic diGerential cross section at 735 MeV/c
from solution P11D13D15 (iii) of Table IV(b).

I.O—

E

Cs
'D

b
0.5—

642 MeV/c

included in the fit. The main change is in the behavior
of the real part of the P~~ phase. In both cases it starts
negative but begins to turn as the inelasticity starts to
increase. In the first case this turn-around is only slight
and is not enough to bring the real part of the phase
shift positive, but in the second case it is much stronger,
5 passing through 0' at about 650 MeV/c and reaching a
maximum value of 15.5' at about, 1200 MeV/c. After
this rise both solutions show a fall in 5.

0.0
-I.O -0.5

cos 8

0.5 I.O
l.5

FIG. 15. Fit to the elastic differential cross section at 642 MeV/c
from solution P11D13D15 (iii) of Table IV(b).

of the Ball-Frazer" mechanism, the real part of the
phase shift increasing as the partial wave becomes more
inelastic.

C. Three Waves Inelastic

Table IV shows the minimum values of X' obtained
for the ten possible combinations of three inelastic
partial waves. The first point of interest is that, when

only the published data is used, 6 of the 10 possible
combinations give solutions with probabilities greater

I.O

E
Cg

0.5—

0.0—
-I.O

I

-0.5

778 MeV/c

cos 8

0.5 f.o

"J, 5. Bag. and W. R. Frazer, Phys, Rev. Letters?, 204 (196I),
FIG, 17. Fit to the elastic diGerential cross section at 778 MeV jc'

from solution PnaisDrs (iii) of Table IV(b).
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I ~
5-

'o

b
0.5—

0.0
-1,0 -0.5

810 MeY/c

cos 8

-0.5 1.0

preliminary data is included as well as the published
data. Although this data set is not as well fitted as when
the preliminary data is removed, nevertheless we feel
that these solutions are more reliable, the decrease in
probability being due to the inherent difficulties of
energy-dependent phase-shift analyses rather than to
inconsistencies in the data.

In Table V we show values for the phases and
inelasticities at 1495 MeV/c for all solutions having
X'/1Vns less than 2.0. This excludes seven solutions
which, since they also have X'/1trDF)2. 0 when only
the published data is used, we believe are unrealistic.

1.5

FIG. 18. Fit to the elastic differential cross section at 810 MeV/c
from solution P11D13D1s (iii) of Table IV(b).

These two solutions are interesting since they illus-
trate the difFiculties in distinguishing between a simple
Sall-Frazer mechanism and a true inelastic resonance,
In the solution shown in Fig. 3 the real part of the E~~
phase is initially negative. However, once inelasticity
sets in p drops very quickly with a corresponding rise
in 5. Then, as the inelasticity levels off, the real part of
the phase turns again and falls. In the solution shown in

l.5

I.O

E

Cs

b
0,5— 9IO MeV/c

1.0-0.5
0.0 I I I

-10 0 0.5
cos8

FIG. 20. Fit to the elastic differential cross section at 910 MeV/c
from solution P1~D1sD15 (iii) of Table IV(b).

1.0

E

Cs

b
0.5-

0.0
-1.0 -0.5

860 MeY/c

cos 8

0.5 1.0

The behavior of 6 for 5» is roughly similar in every case
and is consistent with our assumption of a Goldhaber
type (Srt repulsive and dominant) low-energy solution.
If we classify the solution, s according to the behavior of
6 for E» w'e see that the solutions may be divided into
four groups. In group I, 6 rises and then falls through 0 .
In the case of the first two solutions of this group this
behavior is accompanied by a rapid fall in. q for P», the
typical behavior of an inelastic resonance. In the case

1.5—

Fro. 19.Fit to the elastic differential cross section at 860 MeV/c
from solution P11D1sD1s (iii) of Table IV(b).

Fig. 4 the inelasticity falls nearly as quickly, but now
the positive bump in 8 is much more marked. Figure 5
shows the Adair" plot for these two cases. The second.
curve shows very clearly the behavior of an inelastic
resonance, possibly superimposed on an attractive back-
ground, whereas such an interpretation in the case of the
first curve is much less obvious.

0.5—

960 MeV/c

8. DISCUSSION OF RESULTS

We shall now discuss in more detail the results ob-
tained when we fit the second data set in which the

0.0
-10

I

-Q5

cos 8

I

0.5

"R.K. Adair, Phys. Rev. 113, 338 (1959).
FzG. 21. Fit to the elastic differential cross section at 960 MeV/c

from solution P~~D~SDj, 5 (iii) of Table IV(b).
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FrG. 22. Fit to the elastic difterential cross section at 9/0 MeV/c
from solution PI~D~sD~S (iii) of Table IV(b). FIG. 25. Fit to the elastic di8erential cross section at 1450 MeV/c

froIQ solution PygDygDyg (iii} of Table IV(b).
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I'rG. 26. Fit to the inelastic cross section from solution

PjgDggDgg (iii) of Table IV(b).
cos 8

Fro. 23. Fit to the elastic diBerential cross section at 1170 MeV/c
from solution E~ID~sD~S (iii) of Table IV(b).

3.0

2.0-

E

Cy

ts

1.0-

CO

CL
w 16-
CO

14- „
TOTAL

12-

0
cos 8

I.O 07 0.9 I.l

P„(BeV/c)

FIG. 24. Fit to the elastic differential cross section at $200 MeV/c
from solution PggDgsDjg (iii} of Table IV(b).

FIG. 2/. I'it to the total cross section from solution
PggDggDgg (iii) of Table IV(b).
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FIG. 28. Recoil proton polarization at 900 MeV/c as predicted
by the best solution of groups I (solid line), II (dot-dashed line),
and IV (dashed line).
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cos e
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FxG. 29. Recoil proton polarization at 1200 MeV jc as predicted
by the best solution of groups I (solid line), II (dot-dashed line),
and IV(dashed line).

of the other two solutions P» is elastic so we believe
them to be unrealistic, this explaining the much larger
values of X'. In group II, 8 for P» rises quickly and in
two cases passes upward through 90', a typical
"normal" resonance behavior. Again for all members of
this group the bulk of the inelasticity is in P». In group
III, 5 for P» rises only slowly even though in the best
three solutions q has fallen quickly. These solutions we
find somewhat suspect since we would expect such a
drop in q to produce signs of a Ball-Frazer mechanism
in 5. Finally, in group IV, 8 for P» falls fairly slowly, P»
being elastic in all except one solution.

The behavior of the other phases are roughly con-
sistent within each group. For groups I, II, and III, the
bulk of the inelasticity is in P» except for a few suspect
solutions with large X~. In all except one case, b for Pjs
falls slowly and this partial wave is elastic or else only
slightly inelastic. The d waves are not very well deter-
mined. For group IV the bulk of the inelasticity is in P»
except for the three worst solutions. Also, apart from
these three and one other solution, 8 for P~3 rises slowly,
showing no signs of an inelastic resonance type behavior.
Again the d waves are not well determined.

The statistically best solution is of group I and has
been shown in Fig. 4. Thes best solution of group II we
show in Fig. 6, while the best solution of group IV is
very similar to that shown in Fig. 2, which gives the
same solution as determined by the published data. We
do not show a group-III solution since they are statis-
ticaBy far inferior to the best solutions of the other
three groups.

The solutions of groups I and II are basically variants
of one another in that they all show some form of reso-
nance behavior in the P» state. Since such a resonance
appears to be in the region of 1500 MeV/c, better
determination of whether it is elastic or inelastic and
the values for its energy and width must await further
accurate data in the region 1—2 BeV/c. It is nevertheless
interesting that evidence for an enhancement in this
region has been reported in both E+p total cross sec-
tion'~ and photoproduction experiments. 38 Solutions of

3' R. J. Abrams et al. , Phys. Rev. Letters 19, 259 (1967).
's J.Tyson et al., Phys. Rev. Letters 19, 255 (1967).

group IV show no resonance behavior. A choice between
these and solutions of groups I and II can be made on
the basis of further accurate measurements in the region
we have analyzed as we shall discuss below.

I.O

0.5

-0.5

- I.O
-IQ

cos 8

I.O

Pro. 30. Recoil proton polarization at 1500 MeV/g as predicted
by the best solution of groups I (solid line), II (dot-dashed line),
and IV (dashed line}.

9. CONCLUSIONS AND OUTLOOK

We have presented the results of an extensive sys-
tematic energy-dependent phase-shift analysis of X+p
scattering below 1.5-8eV/c kaon laboratory momentum.
The characteristics of the solutions found have enabled
them to be classiied into four main groups, the best
solution of group III being statistically far inferior to
those of the other groups. An interesting feature of the
solutions of groups I and II is the possible existence of
a resonance in the P'j~2 state.

In view of the multiplicity of solutions the question
of most interest now is what additional experimental
data could best help decide between them. Fits to all
the cross-section data for the best solution of group I
are shown in Figs. 7—27. The best solutions of groups
II and IV produce its which are very similar. In fact, at
the low momenta they are indistinguishable. Thus only
very accurate cross-section data in the range below
1.5 BeV/c could hope to distinguish between these solu-
tions. However, this is not to say that additional data
in this region are not potentially useful, since they could
help to improve the accuracy of the existing solutions.
In particular, more measurements of the total inelastic
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cross section would be very valuable. The differential
cross sections predicted by the three types of solution
when extrapolated above 1.5 BeV/c do differ, the
differences increasing with momentum. However, to
extrapolate phase shifts beyond a range where they
are known to 6t data is a dangerous procedure and we
shall not pursue the point here.

There remains the question of the recoil proton
polarization. In Figs. 28—30 are shown the predicted
recoil proton polarizations from the best solutions of
groups I, II, and IV. The differences are striking be-
tween the group-IV solution and the other two. It is
also encouraging that the predicted pola, rizations are
large. Thus measurements of the recoil proton polariza-
tion in. the momentum range 1.0—1.5 BeV/c should

clearly distinguish between resonant a,nd nonrsonant

type solutions. However, if the former type are pre-
ferred, then somewhat more accuracy would be required
to deduce the detailed characteristics of the resonance.
We urge that such experiments be done.

Finally, as we mentioned in Sec. 3, there are no
measurements of any angular distributions in the
momentum range 1.5—2.0 BeV/c. In view of the possible
existence of a I'~/2 resonance in this region, suggested by
solutions of groups I and II, and the enhancements

observed by two experimental groups, '~" it is im-

portant that angular distributions (both for elastic
scattering and recoil proton polarizations) be measured

in this momentum range.
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APPEND/X A: LEGENDRE-POLYNOMIAL FITS
TO THE X+p DIFFERENTIAL CROSS SECTIONS

The differential cross-section data were fitted with

Legendre series" for two reasons: (i) to determine the

TABLE VI. Legendre fits to data at 735 MeV jc.

Number
gf

terms

Original data
P(x')

X.
' X'l&DF

I'

Data after alterations
P(x')

DF x2 x~/gD

1
2
3
4
5

:6
7
8
9

10
11
12

18 62.3
17 55.3
16 38.7
15 24.9
14 24.4
23 23.6
12 22 8
ii 19.0
10' 18.0
9 174
8 13.5
7 90

3.46 0.00
3.25 0.00
2.42 0.12
1.66 5.20
1.74 4.07
1.81 3.55
1.90 2.91
1.64 6.11
1.80 5.46
1.93 4.32
1.69 9.61
1.29 25.03

8 18.2 2.28 1.95
7 15.4 2.19 3.17
6 4.8 0.79 57.00
5 2.1 0.41 83.53
4 2.1 0.52 71.74
3 1.4 0.47 70.55
2 1.3 0.64 52.20
1 0.2 0.22 66.00

maximum number of partial waves required at each
momen. turn, and (ii) to remove obvious inconsistencies
in the 'data.

We have used the series

da—(s,8)= g c„(s)P (costt),
dQ n=o

(A1)

and in. order to present a systematic approach the
following technique was used:

At this point two criteria can be applied to decide on
where to truncate Eq. (A1). First, one can look for 'the

TABLE VII. Details of the number of Legendre coefficients needed
to fit the elastic di6'erential cross sections.

Laboratory
momentum

(MeV/c)

355
520
522
642
735
780
810
860
910
960
970

1170
1200
1450

Number of terms
for a probability

of 30yo

2

3
3
3
3
3
3
2
3
3
3

5

Number of terms
for 1st minimum

in x'1&DF

no minimum'
6
1

4
1
1
3
3
5
3
4
6

(i) The data were first fitted with a one-term series,
then a two-term series, and so on up to a twelve-term
series (or until the number of degrees of freedom fell to
zero).

(ii) The fits were then inspected to see if any poin. ts
were consistently giving large contributions to X'. Such
points were subsequently rebinned, or rejected, and
stage (i) repeat.

- "We are grateful to R. G. Kirsopp for making his Legendre
series fitting program available to us.

a The first minimum is almost certainly lost because of a bad scatter of
points.
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FrG. 31. Energy dependence of the Legendre coefBcient Co.

point where the probability exceeds 50% ("'/EnF —1),
and, second, where the first minimum in X'/Snip occurs.
The first criterion means that on the average the data
points are Gtted to within the quoted errors, while the
second criterion means that adding an, other term in the
Legendre series does not significantly decrease X'.
Ideally both criteria should be satisfied at the same
point, but in practice they are usually not.

Let the probability exceed 50% for X„terms in the
series, and let the minimum in X'/En@ occur for E
terms. If the average number of terms needed to fit
other experiments in the same energy region is X, then
we would judge an individual fit to be good if
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X=Ã~&1=E +1.
We often find that while E =E, X„is either very large
or very small. If E~ is large, then there are either some
isolated bad points or the over-all errors are too small
and should be increased. If N~ is small, then con-
versely the errors are probably too large. In cases where
E )&E, it usually means that the first minimum in
X'/1VnF has been lost due to rather bad data.

As an example of the use of the Legendre fitting
technique, Table VI shows the 735-MeV/c" pre-
liminary data both before and after rebinning. The
original data gave a minimum in x'/Xnp for 4 terms but
the corresponding probability was only 5.2%. Note
that even with a 12-term series the probability only
rises to 25%. After rejecting the point at cos8= 0.85 and
rebinning the remaining data from intervals of 0.1 in
cos8 to intervals of 0.2, the first minimum in X'/SnF
still occurs for 4 terms while the probability rises above
50%%uo for a series with three or more terms.

In Table VII we give details of the number of terms
-needed to satisfy both criteria after making the neces-
sary adjustments to the data. Here we have used a
probability of 30% as a criterion for a good fi.t because
of the scatter on the data from some, particularly older,
experiments. It will be seen that the highest number of
terms are required for the 1450-MeV/c data. Here a
term in cos 8 is required, indicating the presence of a
d-wave term at this momentum.

In Figs. 31—34 we show the first four Legendre series
coefficients as functions of laboratory momentum in
the region from 335 to 1450'MeV/c. Values below
355 MeV/c are not shown because the Coulomb e8ects
are large enough to inhuence the coefFicients.

APPENDIX B: DETAILS OF THE DATA

In Tables VIII and IX we show details of both the
published and. preliminary data, respectively. The
crosses indicate that the data have been iricluded in the
analysis, and the number in parentheses gives the
reference.

The data are shown in Figs. 7—27 together with Gts
from the over-all best solution.
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TmLE VIII. Published data included in 6rst data set. The numbers in parentheses give the references.

Laboratory
momentum

(MeV/c)

140
175
205
235
265
355
520
522
642
770
778
810
891
910
942
970
976

Z(10)

x(9)
x(3)

x(3)
x(io)
X(11)

X(14)
x(9)

Forward
real
part

X
X
X
X
X
Xx

x
X
X
X
x

tga/da

x(s)
X(8)
x{s)
x(s)
x(s)
X(8)
x(s)
x(7)
X(8)

x(17)
X(9)

x(is)
X(to)

x(is)

Laboratory
momentum

(MeV/c)

992
1043
1087
1094
1144
1170
1194
1245
1295
1300
1345
1367
1395
1440
1445
1450
1495

x(3)
x(3)
x(11)
x(3)
X(3)
X(10)
x(3)
x(3)
x(3)
X(10)
x(3)
X(11)
x(3)
x(io)
x(3)
x(12)
x(3)

&inel

X(12)

Forward
real
part

x
X
X
X

X
X

do/dQ

x(io)

x(12)

P(e)

T~LE IX. Additional preliminary data included in second data set. The numbers in parentheses give the references.

Laboratory momentum
(Mey/c)

735
778
860
960

1200

x(15)
&inel

x(15)

x(19)
x(19)
x'(16)

Forward
real part do/dQ

x(15)

x(19)
x(19)
x(19)

X(21)
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Test: for 1V*(i400) Dominance of Nucleonic Form Factors

D. H. LVTH

Department of Physics, University of Lancaster, St. Leonard's Gate, Lancaster, png(and
(Received 26 June 1967)

Qy assuming that "nucleonic" form factors are dominated by the contribution of the N*(1400) resonance
(which is the only object having the same quantum numbers as the nucleon), the relation g~NN/g ~z
=g &~/g z~ is derived {the g's are coupling constants, and only magnetic coupling to the photon is
considered). A recent phase-shift analysis of photoproduction oft protons by Chau, Dombey, and Moorhouse
gives a value for g~~~ agreeing in sign but twice too large.

'T has recently been implied' that nucleonic form
. ~ factors might be dominated by the X*(1400) reso-
nance (which has the same quantum numbers as the
nucleon), just as electromagnetic form factors are
dominated by vector mesons. ' In this paper it is
intended to confront this idea with experiment and to
make some general comments on it.

The yNN and mNN vertices will be considered. Kith
the photon and one nucleon on the mass shell, and the
other nucleon off the mass shell (mass W), the yÃX

' J. M. Cornwall and S. H. Patil, Phys. Rev. Letters 18, 757
(1967).' See, e.g., M. Gell-Mann, Phys. Rev. 125, 1067 (1962).

vertex is given bys

&P l~.(o) IP') = rc(p)

(Po/~)'"
N(p')

XL'&„s+'i „„(p-p') /, (ii')j (i)
(Po'/~)"

Similarly the ~NN vertex is given by

VZN(p) N(p')
&P I i(o) IP'&= &vs'(~)' . (2)

(po/~)'" (Po'/~)'"
3 A. Bincer, Phys. Rev. 118, 885 {1960).


