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An extensive systematic energy-dependent phase-shift analysis in the kaon laboratory momentum range
140-1495 MeV/c has been made of K*p scattering data, supplemented by information from K*p forward
dispersion relations. S, P, and D waves were included, and various assumptions were made concerning the
source of the inelasticity. Results are presented for solutions allowing all possible combinations of up to
three partial waves to be inelastic. Four basic types of solution are found, and experiments are suggested
which will best help to decide among them. Two of these groups of solutions show some evidence for a reso-
nance in the Py, partial wave, although its precise characteristics cannot be determined with present data.

1. INTRODUCTION

HE existence of a wealth of accurate experimental
pion-nucleon scattering data has enabled several
groups'? to perform extensive phase-shift analyses up to
a momentum of about 2 BeV/c. These analyses have
confirmed much that was known about the 7V system,
and have, in addition, disclosed many interesting phe-
nomena hitherto unsuspected. These discoveries have
revitalized the phase-shift analysis technique, and have
shown that, when used in conjunction with other tech-
niques, it can be a powerful device to aid our knowledge
of scattering phenomena.

With the successes in the w/V field it is natural to
attempt to apply similar methods to other systems and,
in particular, to KV scattering. Unlike K~ scattering,
early experiments on K+p scattering failed to discover
the presence of any significant structure. However, in a
recent series of accurate total cross-section measure-
ments Cool et al.3 have presented evidence for structure
in the region of 1250-MeV/c kaon laboratory momen-
tum. If this structure is associated with a resonance in
the K+p system it could not be incorporated into an
SU(3) multiplet of dimensionality less than 27. There
are also difficulties in the quark model since at least 5
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quarks would be needed to construct an object with the
correct quantum numbers. Thus itis important to deter-
mine whether the structure observed in the total cross
section is associated with a resonance in the K+*p
system. Furthermore, since K*p scattering is the only
simple strange-particle system directly accessible to
experiment which is not plagued by multichannel
problems at low momenta, a knowledge of the K+p
phase shifts could help greatly in theoretical analyses
of the KN interaction.

For these reasons we have made an extensive system-
atic phase-shift analysis of K*p scattering data in the
kaon laboratory momentum range 140-1495 MeV/c, the
range being dictated by the availability of experimental
data. In this paper we report on the results obtained
from an energy-dependent analysis. In a subsequent
paper we will report on further work on this system.

In Sec. 2 we outline the formalism, including the
electromagnetic corrections, and in Sec. 3 we present a
critical discussion of the data used in the analysis. In
Sec. 4 we discuss phase-shift ambiguities and their
possible resolution by the use of forward dispersion
relations. Section 5 is devoted to a brief discussion of the
possible inelastic channels available to the K+p system,
and in Sec. 6 is discussed the parametrization used and
the search procedure followed. The results are presented
and discussed in Secs. 7 and 8. Section 9 is devoted to
conclusions and outlook. Finally, details of Legendre
fits to the differential cross sections are given in
Appendix A, and Appendix B contains details of the
data sets used.

2. FORMULATION
A. Basic Equations for Measurable Quantities

The Ktp state is pure /=1, and so we will denote
partial-wave amplitudes by Ly s, i.€., S11, P11, P13, €tc.,
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where J=I41% is the total angular momentum of the
system. Natural units, such that A=m,=c=1, are used
throughout this paper. The spin decomposition of the
scattering amplitudes is exactly the same as for =V
scattering* which, for completeness, we briefly outline
below.

If we denote by g(s,8) the spin-flip amplitude, and by
f(s,0) the non-spin-flip amplitude, then these are
given by

f(s,6)= g CU+1) fue ()+Efi()TPi(cost), (1)

¢(5,0) =i g [fus (5)— fi_(s) TP1*(cosb) @)

where s is the square of the total center-of-mass energy,
6 is the center-of-mass scattering angle, P;(cosf) and
Pj(cosh) are the ordinary and associated Legendre
polynomials, and f;4(s) is the partial-wave amplitude
with total angular momentum J=I43%. The latter
amplitudes may be expressed in terms of complex phase
shifts a;.(s) by

Fals)= exp[Ziazit (5]—1
2iq
=7I&(S) exp[ 2485 (s) ]—1

2iq

, &)
where
11(s) =exp[—2 Imas(s) ],
311:(s)=Reazs(s),
and ¢ is the center-of-mass momentum.

The relevant measureable quantities may be ex-
pressed directly in terms of fand g, or f11.(s), as follows®:

(i) Differential cross section for unpolarized target:

(do/d)=| f(s,6) >+ g(s,0) 2. (4)
(i) Recoil proton polarization for unpolarized target:
2 Re[ f*(s,0)g(s,0) 17
L S COTC o
do(s,0)/d
where
_ (aXq")
l(axa)]’

and ¢’ is the center-of-mass momentum of the final kaon.
(iii) Forward real part:

Ref(5,0)= ,é, [(+1) Refur(s)+1 Refi(9)].  (6)

4 See e.g., J. Hamilton and W. S. Woolcock, Rev. Mod. Phys.
35, 737 (1963).

& See e.g., O. T. Vik and H. R. Rugge, Phys. Rev. 129, 2311
(1963) ; and Ref. 2.
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(iv) Total cross section:

4r =
or(s)=— 3 [(+1) Imfo,()+ Imfi(s5)]. (7)
g 1=0
(v) Inelastic cross section,

oun(s)=or(s)—4r g LU0 721 () P41 7)1 (8)

B. Electromagnetic Corrections

The scattering data which we have used are, in
general, not corrected for electromagnetic effects. These
corrections are important only for scattering in an
angular range near to the forward direction, the range
decreasing with increasing momentum. Practically all
the effect of the electromagnetic interaction may be
included by using those terms which may be expressed
as additive corrections to the amplitudes f(s,6) and
g(s,6) of Egs. (1) and (2). A prescription which is non-
relativistically correct to all orders in «, the fine-
structure constant, and relativistically correct to first
order in « has been given by Roper ef al.! We shall use
that method here. Thus, relativistic electromagnetic
(REM) amplitudes for K+p scattering correct to first
order in a are

—« W—m W++m
frEM= { } cosf— (up—1)
2W(1—cos®)  E—m E+m
W—E E—m
XI:——(l-—cosO)-i- sin%j” , 9
m 2m
a sinf W+m
SREM= {
2W (1—cosf) | E+m
2W—E+m E—m
+(up—-1)[ + cos()]}, (10)
2m 2m

where E is the center-of-mass energy of the proton, W
is the total center-of-mass energy (W=4/s), and p, is
the proton’s total magnetic moment in nuclear mag-
netons. Nonrelativistic (Coulomb) amplitudes correct
to all orders in « are

—a[E(W—E)+¢*]

Coul™
¢*W (1—cosb)
—ia[EW—E)+¢*] /1—cosf
Xexp L 1 ln< )] , (11)
"4 2
gcou1=0. (12)

These Coulomb amplitudes contain the nonrelativistic
electromagnetic amplitudes to first order in «, which are
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also contained in Egs. (9) and (10). The common
terms are
—o[E(W—E)+¢*]
Coul a™= ) (13)
g*W (1—cosb)
gCoula=0- (14)

Thus the total electromagnetic corrections which are
independent of the nuclear phases are

Sfem= frEMT fcoul— fcoul e, (15)

§EM= REM, (16)
and these are to be added to the nuclear amplitudes
[given by Egs. (1) and (2)] to give the total amplitudes,
fand g

The above corrections are adequate for our purposes
because (i) most of the differential cross sections are not
measured very close to the forward direction. In the
three cases where there is an angular point with
cosf>0.95, the errors on the data are such as to render
a more accurate correction unnecessary. (ii) The correc-
tions we ignore are always estimated to be less than
1°, and our final phases are rarely predicted to that
accuracy. Furthermore, inclusion of the general form
of the corrections would either greatly increase the
computer storage necessary, or, alternatively, increase
the time of computation considerably.

3. EXPERIMENTAL DATA

The main bulk of the experimental data consists of
total cross sections and elastic differential cross sections,
with, in addition, a few inelastic cross sections, and a
few values for the recoil proton polarization. The data
are distributed fairly uniformly in the region 140-1500
MeV/c but there is a large gap from 1500-2000 MeV/¢
in which no angular distributions have been measured.
Consequently we have restricted our analysis to the
region below 1500 MeV/c. We discuss below the data in
the region 140-1495 MeV/c and the corrections which
we have included in our analysis.

A. Total Cross Section

Prior to the publication of the data of Cool ef al.,? the
K*p total cross section was only poorly known. The
data available up to 850 MeV/c consisted of some very
early emulsion results® and three points’ (at 457, 522,
and 589 MeV/c) from a counter experiment. Both of
these sets of data disagree with more recent total cross
sections calculated from the differential cross sections
of Goldhaber et al.,® and have not been included in our
analysis. Between 850 and 1495 MeV/c very accurate

6 D, Keefe ef al., Nuovo Cimento 12, 241 (1959).
7T. F. Kycia, L. T. Kerth, and R. G. Baender, Phys. Rev. 118,

553 (1960).
8 S. Goldhaber ef al., Phys. Rev. Letters 9, 135 (1962).
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data are now available.® Other data in this region,*
although less accurate, are consistent with the data of
Cool et al.? and are included in the analysis.

To summarize the situation, accurate data are now
available from 850-2000 MeV/¢, but below this region
there are still no accurate measurements. An indepen-
dent set of measurements below 850 MeV/c would be
very useful in order to provide a basis for the absolute
normalization of differential cross-section data in this

region.

B. Inelastic Cross Section

Between the threshold for single pion production
(525 MeV/c) and 2 BeV/c there are only nine measure-
ments of the total inelastic cross section.®913-16 Since
the available data indicate quite rapid changes in the
inelastic cross section over this momentum range, more
data is clearly required. Furthermore, an accurate
knowledge of the inelastic cross section provides an
important constraint on possible sets of phase shifts.

C. Differential Cross Section

Prior to the phase-shift analysis we analyzed the
differential cross-section data in terms of Legendre-
polynomial expansions. This gave information which
enabled us to remove obvious inconsistencies in the
data, and also determine the highest number of partial
waves required to fit the data. In Appendix A we give
details of these fits together with a graph of the Legendre
series coefficients. We give here a discussion of all the
differential cross-section data available together with
comments on the corrections we found necessary.

1. Below 300 MeV/c

Because of the large forward peak caused by Coulomb
scattering, no attempt was made to fit this data with
Legendre polynomials. The differential cross sections
at 140, 175, 205, 235, and 265 MeV/c (Ref. 8) were
included unaltered in our analysis to provide a low-
energy constraint on the phase shifts.

2. 355, 520, and 642 MeV /¢

These remaining three low-energy differential cross
sections of the Goldhaber group?® are well fitted by a two-

8 T, F. Stubbs et al., Phys. Rev. Letters 7, 188 (1961).

10V, Cook ef al., Phys. Rev. Letters 7, 182 (1961); Phys. Rev.
129, 2743 (1963).

1H, C. Burrowes et al., Phys. Rev. Letters 2, 117 (1959).

2 A, Bettini ef al., Phys. Letters 16, 83 (1965).

18 W. Chinowsky, G. Goldhaber, S. Goldhaber, T. O’Halloran,
and B. Schwarzschild, Phys. Rev. 139, B1411 (1965).

1T, A. Filippas et al. (to be published).

15 E. Barrelet (to be published).

16 R. W. Bland et al., Phys. Rev. Letters 17, 939 (1966); in
Proceedings of the Thirteenth Annual International Conference on
High-Energy Physics (University of California Press, Berkeley,
Calif., 1967). ) )
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parameter Legendre-polynomial expansion. This is con-
sistent with our assumption of the dominance of s waves
at low momenta.

3. 522 MeV/c

This counter experiment? gave fairly large errors on
the differential cross-section values. In order to bring it
into general agreement with the more recent data at
520 MeV/c? the points were renormalized to 909, of
their quoted values. It was also found necessary after
the first fits to rebin the points at cosf=—0.423 and
—0.574 into one point at cosf= —0.499.

4. 778 MeV/c

This recent bubble-chamber experiment!” has very
good statistics. However, our Legendre series fits indi-
cated that it was necessary to rebin the four points at
cosf=—0.35, —0.45, —0.55, and —0.65 into two points
at cosf=—0.4 and —0.6.

5. 810 MeV /¢

The results of this early bubble-chamber experiment®
are reasonably well fitted by a three-term Legendre
series.

6. 910 MeV/c

This propane bubble-chamber experiment!® was
mainly intended to measure the recoil proton polariza-
tion. Some differential cross-section data were also
produced and they are well fitted by a three-term
Legendre series.

7. 970 and 1170 MeV /¢

Both of these sets of spark-chamber data® are
reasonably well fitted by three-term Legendre poly-
nomial expansions. In the 970-MeV/¢ set it was found
necessary to rebin the points at cosf=0.4 and 0.6 into
one point at cosf=0.5.

8. 1450 MeV/c

This comprehensive counter experiment? is well
fitted by a five-term Legendre series.

In addition to the data listed above, there are pre-
liminary data from four bubble-chamber experiments.

9. 735 MeV/c

The Legendre fits indicated that it was advisable to
rebin the data completely from intervals of 0.1 in cosf
to intervals of 0.2.

17§, Focardi et al., Phys. Letters 24, B314 (1967).
18 W, Hirsch and G. Gidal, Phys. Rev. 135, B191 (1964).
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10. 860, 960, and 1200 MeV /c

"This preliminary data!® is well fitted by three- or
four-term Legendre series expansions. We have re-
normalized the data slightly in order to bring it into
line with the most recent total cross-section measure-
ments of Cool et al.®

D. Recoil Proton Polarization

To date there have only been two measurements of
the recoil proton polarization. There are four points at
910 MeV/c!® and three preliminary points at 778
MeV/c2 The values at 910 MeV/c have been changed
in sign to agree with the conventional definition of
positive polarization.?

To summarize the data situation, in the momentum
range up to 1 BeV/c, there are 16 sets of elastic differ-
ential cross-section data of which only 4 have average
errors of less than 109,. Between 1 BeV/c and 1.5 BeV/c
there are 3 sets, of which 2 have good statistics. There
are now very accurate total cross-section measurements
above 850 MeV/¢, but below this momentum the total
cross-section data is poor. The situation for inelastic
cross sections and recoil proton polarization measure-
ments is very bad, there being a mere 8 points of the
former and 7 of the latter.

From the above it is clear that the K*p data situation
is far from good. In order, in the future, that the K+p
situation be comparible to that of #V scattering, it
would be necessary to have complete sets of data, i.e.,
differential cross sections, recoil proton polarizations,
and independent measurements of the total and inelastic
cross sections, at momentum intervals of about 50
MeV/c. We appreciate the experimental difficulties that
this would involve, particularly at low momenta.

4. PHASE-SHIFT AMBIGUITIES AND
FORWARD DISPERSION RELATIONS

In Sec. 3 we have seen that the available experimental
data consist mainly of total and differential cross sec-
tions. Fitting only such data can lead, at e given
momenta, to several ambiguities.® A second solution
may be obtained from the true solution by interchanging
partial waves of the same J value but with opposite
parities. This is the Minami ambiguity.* Then there is
the sign ambiguity?® where a third solution may be

B R. W. Bland ¢ al., quoted by G. Goldhaber in University of
California Radiation Laboratory Report No. UCRL-17388
(unpublished) ; see also Ref. 16. .

20T, F. Kycia (private communication).

A F, Femino, S. Iannelli, F. Messanares, L. Monari, and P.
Serra, Nuovo Cimento (to be published).

. 2 Weare grateful to Dr. V. P. Henri for pointing out this change
in sign.
(123 §7ee e.g., L. D. Roper and D. S. Bailey, Phys. Rev. 155, 1744

967).

2¢ §, Minami, Progr. Theoret. Phys. (Kyoto) 11, 213 (1954).

2% See e.g., H. A. Bethe and F. de Hoffmann, Mesons and Fields
(Row Peterson & Co., New York, 1955), Vol. 2, p. 70.
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obtained by simultaneously reversing the signs of the
real parts of all the phase shifts. In addition, a combina-
tion of these two transformations can produce a fourth
solution.®

The measurements of Goldhaber ef al.® at low mo-
menta showed that Coulomb interference fixed the sign
of the real part of the forward scattering amplitude as
negative, thus removing the sign ambiguity. They then
showed that the differential cross sections could be fitted
with a dominant repulsive S;; phase. Applying the
Minami transformation we see that there is a second
solution with a dominant repulsive Py; phase. Besides
these two solutions there is a third solution, the Yang?®
ambiguity of the second. This is a mixture of an attrac-
tive Py; phase and a larger repulsive Py; phase. Gold-
haber et al.® favored the dominant repulsive Sy, phase
shift on the grounds that the energy dependence of the
phase was proportional to ¢ rather than ¢3, thus exclud-
ing a simple p-wave type threshold behavior. This
situation has also been discussed by Ino,?” who finds that
a theoretical study of the forces in this system favors the
S1: dominant solution. In our analysis we have assumed
that the dominant repulsive Sy; solution is correct at
low momenta. At higher momenta, however, the phase
shifts may have changed sufficiently rapidly for both
ambiguities to be present.

From Egs. (1)-(8) it can be seen that although the
total and elastic differential cross sections remain in-
variant under the sign and Minami transformations,
the forward real part will change sign under both trans-
formations. Thus to resolve these ambiguities requires
both recoil proton polarization data and values for the
real parts of the forward scattering amplitude.

In our analysis we have included values for the real
part of the forward scattering amplitude as calculated
from a K+p forward-dispersion relation subtracted once
at threshold. The inclusion of the forward real parts
thus resolves the sign ambiguity, but since there are
so few values of the recoil proton polarization the
possibility still remains of Minami-type ambiguities at
higher momenta.

If we denote by f.(») the forward amplitude for K+p
scattering at a total kaon laboratory energy v, a disper-
sion relation subtracted once at threshold is

Ref.(v)=Ref; (mx)
(v—my)Ry (v—mg) >
- 6’/ av'k’
v (vtwy)(vy+mg)  4n° mK

X[ a-(v) a4 (v) ]

(v +») (' +mg)  (V'—»)('—mk)

(v—mxg) "% Imf_(»)

o) ey I
vy (V) (v +mx)

2 See e.g., G. Killen, Elementary Particle Physics (Addison-

Wesley Publishing Co., Inc., Mass., 1964).
27 T, Ino, Progr. Theoret. Phys. (Kyoto) 37, 398 (1967).

an

m
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where
mY2___ m2__. mK2
yy =——"""""
2m
and

(my—m)i—mg? gv*

y=
dmmy 4rr

The kaon laboratory momentum is %', and my and gy

are the masses and coupling constants of the hyperons

Y (A° and 2°) to the KN channel.

The physical integral in (17) was evaluated using
known total cross sections below 19 BeV/¢,?® and a
Regge-pole model above this momentum. The Regge-
pole parameters deduced by Rarita and Phillips®® were
used for the latter part of the calculation. The subtrac-
tion constant was evaluated by using the s-wave scatter-
ing length of Goldhaber ef al.? The integral in Eq. (17)
involving the K—p unphysical region was evaluated
using a constant-scattering-length approximation to the
Dalitz-Tuan® extrapolation procedure for the s waves,
and a Lagrangian method for the p-wave ¥ *(1385)
contribution with an SU(3) coupling.® This treatment
of the K—p unphysical region is rather crude. However,
although a far better treatment of this region is neces-
sary if one is to deduce accurate values for gy,® its con-
tribution to the forward real part in the region below
1.5 BeV/c is rather small for the particular dispersion
relation we have used.

At a given momentum, a range of values of Refi(»)
was found by taking into account the error on the
s-wave K*p scattering length,® by using different sets
of K—p scattering lengths in the unphysical region,
and by varying the values of the K¥'N coupling con-
stants between their SU(3) values [taking the SU(3)
mixing parameter a=%], and the small values obtained
by Lusignoli et al.** The extremities of the range of
values obtained were used to define the “error’” on the
forward real part for the purpose of the analysis. The
major part of this error comes from the error on the
s-wave K+p scattering length.

5. INELASTIC CHANNELS

The main features of the total and partial inelastic
cross sections for K+p scattering in this region are shown

28 W. Galbraith e al., Phys. Rev. 138, B913 (1965); W. F.
Baker ef al., ibid. 129, 2285 (1963) ; A. N. Diddens, E. W. Jenkins,
T. F. Kycia, and K. F. Riley, dbid. 132, 2721 (1963); M. B.
Watson, M. Ferro-Luzzi, and R. D. Tripp, bid. 131, 2248 (1963) ;
0. Chamberlain et al., sbid. 125, 1696 (1962) ; P. Nordin, sbid. 123,
2168 (1961); see also Refs. 3 and 8-13.

» R. J. N. Phillips and W. Rarita, Phys. Rev. 139, B1336 (1965).

a°R). H. Dalitz and S. F. Tuan, Ann. Phys. (N. Y.) 10, 307
(1960).

3 R, L. Warnock and G. Frye, Phys. Rev. 138, B947 (1965).

3 See e.g., H. P. C. Rood, Nuovo Cimento 50, A493 (1967).

# J, K. Kim, Phys. Rev. Letters 14, 29 (1965); M. Sakitt ef al.,
Phys. Rev. 139, B719 (1965).

% M. Lusignoli, M. Restignoli, G. A. Snow, and G. Violini,
Phys. Letters 21, 229 (1966).
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TaBLE 1. Possible main inelastic channels.
Production threshold® s
Kaon Total r‘:;ﬁfngfe Contribution to initial state

Inelastic laboratory c.m. in final K*p partial wave for final

channel momentum energy state state in a relative

K*p— (MeV/c) (MeV) (MeV) s waveb p wave®
KNrm 525 1573 Py Su, Dis
«(720)N 715 1659 <12 Py Su, Dis
KN7mr 825 1711 Su Py, P13
KN*(1236) 870 1732 120 Dys Py, Pys, Fi5
K*(890)N 1075 1829 50 Su, Dis Pyy, Pis, P15
KNo(410) 1110 1845 ? Su Py, Pis
KNrrmr 1120 1849 P S, Dis
KN*(1400) 1220 1896 ~200 Su Pyy, P13
K N7 (549) 1417 1984 <0.01 Py S11, D13
KNrrrw 1422 1987 Su Py, Pis
Zv(1865)r 1460 2003 150 ? ?
K*(1080)N 1495 2019 ? ? ?
KN*(1525) 1500 2021 105 Py S1ty Disy, Dis

a Calculated at resonance mass.
b Relative s wave between all final particles.

¢ Relative » wave between two particles in final state, the rest being relative s waves.

qualitatively in Fig. 1. The total inelastic cross section
rises sharply around 1 BeV/c and then increases more
slowly to a value of about 11 mb at 2 BeV/c.

In Table I are shown details of possible inelastic
processes. The threshold for single pion production is at
525 MeV/c, but the first measured value for the inelastic
cross section is 0.0640.03 mb at 642 MeV/c,® which
shows that there is no rapid initial rise in this channel.
At 870 MeV/c the production of N*(1236) can occur,
and beyond this momentum the inelastic cross section
rises quickly. Above 1075 MeV/¢c, K*(890) production
also becomes possible and the two resonant states,
KN*(1236) and K*(890)N, then dominate the inelastic
channels up to 1500 MeV/c.16:19

Table I also shows the initial K*p states from which
the various inelastic states can be produced in relative
s or p waves. It can be seen that N*(1236) may be
produced in a relative s state from the initial Dy3 K*p
state, and in a relative p state from initial Pqy, P13, and
Fy5 states. K*(890) can be produced from the same
states, and, in addition, production in a relative s state
is also possible from an initial Sy; K*p state.

Taste IL. Fits to K*p data with one wave inelastic.

Inelastic partial

waves Nor X x*/Nor
(a) Published K*p data
Su 202 2791.5 13.82
Py 202 1689.1 8.36
Py 199 621.9 3.13
Dss 201 685.9 3.41
Dss 197 3549 1.80
(b) All K*p data
Su 333 4149.3 12.46
Py 333 2952.7 8.87
Py 330 962.3 2,92
D3 332 1091.3 3.29
D5 328 648.4 1.98

A preliminary analysis of KN*(1236) production data
by Bland ef al.1%1® indicates that there is roughly equal
production from Py; and Pz K+p initial states with an
additional contribution, increasing rapidly with mo-
mentum, from a state of opposite parity.

6. PARAMETRIZATIONS AND SEARCH
PROCEDURE

An initial survey of the available data and the single-
energy phase-shift analyses that had been made to date
led us to the conclusion that, at this stage, a multi-
energy analysis would be the most useful approach.

] I I
20}— -

)y
E 12— -
z
Qo
= o
8 INELASTIC
w
o 8
a —
@
o
o (KN¥)
4 }— —
o (K*N)
\
) o (KNwm)
9 ' |
0.6 [Xe} 1.4 L8
P (BeVv/e)

Fi16. 1. Qualitative behavior of the total and
partial K*p cross sections.
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F1G. 2. Phases and inelasticities for solution

P13Dy; (ii) of Table ITI(a).

After some preliminary trials the following parametriza-
tions were used for the real part of the phase shift 4,
and the inelasticity factor »:

&= (At Bi?+Cg")

m= (1 +y12)—1 )

Tasie III. Fits to K+p scattering data with two waves inelastic.

(18)

Inelastic partial Probability
waves DF X x*/Npr %
(a) Published K*p data
S1uPu 199 769.6 3.89 0.00
SuPis 199 283.1 1.43 0.01
SuDis 198 318.4 1.61 0.00
SuDis 198 278.6 1.41 0.01
Py, Pis (i) 199 414.5 2.09 0.00

(i1) 199 417.1 211 0.00
P11Dss 198 221.1 1.12 12,48
P11Dss 198 253.2 1.28 0.49
Py3Dys 198 236.3 1.19 3.25
PysDss (i) 198 187.9 0.95 68.50
(i1) 198 176.0 0.89 86.72
D13Dis (i) 197 3374 1.70 0.00
(i) 197 319.8 1.62 0.00
(b) All K*p data
SuPu 330 1257.3 3.82 0.0
11.P13 330 540.3 1.64 0.0
SuDis 329 556.7 1.69 0.0
SuDis 329 554.0 1.68 0.0
P Pis (i) 330 7749 2.36 0.0
ii 330 740.9 2.25 0.0
PuDis 329 453.1 1.38 0.0
PuDis 329 453.5 1.38 0.0
P1:Dis 329 451.7 1.37 0.0
PysDys (i) 329 419.6 1.28 0.05
(it 329 384.3 1.17 191
DysDss (1) 328 651.1 1.98 0.00
i1 328 617.8 1.88 0.00
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TasLE 1IV. Fits to K*p scattering data with three waves inelastic.

Inelastic partial Probability
waves Nor X x*/Nor %
(a) Published K*p data
S1P11Pis 199 211.2 1.06 23.37
S11P11D13 199 182.0 0.92 80.13
SuPuDis 199 294.0 1.48 0.00
SuPisDys 199 187.8 0.94 70.47
SuPisDis 199 180.4 0.91 82.30
SuDisDis 199 333.4 1.68 0.00
Py Pi3Dss (i) 199 247.4 1.24 1.11
(ii) 198 180.5 0.91 80.84
P11Py3D;ys 199 233.5 1.17 4.73
P1DisDys (i) 199 190.3 0.96 65.78
(il 197 184.0 0.93 73.81
(ii1) 197 176.3 0.90 85.25
P13D13D:5 199 185.1 0.93 75.18
(b) All K*p data
SuPulPis 330 403.0 1.22 0.37
S1ulP11D1s 330 378.9 1.15 3.28
S1PuDis 330 530.7 1.61 0.00
S11P13D13 330 419.6 1.27 0.06
11P13D1s 330 396.2 1.20 0.72
SuDi3Dis 330 613.3 1.86 0.00
P PysDis (i) 330 481.5 1.46 0.00
(i) 329 395.4 1.20 0.70
P11P13Dys 330 464.7 1.41 0.00
P1Dy1sDss (i) 330 388.1 1.18 1.52
(i1) 328 370.9 1.13 5.14
(i) 328 369.5 1.13 5.69
Py3D13Dis 330 402.0 1.22 0.41
where
—S7r 3/2 S—S7
yl=9(s"ST)<—“ I:Dz‘l‘El( :|,
S N

and §(s—sr) is usual (0,1) step function. The available
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3. Phases and inelasticities for solution
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F16. 4. Phases and inelasticities for solution
P11D13D;5 (iii) of Table IV (b).

data are not sufficiently accurate to determine the
precise form of 7; at low momenta just above the in-
elastic threshold. The form used was found to be
adequate.

For a given partial wave there is thus a maximum
of six parameters, 4;, B;, and C; for the real part of the
phase shift, and D, E;, and s for the inelasticity factor.
The parametrization was chosen mainly for its sim-

1500 MeV/c 0.5 T T

qlmf,

1500 MeV/c

FROM FIG6.3

FROM FIG.4

-0.05 o 0.05 oJo

Fi16. 5. Adair plot for solutions shown in Figs. 3 and 4.
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F16. 6. Phases and inelasticities for solution
SuPubss of Table IV (b).

plicity and not for any particular physical reason, the
only physical restriction on the parameters being the
requirement that sy be greater than the first inelastic
threshold.

The parameters were varied to minimize

X2 Z (Dexpt—Dparam>2
all dats ADexpt ’

where ADeypt is the experimental error on the data point
Dexpt, and Dparam is the corresponding value obtained
from the parametrization. We will quote results either
in terms of X?/Npr (where Npr=Np—Np is the
number of degrees of freedom, Np being the total
number of data and Np the number of parameters) or
P(x2,Npr), the corresponding probability.

(19)

14 T T I

S
T

140 MeV/c -

do(8)/dQ mb/sr
)
T
1

| 1 1
~1.0 -0.5 (o] 0.5 1.0
cos 8

F1c. 7. Fit to the elastic differential cross section at 140 MeV/c
from solution P11Dy3Ds5 (iii) of Table IV(b).
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TasLE V. Phases at 1495 MeV/c as determined by all the K*p data (5 in degrees).
Su Py Pys D3 D15
Type x%/Npr B ) B ) 7 ) 7 ) 7
Group I
Py1Dy3Dys (iii) 1.13 —293 100 0.5 0.19 —22.0 1.00 —49 043 26 081
P11Dy3Dys (i) 1.13 —23.8 1.00 7.1 0.19 —21.7 100 13.0 0.75 —11.2  0.63
SuPis 1.64 —64.7 0.29 —19.1  1.00 13.4  0.12 —19.5 1.00 -3.3 100
Dis 1.98 —13.5 1.00 —1.6 1.00 -354 1.00 24 1.00 —15.6 0.33
Group IT
SuPuDis 1.15 —38.8 0.40 724 0.19 —153 1.00 —17.6 048 -34 1.00
P1yDy3Dss (i) 1.18 —234 100 59.6 0.15 —17.1  1.00 10.0 0.60 —133  0.75
P11 P1sDss (ii) 1.20 —30.5 1.00 59.8 0.13 —19.5 0.72 —49 046 —25 100
SuPuPis 1.22 —50.4 0.21 123.4  0.12 —19.3  0.58 —174  1.00 —4.5 100
P11Dys 1.38 —20.7 100 943  0.05 —240 1.00 —-6.0 0.19 —-0.2 100
Group III
PuDss 1.38 —26.8 1.00 9.9 033 —28.3 -1.00 10.1  1.00 -73 0.53
P11 P13Dss 141 —37.8 1.00 18.8 0.16 —19.7  0.63 1.0 1.00 -85 0.72
SuPuDis 1.61 —28.9 0.89 11.6  0.18 —24.2 100 82 1.00 —10.1  0.53
S1D1s 1.68 —229 0.66 12.5  1.00 —33.1  1.00 3.1 100 —15.2 049
Dy3Dys (i) 1.88 —22.2  1.00 50 1.00 —34.0 1.00 121 0.55 —83 0.68
Group IV
Py3Dys (i) 1.17 —35.0 1.00 —304 1.00 103 037 —7.6 1.00 03 0.66
S1uPi13Dis 1.20 —41.0 0.73 —22.5 1.00 11.7 025 —50 100 —6.6 0.74
P13Dy3D1s 1.22 —33.7 1.00 —25.8 1.00 10.7 027 —7.8 094 -23 0.70
SuPi3Dis 1.27 —523 045 —21.6 1.00 9.5 024 —13.2 0.76 —44 1.00
Pyi3Dss (1) 1.28 —434  1.00 —-72 100 —22.8 047 —6.3 100 6.7 0.62
P13Dy3 1.37 —30.4 1.00 —383 1.00 33 039 —15.1  0.55 21 1.00
Py P1sDys (i) 1.46 —36.3 1.00 —294 0.79 04 032 —11.9  0.59 0.1 100
SuDis 1.69 —17.5  0.56 —52.7 1.00 —6.4 1.00 —162 021 —6.2 1.00
S1uD13D1s 1.86 —16.5 0.57 —49.5 1.00 —-3.6 1.00 —184 0.22 —-3.7 090
D1sDss (i) 1.98 —23.9 1.00 —49.0 1.00 —10.0 1.00 —-9.8 0.59 40 0.62

The Legendre-polynomial fits (see Appendix A) show
that above 1 BeV/¢, d waves are expected to be present.
Thus we have included the five partial waves S11, P,
P13, Dy3, and D5 Since one of the objects of the present
work is to determine the minimum number of param-
eters needed to fit the data, we have performed analyses
under the assumptions that (i) only one wave is inelastic

175 MeV/c

do(6)/dQ mb/sr

o
-1.0 ~-0.5 o] 0.5 1.0
cos @

Fic. 8. Fit to the elastic differential cross section at 175 MeV/¢
from solution Py1;D1sDss (iii) of Table IV (b).

(5 combinations), (ii) only two waves are inelastic (10
combinations), and (iii) only three waves are inelastic
(10 combinations). For each of the above choices about
100 minimizations were made from general trial solu-
tions, their only common feature being a negative
s-wave phase shift at very low momenta. The resulting
solutions were then sorted into different types, and
several of the best of each type subjected to further

2r 205 MeV/c

do(6)/dQ mb/sr

S 1.0 -0.5 0 0.5 1.0
cos 8

Fi1c. 9. Fit to the elastic differential cross section at 205 MeV/c
from solution P11 Di13Dss (iii) of Table IV (b).
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- d 235 MeV/e T

do (8)dQ mb/sr

05 1.0
cos 8

F16. 10. Fit to the elastic differential cross section at 235 MeV/c
from solution Py, D13D;5 (iii) of Table IV (b).

extensive searching. The best solutions of each of the
latter groups were used for final minimizations.

7. RESULTS

We have made our analyses using two data sets,
details of which are given in Appendix B. The first set
consists of published data in the range 140-1495 MeV/c
and has a total of 214 data points. The second set con-
tains, in addition, the preliminary differential cross-
section data at 735,'% 860, 960, and 1200 MeV/c,1%17 and
preliminary recoil proton polarization data at 778
MeV/c.2 This latter set has a total of 345 data points.
Details of the best solutions obtained under our various
assumptions concerning inelasticity are given below.

A. One Wave Inelastic

Table II shows the minimum values of X2 obtained
for the five possible cases using the two data sets. The
most interesting feature is that, with the exception of
the very slight increase in the case of D3, X2 falls as the
inelasticity is ascribed to a higher partial wave. The
main reason for the bad fits is that it is impossible to
simultaneously fit the higher-momenta differential cross

5 4r 265 MeV/c -
) b
€
]
o
s
1 B
1 3
4 4 []
° 1 1 1
-0 -05 o 05 10
cos 8

F16. 11. Fit to the elastic differential cross section at 265 MeV/¢
from solution P11 D13D;s (iii) of Table IV (b),
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355 Mev/c

do(8)dQ mb/sr

00 8 ! 1
=10 05 o 05 10

cos 8@

F16. 12. Fit to the elastic differential cross section at 355 MeV/¢
from solution P 11D13D1s (iii) of Table IV (b).

sections and also reproduce the rapid rise in the inelastic
cross section. The improvement in X? as the inelasticity
moves to a higher partial wave is due to the fact that
higher partial waves contribute more to the inelastic
cross section.

B. Two Waves Inelastic

Table III shows the minimum values of X2 obtained
for the ten possible combinations of two inelastic partial
waves. The main features to emerge from these searches
are that all solutions in which Sy is inelastic are bad, the
case of S11.P11 being the worst of all. Closer examination
of this particular combination shows that, as in the case
of one wave inelastic, it is unable to fit the rapid rise in
the inelastic cross section.

For the combinations P13 P13, P13D1s, and Dy3Dy5 two
solutions appeared in each case, both solutions having
comparible values for X2 The best fit to the published
data having two waves inelastic was given by solution
Py3Ds5 (i1), and we will see in the Sec. 8 that this solution
is marginally better than even the best solution with

1.5

T T T
. I 1 i
. { 1
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a8
€
a
2
< oS- 520 Mev/c -]
©
o ] ] 1
S0 Z05 ) 05 10
cos 8

Fi16. 13. Fit to the elastic differential cross section at 520 MeV/¢
from solution P11.Dy3Dss (iii) of Table IV (b).
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522 MeV/c

do (8)dQ mb/sr

. =05 o 0.5 1.0

cos 8

Frc. 14. Fit to the elastic differential cross section at 522 MeV /¢
from solution P11 D13Dss (iii) of Table IV (b).

three waves inelastic. When the preliminary data was
also included this solution still survived as the best solu-
tion with two inelastic waves, but now some solutions
with three waves inelastic gave better fits to this
complete data set.

Figure 2 shows the characteristics of this solution as
determined by the published data. The corresponding
solution determined by all the data is very similar. One
interesting feature is that both Py3 and Dy5 show signs

!
Lo
3
S
©
=
b 642 MeV/c
® o5f 4
00 ! ! !
-1.0 -0.5 o 05 1.0
cos 8

F1c. 15. Fit to the elastic differential cross section at 642 MeV/¢
from solution Py1D13Dss (iii) of Table IV (b).

of the Ball-Frazer®® mechanism, the real part of the
phase shift increasing as the partial wave becomes more
inelastic.

C. Three Waves Inelastic

Table IV shows the minimum values of X* obtained
for the ten possible combinations of three inelastic
partial waves. The first point of interest is that, when
only the published data is used, 6 of the 10 possible
combinations give solutions with probabilities greater

% T, S, Ball and W. R. Frazer, Phys, Rev. Letters 7, 204 (1961),
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than 509%. In the case of the combination Py1P13D13 two
solutions appeared, while for P13 D13Dy5 three solutions
were found. The best fit to the published data is given
by solution P11Dy3Dys (iii), although, as noted above,
Py3Dys (il) gives an even better fit. When the pre-
liminary data is also included this solution with three
inelastic waves still gives the best fit and, moreover, is
now the best of all the solutions having either one, two,
or three waves inelastic,

Figure 3 shows this best solution Py1.Di3Dy5 (iii), as
determined by the published data while Fig. 4 shows
this same solution when the preliminary data is also

&
o
E
<]
o
)
b
<
05 735MeV/c ~
00 1 1 1
-1.0 -05 [¢] 05 1.0
cos 8

FIG 16. Fit to the elastic differential cross section at 735 MeV/c
v from solution P11 D13Dss (iii) of Table IV (b).

included in the fit. The main change is in the behavior
of the real part of the Py, phase. In both cases it starts
negative but begins to turn as the inelasticity starts to
increase. In the first case this turn-around is only slight
and is not enough to bring the real part of the phase
shift positive, but in the second case it is much stronger,
8 passing through 0° at about 650 MeV /¢ and reaching a
maximum value of 15.5° at about 1200 MeV/c. After
this rise both solutions show a fall in 8.
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F1c, 17. Fit to the elastic differential cross section at 778 MeV/¢
from solution P11 D13Dss (iii) of Table IV (b),
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F1c. 18. Fit to the elastic differential cross section at 810 MeV/c
from solution P11Dy3D;s5 (iii) of Table IV (b).

These two solutions are interesting since they illus-
trate the difficulties in distinguishing between a simple
Ball-Frazer mechanism and a true inelastic resonance.
In the solution shown in Fig. 3 the real part of the Pyy
phase is initially negative. However, once inelasticity
sets in # drops very quickly with a corresponding rise
in 8. Then, as the inelasticity levels off, the real part of
the phase turns again and falls. In the solution shown in

1.5 T T T

do (8)d mb/sr
——
—e—
———

0S5 .
860 MeV/c
ool 1 1 |
-10 -0.5 (o] 0.5 1.0
cos 8

Fic. 19. Fit to the elastic differential cross section at 860 MeV /¢
from solution P11 D13Dss (iii) of Table IV (b).

Fig. 4 the inelasticity falls nearly as quickly, but now
the positive bump in é is much more marked. Figure 5
shows the Adair® plot for these two cases. The second
curve shows very clearly the behavior of an inelastic
resonance, possibly superimposed on an attractive back-
ground, whereas such an interpretation in the case of the
first curve is much less obvious.

8. DISCUSSION OF RESULTS

We shall now discuss in more detail the results ob-
tained when we fit the second data set in which the

3 R. K. Adair, Phys. Rev. 113, 338 (1959).
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preliminary data is included as well as the published
data. Although this data set is not as well fitted as when
the preliminary data is removed, nevertheless we feel
that these solutions are more reliable, the decrease in
probability being due to the inherent difficulties of
energy-dependent phase-shift analyses rather than to
inconsistencies in the data.

In Table V we show values for the phases and
inelasticities at 1495 MeV/c for all solutions having
X2/Npr less than 2.0. This excludes seven solutions
which, since they also have X2/Npy>2.0 when only
the published data is used, we believe are unrealistic.
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Fi6. 20. Fit to the elastic differential cross section at 910 MeV/¢c
from solution P31 D13Dy5 (iii) of Table IV (b).

The behavior of 6 for .Sy is roughly similar in every case
and is consistent with our assumption of a Goldhaber
type (Su repulsive and dominant) low-energy solution.
If we classify the solutions according to the behavior of
6 for Py; we see that the solutions may be divided into
four groups. In group I, é rises and then falls through 0°.
In the case of the first two solutions of this group this
behavior is accompanied by a rapid fall in 5 for Py;; the
typical behavior of an inelastic resonance. In the case
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Fic. 21. Fit to the elastic differential cross section at 960 MeV/¢
from solution P11 Dy13D;; (iii) of Table IV (b).
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F1G. 22. Fit to the elastic differential cross section at 970 MeV/¢
from solution P11 D13Dss (iii) of Table IV (b).
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F16. 23. Fit to the elastic differential cross section at 1170 MeV /¢
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from solution Py D13Dss (iii) of Table IV (b).
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Fic. 24. Fit to the elastic differential cross section at 1200 MeV /¢
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from solution P11 D13Ds5 (iii) of Table IV (b).

165

o
o
T

g
o

do(8)d Q mb/sr

T ¥ T

1450 MeV/c

0.0
-1.0

Fi16. 25. Fit
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to the elastic differential cross section at 1450 MeV /¢

from solution P11 D13D15 (iii) of Table IV (b).
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F16. 26. Fit to the inelastic cross section from solution

P11D1sDss (iii) of Table IV (b).
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F16. 28. Recoil proton polarization at 900 MeV/c as predicted

by the best solution of groups I (solid line), IT (dot-dashed line),
and IV (dashed line).

of the other two solutions Py; is elastic so we believe
them to be unrealistic, this explaining the much larger
values of X2, In group II, & for Py, rises quickly and in
two cases passes upward through 90° a typical
“normal” resonance behavior. Again for all members of
this group the bulk of the inelasticity is in Py, In group
I11, 6 for Py, rises only slowly even though in the best
three solutions 7 has fallen quickly. These solutions we
find somewhat suspect since we would expect such a
drop in % to produce signs of a Ball-Frazer mechanism
in §. Finally, in group IV, é for Py, falls fairly slowly, Py
being elastic in all except one solution.

The behavior of the other phases are roughly con-
sistent within each group. For groups I, II, and III, the
bulk of the inelasticity is in Py, except for a few suspect
solutions with large X2 In all except one case, & for Py;
falls slowly and this partial wave is elastic or else only
slightly inelastic. The d waves are not very well deter-
mined. For group IV the bulk of the inelasticity is in P;3
except for the three worst solutions. Also, apart from
these three and one other solution, 8 for Py; rises slowly,
showing no signs of an inelastic resonance type behavior.
Again the d waves are not well determined.

The statistically best solution is of group I and has
been shown in Fig. 4. Thes best solution of group II we
show in Fig. 6, while the best solution of group IV is
very similar to that shown in Fig. 2, which gives the
same solution as determined by the published data. We
do not show a group-III solution since they are statis-
tically far inferior to the best solutions of the other
three groups.

The solutions of groups I and ITI are basically variants
of one another in that they all show some form of reso-
nance behavior in the Py; state. Since such a resonance
appears to be in the region of 1500 MeV/c, better
determination of whether it is elastic or inelastic and
the values for its energy and width must await further
accurate data in the region 1-2 BeV/c. It is nevertheless
interesting that evidence for an enhancement in this
region has been reported in both K+p total cross sec-
tion3” and photoproduction experiments.3 Solutions of

37R. J. Abrams e al., Phys. Rev. Letters 19, 259 (1967).
38 J, Tyson et al., Phys. Rev. Letters 19, 255 (1967).
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F16. 29. Recoil proton polarization at 1200 MeV /¢ as predicted
by the best solution of groups I (solid line), II (dot-dashed line),
and IV (dashed line).

group IV show no resonance behavior. A choice between
these and solutions of groups I and II can be made on
the basis of further accurate measurements in the region
we have analyzed as we shall discuss below.

9. CONCLUSIONS AND OUTLOOK

We have presented the results of an extensive sys-
tematic energy-dependent phase-shift analysis of K+p
scattering below 1.5-BeV/¢ kaon laboratory momentum.
The characteristics of the solutions found have enabled
them to be classified into four main groups, the best
solution of group III being statistically far inferior to
those of the other groups. An interesting feature of the
solutions of groups I and II is the possible existence of
a resonance in the Py, state.

In view of the multiplicity of solutions the question
of most interest now is what additional experimental
data could best help decide between them. Fits to all
the cross-section data for the best solution of group I
are shown in Figs. 7-27. The best solutions of groups
II and IV produce fits which are very similar. In fact, at
the low momenta they are indistinguishable. Thus only
very accurate cross-section data in the range below
1.5 BeV/c could hope to distinguish between these solu-
tions. However, this is not to say that additional data
in this region are not potentially useful, since they could
help to improve the accuracy of the existing solutions.
In particular, more measurements of the total inelastic
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F1c. 30. Recoil proton polarization at 1500 MeV /¢ as predicted
by the best solution of groups I (solid line), IT (dot-dashed line),
and IV (dashed line).
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cross section would be very valuable. The differential
cross sections predicted by the three types of solution
when extrapolated above 1.5 BeV/c do differ, the
differences increasing with momentum. However, to
extrapolate phase shifts beyond a range where they
are known to fit data is a dangerous procedure and we
shall not pursue the point here.

There remains the question of the recoil proton
polarization. In Figs. 28-30 are shown the predicted
recoil proton polarizations from the best solutions of
groups I, II, and IV. The differences are striking be-
tween the group-IV solution and the other two. It is
also encouraging that the predicted polarizations are
large. Thus measurements of the recoil proton polariza-
tion in the momentum range 1.0-1.5 BeV/c should
clearly distinguish between resonant and nonresonant
type solutions. However, if the former type are pre-
ferred, then somewhat more accuracy would be required
to deduce the detailed characteristics of the resonance.
We urge that such experiments be done.

Finally, as we mentioned in Sec. 3, there are no
measurements of any angular distributions in the
momentum range 1.5-2.0 BeV/c. In view of the possible
existence of a Pyjs resonance in this region, suggested by
solutions of groups I and II, and the enhancements
observed by two experimental groups?”:# it is im-
portant that angular distributions (both for elastic
scattering and recoil proton polarizations) be measured

in this momentum range.

ACKNOWLEDGMENTS

This work was started while two of us (ATL and
BRM) were at the Niels Bohr Institute, Copenhagen,
and the third author (GCO) was at NORDITA,
Copenhagen. The first two authors wish to “thank
Professor A. Bohr for the hospitality of the Institute,
and the Science Research Council (England) for the
award of NATO fellowships. The third author similarly
wishes to thank Professor C. Mgller for the hospitality
of NORDITA, and Turner and Newall for a research
fellowship.

In addition, we wish to thank the following people for
discussions and/or communicating data in numerical
form or prior to publication: G. Goldhaber (Berkeley),
J. Hamilton (NORDITA), V. P. Henri (CERN), P. B.
Jones (Oxford), T. F. Kycia (Brookhaven), and R. F.

Peierls (Brookhaven).

APPENDIX A: LEGENDRE-POLYNOMIAL FITS
TO THE K+p DIFFERENTIAL CROSS SECTIONS

The differential cross-section data were fitted with
Legendre series®® for two reasons: (i) to determine the

# We are grateful to R. G. Kirsopp for -making his Legendre
series fitting program available to us.

LEA, MARTIN, AND OADES

165

TaBLE VI. Legendre fits to data at 735 MeV/c.

Data after alterations

Number Original data
of P(x) P(x?
terms Nor x* xX*/Nor % Nor x* x*/Nor %

1 18 623 3.46 0.00 8 18.2 228 195
2 17 553 3.25 0.00 7 154 2.19 3.17
3 16 38.7 242 0.12 6 48 0.79 57.00
4 15 249 166 5.20 5 21 041 83.53
5 14 244 174 4.07 4 21 052 71.74
6 13 23.6 181 3.55 3 1.4 047 70.55
7 12 228 190 291 2 1.3 0.64 52.20
8 11 190 1.64 6.11 1 02 022 66.00
9 10 18.0 1.80 5.46

10 9 174 193 432

11 8 135 1.69 9.61

12 7 9.0 129 25.03

maximum number of partial waves required at each
momentum, and (ii) to remove obvious inconsistencies
in the‘data. '

We have used the series

do N
—(5,0)= 2 ca(s)Pn(cosh), (A1)
aQ

n=0

and in order to present a systematic approach the
following technique was used:

(1) The data were first fitted with a one-term series,
then a two-term series, and so on up to a twelve-term
series (or until the number of degrees of freedom fell to
Z€ro).

(i1) The fits were then inspected to see if any points
were consistently giving large contributions to X% Such
points were subsequently rebinned, or rejected, and
stage (i) repeat.

At this point two criteria can be applied to decide on
where to truncate Eq. (Al). First, one can look for the

TasLE VII. Details of the number of Legendre coefficients needed
to fit the elastic differential cross sections.

Laboratory Number of terms Number of terms
momentum for a probability for 1st minimum
(MeV/¢) of 309, in x2/Npr
355 2 2
520 1 no minimums?
522 3 6
642 3 1
735 3 4
780 3 4
810 3 1
860 3 1
910 2 3
960 3 3
970 3 S
1170 3 3
1200 4 4
1450 5 6

s The first minimum is almost certainly lost because of a bad scatter of
points.



165

K+p PHASE-SHIFT ANALYSIS BELOW

1.2 T T T T T
1o- { Los o - 4
L
08| I i .
i

osf- Co J
04 4
021 -
On 1 1 1 1 1

Qa3 0.5 0.7 09 LI 13 15

' P, (Bev/e)

F16. 31. Energy dependence of the Legendre coefficient Co.

L2
1.0
o8-
o6

04

4|

00

-02

03 05 o7 09 LI 13 15

F16. 32. Energy dependence of the Legendre coefficient Ci.

”

P (BeV/c)

1.2

1O

08
7

04r

o2 ]
00|

-02

03 05 o7 09 ] 13 15

F16. 33. Energy dependence of the Legendre coefficient Co.

P, (Bev/c)

cls T 1 T 1 L)
o6l Cs .
oal .
02 ; I I n
00 ] 4 I
: l t g it
-0z}t .
e o5 o7 09 u 13 15
Pe (BeV/c)

Fi6. 34. Energy dependence of the Legendre coefficient Cs.

1500 MEV /¢ 1785
point where the probability exceeds 509, (X2/Npr1),
and, second, where the first minimum in X2/Npr occurs.
The first criterion means that on the average the data
points are fitted to within the quoted errors, while the
second criterion means that adding another term in the
Legendre series does not significantly decrease X2
Ideally both criteria should be satisfied at the same
point, but in practicé they are usually not.

Let the probability exceed 509, for NV, terms in the
series, and let the minimum in X2/Npr occur for N,
terms. If the average number of terms needed to fit
other experiments in the same energy region is IV, then
we would judge an individual fit to be good if

N=N,+1=Np=+1.

We often find that while NV,,=N, N, is either very large
or very small. If IV, is large, then there are either some
isolated bad points or the over-all errors are too small
and should be increased. If N, is small, then con-
versely the errors are probably too large. In cases where
N.>N, it usually means that the first minimum in
X2/Npr has been lost due to rather bad data.

As an example of the use of the Legendre fitting
technique, Table VI shows the 735-MeV/c15 pre-
liminary data both before and after rebinning. The
original data gave a minimum in X2/ Npy for 4 terms but
the corresponding probability was only 5.29,. Note
that even with a 12-term series the probability only
rises to 259%. After rejecting the point at cosf=0.85 and
rebinning the remaining data from intervals of 0.1 in
cosf to intervals of 0.2, the first minimum in X2/Npr
still occurs for 4 terms while the probability rises above
509, for a series with three or more terms.

In Table VII we give details of the number of terms
needed to satisfy both criteria after making the neces-
sary adjustments to the data. Here we have used a
probability of 309, as a criterion for a good fit because
of the scatter on the data from some, particularly older,
experiments. It will be seen that the highest number of
terms are required for the 1450-MeV/c data. Here a
term in cos% is required, indicating the presence of a
d-wave term at this momentum.

In Figs. 31-34 we show the first four Legendre series
coefficients as functions of laboratory momentum in
the region from 335 to 1450 ‘MeV/c. Values below
355 MeV/c are not shown because the Coulomb effects
are large enough to influence the coefficients.

APPENDIX B: DETAILS OF THE DATA

In Tables VIII and IX we show details of both the
published and preliminary data, respectively. The
crosses indicate that the data have been included in the
analysis, and the number in parentheses gives the
reference.

The data are shown in Figs. 7-27 together with fits
from the over-all best solution.
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Tasre VIIIL Published data included in first data set. The numbers in parentheses give the references.
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Laboratory Forward Laboratory Forward
momentum real momentum real
(MeV/c) Giot Cinel part do/dQ P(6) (MeV/c) Ttot Tinel part  do/dQ 140))
140 X X (8) 992 X@) X
175 X X(8) 1043 X (3) X
205 X X (8 1087 X(11) X
235 X X (8) 1094 X@3)
265 X X (8) 1144 X(3) X
355 X X(® 1170 X (10) X X (10)
520 X X(8) 1194 X@3) X
522 X(7) 1245 X@3) X
642 X X8 1295 X@3)
770 X (10) X 1300 X (10) X
718 X (14) X@17 1345 X(3) X
810 X9) X(©9 X X9 1367 X(11) X
891 X@3) X 1395 X(3) X
910 X X (18) X (18) 1440 X (10)
942 X (3) X 1445 X@3)
970 X (10) X X(10) 1450 X (12) X (12) X X (12)
976 X(11) 1495 X@3) X

TasiLE IX. Additional preliminary data included in second data set. The numbers in parentheses give the references.

Laboratory momentum Forward
(MeV/e) Tiot Tinel real part do/dQ P9

735 X(15) X(15) X X(15)

778 X(21)

860 X (19) X X (19)

960 X (19) X(19)

1200 X(16) X(19)
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By assuming that “nucleonic” form factors are dominated by the contribution of the N*(1400) resonance
(which is the only object having the same quantum numbers as the nucleon), the relation g,nn/geny
=g nn*/genn* is derived (the g’s are coupling constants, and only magnetic coupling to the photon is
considered). A recent phase-shift analysis of photoproduction off protons by Chau, Dombey, and Moorhouse
gives a value for g,nn* agreeing in sign but twice too large.

T has recently been implied' that nucleonic form
factors might be dominated by the N*(1400) reso-
nance (which has the same quantum numbers as the
nucleon), just as electromagnetic form factors are
dominated by vector mesons.? In this paper it is
intended to confront this idea with experiment and to
make some general comments on it.
The yNN and 7NN vertices will be considered. With
the photon and one nucleon on the mass shell, and the
other nucleon off the mass shell (mass W), the yYNN

1J. M. Cornwall and S. H. Patil, Phys. Rev. Letters 18, 757

(1967).
2 See, e.g., M. Gell-Mann, Phys. Rev. 125, 1067 (1962).

vertex is given by?

a(p)
PITu@]p)=——
l ,? ) (PO/M)IN (P )
u ’
X[ u+.lnr( - 'vF W .
tyuetiou (p— p')sFa( )J(po’/M)W

Similarly the 7NN vertex is given by

V2a(p) u(p’)

(213(0)|p)y=———TLivsrG(W) ]———.

(po/ M) (po’/ M)V

# A. Bincer, Phys. Rev. 118, 885 (1960).
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